Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	43 (1997)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	POLYGON SPACES AND GRASSMANNIANS
Autor:	Hausmann, Jean-Claude / Knutson, Allen
Kapitel:	4. POLYGONS WITH GIVEN SIDES – KÄHLER STRUCTURES
DOI:	https://doi.org/10.5169/seals-63276

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

section collapsed. The trace function on $\mathcal{M}_{m\times 2}(\mathbb{C})$ descends to $\widetilde{G}_2(\mathbb{C}^m)$ and to the Casimir function "perimeter" on ${}^m \mathcal{PP}_+^3$.

4. POLYGONS WITH GIVEN SIDES - KÄHLER STRUCTURES

We now use the map $\ell : {}^{m}\widetilde{\mathcal{P}}^{k}, {}^{m}\mathcal{P}^{k}_{+}, {}^{m}\mathcal{P}^{k} \to \mathbf{R}^{m}$ defined in (2.4). Recall that $\ell(\rho)$, for $\rho \in {}^{m}\widetilde{\mathcal{P}}^{k}$, is the length of the successive sides of a representative of r with total perimeter 2.

For $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbf{R}_{\geq 0}^m$ with $\sum_{i=1}^m \alpha_i = 2$, we define

$${}^{m}\widetilde{\mathcal{P}}^{k}(\alpha) :=: \widetilde{\mathcal{P}}^{k}(\alpha) := \{ \rho \in {}^{m}\widetilde{\mathcal{P}}^{k} \mid \ell(\rho) = \alpha \} \subset {}^{m}\widetilde{\mathcal{P}}^{k} .$$

The space $\widetilde{\mathcal{P}}^k(\alpha)$ is invariant under the action of O_k . We define the moduli spaces

$$\mathcal{P}^k_+(\alpha) := SO_k \setminus \widetilde{\mathcal{P}}^k(\alpha) = \ell^{-1}(\alpha) \subset {}^m \mathcal{P}^k_+$$

and

$$\mathcal{P}^k(\alpha) := O_k \setminus \widetilde{\mathcal{P}}^k(\alpha) = \ell^{-1}(\alpha) \subset {}^m \mathcal{P}^k.$$

The space $\widetilde{\mathcal{P}}^1(\alpha)$ consists of a finite number of points and is generically empty. We call α generic if $\widetilde{\mathcal{P}}^1(\alpha) = \emptyset$.

THEOREM 4.1. The map $\mu := \ell \circ \widehat{\Phi} : \mathbf{G}_2(\mathbf{C}^m) \longrightarrow \mathbf{R}^m$ is a moment map for the action of U_1^m on $\mathbf{G}_2(\mathbf{C}^m)$.

Proof. As seen in (3.13), the moment map $\Psi : \mathbf{G}_2(\mathbf{C}^m) \longrightarrow \mathcal{H}(m)$ for the U_m -action on $\mathbf{G}_2(\mathbf{C}^m)$ is induced from $\widetilde{\Psi} : \mathcal{M}_{m \times 2}(\mathbf{C}) \longrightarrow \mathcal{H}(m)$ given by $\widetilde{\Psi}(a, b) := (a, b) \cdot (a, b)^*$. A moment map μ for the action of U_1^m is obtained by composing Ψ with the projection $\mathcal{H}(m) \longrightarrow \mathbf{R}^m$ associating to a matrix its diagonal entries. So, if $\Pi \in \mathbf{G}_2(\mathbf{C}^m)$ is generated by a and b with $(a, b) \in \mathbf{V}_2(\mathbf{C}^m)$, one has

$$\mu(\Pi) = (|a_1|^2 + |b_1|^2, \dots, |a_m|^2 + |b_m|^2) = \ell \circ \widehat{\Phi}(a, b).$$

A now classic theorem of Atiyah and Guillemin-Sternberg [Au, §III.4.2] asserts that the image of a moment map for a torus action is a convex polytope (the *moment polytope*). The restriction of the moment map to the fixed point set of an anti-symplectic involution has the same image [Du]. In our case, one gets these facts directly:

