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4. Calculating Bott-Chern Forms

In this section we will consider an exact sequence

£ : 0->S->E-+ Q-*0}
where the metrics on S and Q are induced from the metric on E. Let

r, n be the ranks of the bundles S and E. Let 4> £ Un) be homogeneous of
degree k. We will formulate a theorem for calculating the Bott-Chern form
0(£). This result follows from the work of Bott-Chern, Cowen, Bismut and

Gillet-Soulé.

Let (f)' be defined as in §2. For any two matrices A,5g Mn{C) set

4>'(A;B) := ,A,5(i),A,... ,A),
i=i

where the index imeansthat B is in the i-th position.
Choose a local orthonormal frame of E such that the

first relements generate S, and let K(S), and K(Q) be the curvature
matrices of S, Q and Ë with respect to s. Let KE ^K(E)
and Kq Jl—K(Q). The matrix KE has the form

KE

where Kuisan r x r submatrix. Also consider the matrices

*11 *12

*21 *22

Ka
Ks 0

*21 Kq
and J,

<p' (K(u); Jr). We then have the following

Theorem 2.

(3) m
^ - 4>'(0)

du.

Proof. We prove that </>(£) as defined above satisfies axioms (i)-(iii) of
Theorem 1. The main step is the first axiom; this was essentially done in
[BC] §4, when <j> c is the total Chern class. In the form (3) (again for the
total Chern class), the equation was given by Cowen in [CI] and [C2], while
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simplifying Bott and Chern's proof. We follow both sources in sketching a

proof of this more general result.

Let h and hq denote the metrics on E and Q respectively. Define
the orthogonal projections P\ : È S and P2 : Ë —>• Q and put
hu(v,v') -- uh(P\%P\v'y + h(P2V,P2Vf) for v,v' G Ex and 0 < u ^ 1.

Then hLl is a hermitian norm, h\ h and hu —> hq as u —» 0. Let K(E,hu)
be the curvature matrix of (£, /zM) relative to the holomorphic frame s defined
above. Proposition 3.1 of [C2] proves that f^K(E,hu) — K(u). It follows from
Proposition 3.28 of [BC] that for 0 < t ^ 1,

4>(E, ht)-4>(E,h)ddc [ du.
Jt "

If we could set t 0 we would be done ; however, the integral will not be

convergent in general. Note that K{u) Kq+vlK\ where K\ G A1'1 (X, End(£))
is independent of u. Therefore it will suffice to show that (j)'(Ko\Jr) is a closed

form, so that it can be deleted from the integral. For this we may assume that
(j) px is a product of power sums, À (Ai, À2,..., Am) a partition. Then

m

p'x(K0;Jr)yTr(^)'1'1 riCW) +
i= 1 j^i
m

^pA,_1(5)P[p\A0Ô)
/=1 y'G/

is certainly a closed form.
This proves axioms (i) and (iii); axiom (ii) is easily checked as well.

Remark. A similar deformation to the one in [C2] was used by Deligne
in [D], 5.11 for a calculation involving the Chern character form. Special
cases of Theorem 2 have been used in the literature before, see for example
[GS2] Prop. 5.3, [GSZ] 2.2.3 and [Ma] Theorem 3.3.1.

We deduce some simple but useful calculations :

Corollary 1.

(a) Cj(£) 0 for all 1 and cm(£) 0 for all m > rkE.

(b) p2(Ê)2(Tr Kn-a(5)) and £(£) - Tr

Proof, (a) c[(u) is independent of u ; hence ci(£) 0. The result for
higher powers of c\ follows from Proposition 1. In addition, cm(£) 0 for
m > rkE is an immediate consequence of the definition.
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(b) Using the bilinear form described previously, we find

p2(u) 2(«TrÄn H* (1 w)ci(5)), so

m 1f< .M„+(l-^,(5)^.W Ju
J0 u

2(TvKu-ci(S)).

To calculate 02(8), use the identity 2c2 c\ — D

Corollary 1 (b) agrees with an important calculation of Deligne's in [D],

10.1, which we now describe: Using the C°° splitting of 8, we can write

the d operator for E in matrix form :

dE ^ for some a G A0'1 Horn(Q,

Let o* G A1'0(X,Horn(5,0) be the transpose of a, defined using complex

conjugation of forms and the metrics hs and hQ. If V is the induced

connection on Hom(05), we can write

Ks - ^aa* Vl'°a

KQ - ^a*a

Thus Corollary 1(b) implies that

c£(£) - Tr(aa*) Tr(a*a),
Z7TZ ITTI

and we have recovered Deligne's result. In this form the calculation was used

by Moriwaki and Soulé to obtain a Bogomolov-Gieseker type inequality and

a Kodaira vanishing theorem on arithmetic surfaces, respectively (see [Mo]
and [S]).

The calculation of C2 shows that in general Bott-Chern forms are not
closed. In fact, calculating Ck for k ^ 3 leads to much more complicated
formulas, involving traces of products of curvature matrices, for which a clear

geometric interpretation is lacking (unlike the matrix a above, whose negative

transpose —a* is the second fundamental form of 8). In the next two sections

we shall see that when E is a projectively flat bundle, the Bott-Chern forms
are closed and can be calculated explicitly for any </> G I(n).
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