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106 L. BARTHOLDI

PROPOSITION 5.6 ([Ami80, Equation 4.4)]. Let X be a power series in
t over a matrix ring, such that X(0) = 1. Then

1-X
detX:exp(—/tr( < )dt),

where the integration is the formal linear operation on power series that maps
" to 7/ (r +1).

We then have, using Lemmas 5.2 and 5.3,

detM M

(14+ (1 —word — A —w?)yn det 1+ (1 —u)Jt

1+0—-wJt—M
:exp(-—/tr * Mb;)J dl)

— exn] — series counting non-trivial circuits, dt
= @p length shifted down by one

1 — oN242 .
— exp(—/tr( d-wn Pdt)
Pt
. P B det P
Tl —w?r (1= —u)lveol

6. SECOND PROOF OF THEOREM 2.4

Let P = [%, 1] be the set of paths in X from % to {. As we shall apply
the principle of inclusion-exclusion [Wil90], it will be helpful to compute in
IT = Z[[P]], the Z-module of functions from the set of paths to Z. We embed
subsets of P in IT by mapping a subset to its characteristic function:

1 ifreA,

PDOA xa, With(ﬂ')XA:{ .
0 otherwise.

Let B be the subset of bounded non-negative elements of II (i.e. functions f
such that there is a constant N with 0 < (7)f < N for all paths 7). If £ is a
complete labelling of X, there 1s an induced labelling ¢, : B — k given by

(e = (mfr" .
TEP

Note that the sum, although infinite, defines an element of k due to the fact
that ¢ is complete.
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DEFINITION 6.1 (Bump Scheme). Let e € E(X) and v € V(X). A squiggle

along e is a sequence (e,2,...,e,e). A squiggle at v is a squiggle along e
for some edge e such that e* = v.
Let ™ = (vg, ey, ...,en, V) be a path of length n in X'. A bump scheme

for w is a pair B = ((/807 aw o ;ﬁll))(/}/l) XX 7/711)) ’ with
e for all i € {0....,n}, a finite (possibly empty) sequence [ =

(Bis--.,0is) of squiggles at v;;
o forall ie{l,...,n}, a squiggle v; along e;.

The weight |B| of the bump scheme B is defined as

n t;

|B| = ZZ(W:‘JI - D+ Z il -
=1

i=0 j=1

Given a path 7w and a bump scheme B = (3,7) for m, we obtain a new
path 7V B € P, by setting

TV B = /60,1 e '60,1‘0716151,1 e '7116711811,1 et ﬁn,r” s

where the product denotes concatenation.

We now define a linear map ¢: IT — II[{u]] by setting, for f € Il and
TeP,

M) = > @—-DPlpf,

(p,B): pVB=T7

where the sum ranges over all pairs (p,B) where p € P and B is a bump
scheme for p such that pV B = 7. Note that the sum is finite because the
edges of p and of B form subsets of those of 7.

LEMMA 6.2. For any path m we have

(6.1) (m)((xp)p) = u™™.

Proof. Say m = (m,...,m,) has m > 0 bumps, at indices by,...,b,, so
that 7, = 7, . We will show that the evaluation at 7 of the left-hand side
of (6.1) yields u™.

We claim there is a bijection between the subsets C of {I,...,m} and
the pairs (pc,Bc) where pc is a path and B¢ is a bump scheme for pe with
T = pc V Be; and further |B¢| = |C|.

First, take a p and a B = (8,v) such that pV B = 7. The path pV B is
obtained by shuffling together the edges of p and B, and this partitions the
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edges of 7 in two classes, namely (i) those coming from p and (ii) those
coming from (§ and 7. Let C C {1,...,m} be the indices of the bumps b;
in m coming from B, ie. such that 7, and m,,, belong to the class (ii).
One direction of the bijection is then (p,B) — C.

Conversely, given a subset C consider the set D = {b; | i € C}. Split it in
maximal-length runs of consecutive integers D = D;LI---UD;. For all runs D;
do the following: to D; = {j,j+1,...,j+2k—1} of even cardinality associate
a squiggle ~; of length 2k along 7;;to D; = {j,j+1,...,j+2k—2} of odd
cardinality associate a squiggle [;; of length 2k at v;_;; then delete in =
the edges 7, ..., m4o—1. This process constructs a bump scheme B = (3, )
while pruning edges of m, giving a path v with vV B = 7. These two
constructions are inverses, proving the claimed bijection.

It now follows that

ce{l,...,m}

Let ¢': E(X) — K[[u]] be defined by

v 1
T 1 (et — w2’

We prove Theorem 2.4 by noting that &(¢) = (xp)l., that §() = (xpd)lx,
and that for any f € IT we have (f¢)l, = K. (f)£.. To prove this last equality,
take a path m = (m,...,m™,) on vertices vy, ...,v,. Then

Xmy Dl = Y _(u— D v By,
B

‘Ko .

where the sum ranges over all bump schemes for 7, and

; 1
K. 7w =K, 'k,
=7 T — (u— D2(mf Y

1 ¢
—, K, .
L= (= D) "
It is clear these last two lines are equal; for the power series expansion of
the K, correspond to all the possible squiggle sequences f3; at v;, and the
power series expansion of the 1/(1—(u— D2 ()% correspond to all possible
squiggles y; along ;.
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