COROLLARY 4.2. The moment map $\mu: \mathbf{G}_2(\mathbf{C}^m) \longrightarrow \mathbf{R}^m$ satisfies $\mu(\mathbf{G}_2(\mathbf{C}^m)) = \mu(\mathbf{G}_2(\mathbf{R}^m)) = \Xi_m$, where Ξ_m is the hypersimplex

$$\Xi_m := \{ (x_1, \ldots x_m) \in \mathbf{R}^m \mid 0 \le x_i \le 1 \quad and \quad \sum_{i=1}^m x_i = 2 \}.$$

Proof. One has Image(μ) = Image(ℓ). Further it is manifest that Image(ℓ) $\subset \Xi_m$. A proof that Image(ℓ) = Ξ_m is actually provided in [KM1], Lemma 1, or [Ha]. We give here however another argument, for the pleasure of constructing a continuous section $\sigma : \Xi_m \longrightarrow {}^m \mathcal{P}^2$ of ℓ . If m = 3, we have already mentioned in (2.7) that ${}^3\mathcal{P}^2$ is homeomorphic to Ξ_3 via the map ℓ . Let $\alpha \in \Xi_m$. Define $\beta_i := \sum_{j=1}^i \alpha_j$ and

$$r(\alpha) := \min\{i \mid \beta_i \leq 1 \quad \text{and} \quad \beta_{i+1} \geq 1\}.$$

The numbers $\beta_r, \alpha_r, 2 - \beta_{r+1}$ form a triple of Ξ_3 and are then the lengths of a unique triangle $\tau(\alpha) \in {}^{3}\mathcal{P}^2$, which can be subdivided in the obvious way to define the element $\sigma(\alpha) \in {}^{m}\mathcal{P}^2(\alpha)$ (see Figure 1).

FIGURE 1: $\tau(\alpha)$

The continuity of σ comes from the fact that if the map r is discontinuous at some α , the triangle $\tau(\alpha)$ is then lined.

REMARKS. 1) Corollary 4.2 is also a consequence of our stronger result (5.4).

2) The word "hypersimplex" is introduced in [GM]. Observe that H is obtained by taking the convex hull of the middle point of each edge of a standard (m-1)-simplex.

We also obtain the critical values of μ (compare [Ha]):

PROPOSITION 4.3. The set of critical values of μ on $\mathbf{G}_2(\mathbf{C}^m) \to \Xi_m$ or $\mathbf{G}_2(\mathbf{R}^m) \to \Xi_m$ consists of those points $(x_1, \ldots, x_m) \in \Xi_m$ satisfying one of the following conditions:

a) one x_i vanishes;

b) one x_i is equal to 1;

c) there exist $\varepsilon_i = \pm 1$ such that $\sum_{i=1}^m \varepsilon_i x_i = 0$, with at least two ε_i 's of each sign.

REMARK. Points satisfying a) and b) constitute the boundary of Ξ_m . Points satisfying c) are "inner walls". Points satisfying a) correspond to nonproper polygons. Those satisfying b) or c) are non-generic α 's (Condition b) implies that there exist $\varepsilon_i = \pm 1$ such that $\sum_{i=1}^m \varepsilon_i x_i = 0$ with all but one ε_i of the same sign.)

Proof. The critical points of the moment map μ are the points of $\mathbf{G}_2(\mathbf{C}^m)$ for which the U_1^m -action has a stabilizer of dimension bigger than 1. They are the images of those $(2 \times m)$ -matrices in $\mathbf{V}_2(\mathbf{C}^m)$ for which the $(U_1^m \times_{U_1} U_2)$ -action has a non-discrete stabilizer. There are such points whose stabilizer is contained in $U_1^m \times \{1\}$; they are the matrix with one row vanishing and their values under μ are the points of Ξ_m satisfying a). The other points give rise to points in ${}^m \widetilde{\mathcal{P}}^3 = U_1^m / \mathbf{V}_2(\mathbf{C}^m)$ so that the action of $U_2 / \{\text{center of } U_2\} \simeq SO_3$ has non discrete stabilizer. Those points are the lined configurations ${}^m \widetilde{\mathcal{P}}^1$. Their values in Ξ_m are the non generic α 's, which are the points in Ξ_m satisfying b) or c).

We have proven most of the main result of this section: for generic and proper α , the space $\mathcal{P}^3(\alpha)$ is a Kähler sub-quotient of $\mathbf{G}_2(\mathbf{C}^m)$.

THEOREM 4.4. For $\alpha \in \text{int } \Xi_m$ generic, $\mathcal{P}^3_+(\alpha)$ is a Kähler manifold isomorphic to the Kähler reduction $U_1^m \setminus \mu^{-1}(\alpha)$. The involution $\check{}$ is antiholomorphic and $\mathcal{P}^2(\alpha)$ can be seen as the real part of $\mathcal{P}^3_+(\alpha)$.

Proof. By 4.1, one has $\mathcal{P}^3(\alpha) = \ell^{-1}(\alpha) = U_1^m \setminus \mu^{-1}(\alpha)$ and we have seen in 3.9 that $\widehat{\Phi}(\overline{a}, \overline{b}) = \Phi(a, b)^{\check{}}$. \Box

We shall now compare the Kähler structure obtained on $\mathcal{P}^3_+(\alpha)$ from the Grassmannian to that introduced by Klyachko [Kl] or Kapovich-Millson ([KM2], §3). Using the standard cross product \times and scalar product $\langle ., . \rangle$ on \mathbf{R}^3 , these authors put on the sphere S_r^2 of radius *r* the complex structure \tilde{J} defined by

$$\widetilde{J}v := \frac{1}{r}x \times v \qquad (v \in T_x S_r^2)$$

and the Kähler metric

$$\widetilde{h}(u,v) := \frac{1}{r} \langle u, v \rangle - \frac{i}{r^2} \langle x, u \times v \rangle \qquad (u, v \in T_x S_r^2)$$

with associated symplectic form $\widetilde{\omega}(u, v) := \langle \frac{x}{r^2}u \times v \rangle$. Let $W(\alpha) := \prod_{i=1}^m S_{\alpha_i}^2$. The map $\beta : W_{\alpha} \longrightarrow \mathbb{R}^3$ defined by $\beta(z_1, \ldots, z_m) := \sum_{i=1}^m z_i$ is the moment map for the diagonal action of SO_3 on W_{α} . The space $\mathcal{P}^3_+(\alpha)$ thus occurs as the symplectic reduction $SO_3 \setminus \beta^{-1}(0)$.

PROPOSITION 4.5. The complex structure J and Kähler metric h of 4.4 compare with those \tilde{J} and \tilde{h} of Kapovich-Millson in the following way:

$$\widetilde{J} = J$$
 and $\widetilde{h}(u, v) = 4 h(u, v)$

Proof. Starting from the Hermitian vector space $\mathcal{M} = \mathcal{M}_{m \times 2}(\mathbb{C})$ one sees that $\mathcal{P}^3(\alpha)$ is obtained by two successive symplectic reductions

$$\mathbf{G}_2(\mathbf{C}^m) = \widetilde{\Phi}^{-1}(0)/U_2$$
 and $\mathcal{P}^3(\alpha) = U_1^m \setminus \mu^{-1}(\alpha)$

(we use the notation of §3). One can perform the reductions in the reverse order. We first get

$$U_1^m \setminus \widetilde{\Psi}^{-1}(\alpha) = \prod_{i=1}^m \mathbf{C} P^1_{\alpha_i}$$

where $\mathbb{C}P_r^1$ is the quotient of the 3-dimensional sphere

$$\{(u, v) \in \mathbf{C}^2 \mid |u|^2 + |v|^2 = r\}$$

by the diagonal action of U_1 . The moment map $\widetilde{\Phi} : \mathcal{M} \longrightarrow \mathcal{H}(2)$ gives a a moment map (still called $\widetilde{\Phi}$) from the product of projective spaces into $\mathcal{H}_0(2)$. One has a commutative diagram

$$\begin{array}{cccc} \prod_{i=1}^{m} \mathbf{C} P_{\alpha_{i}}^{1} & \stackrel{\prod^{\phi}}{\longrightarrow} & \prod_{i=1}^{m} S_{\alpha_{i}}^{2} \\ & \widetilde{\Phi} \downarrow & & \downarrow \beta \\ & \mathcal{H}_{0}(2) & \stackrel{\psi}{\longrightarrow} & \mathbf{R}^{3} \end{array}$$

where $\psi : \mathcal{H}_0(2) \to \mathbf{R}^3 \simeq \mathbf{R} \times \mathbf{C}$ sends the matrix $\begin{pmatrix} u & z \\ \overline{z} & -u \end{pmatrix}$ to (u, z).

To prove Proposition 4.5, it is enough to establish that for all $a \in \mathbb{C}P_r^1$, the tangent map $T_a\phi: T_a\mathbb{C}P_r^1 \longrightarrow T_{\phi(a)}S_r^2$ satisfies

$$T_a\phi(Jv) = \widetilde{J}T_a\phi(v)$$
 and $\widetilde{\omega}(T_a\phi(v), T_a\phi(Jv)) = 4\omega(v, Jv)$.

By U_2 -equivariance, we can restrict ourselves to $a = [\sqrt{r}, 0]$. The tangent space $T_a \mathbb{C}P_r^1$ is identified with $\{0\} \times \mathbb{C}$ and one can take v = (0, 1) and Jv = (0, i). One has $\phi(a) = (r, 0, 0)$,

$$T_a\phi(v) = (0, 2\sqrt{r}, 0), \quad T_a\phi(Jv) = (0, 0, 2\sqrt{r}) = JT_a\phi(v)$$

and $\widetilde{\omega}(T_a\phi(v), T_a\phi(Jv)) = 4$, while $\omega(v, Jv) = 1$.

Remarks

(4.6) The results of this section show that the spaces $\mathcal{P}^3_+(\alpha)$ for generic α are the symplectic leaves of the Poisson structure on the regular part of ${}^{m}\mathcal{P}^3_+$, or ${}^{m}\mathcal{P}\mathcal{P}^3_+$ given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions $I\mathbf{H}$, the complex structure \tilde{J} on S_r^2 becomes

$$\widetilde{J}(v) = \frac{q v}{|q|}$$
, $(v \in T_q S_r^2 = I\mathbf{H})$.

The sphere S_r^2 is a co-adjoint orbit of $U_1(\mathbf{H})$ and the Hermitian form \tilde{w} is the Kirillov-Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic reductions of the Grassmannian $G_2(\mathbb{C}^m)$ and the product of $\mathbb{C}P^1$'s that underlies our results 3.9, 4.4 and the proof of 4.5 is a symplectic version of the Gel'fand-MacPherson correspondence ([GM] and [GGMS]). The fact that this isomorphism comes from two reductions of \mathcal{M} is the philosophy of "dual pairs" (see [Mo] and the references therein).

5. THE GEL'FAND-CETLIN ACTION

On ${}^{m}\mathcal{F}^{k}$ we have so far defined the length functions $\tilde{\ell}$ measuring the distances between successive vertices. We now introduce $\tilde{d} : {}^{m}\mathcal{F}^{k} \to \mathbf{R}^{m}$, $\tilde{d}(\rho) = (|\rho(1)|, |\rho(1) + \rho(2)|, \dots, |\sum_{i=1}^{m} \rho(i)|)$, the lengths of the diagonals connecting the vertices to the origin. (Only m-3 of these functions are new, as $\tilde{d}(\rho)_{1} = \tilde{\ell}(\rho)_{1}$, $\tilde{d}(\rho)_{m-1} = \tilde{\ell}(\rho)_{m}$, and $\tilde{d}(\rho)_{m} = 0$. Hereafter we write only ℓ_{i}, d_{i} and the ρ is to be understood.)