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318 A. CHOUDHRY

3. A PARAMETRIC IDEAL NON-SYMMETRIC SOLUTION OF
THE TARRY-ESCOTT PROBLEM OF DEGREE FOUR

We will now solve the equations

(19) ay+a, +as+as+as = by + by + bz + by + bs,
(20) atastastal+al=b+b3+b3+b2+b2,
(21) a+a+ata;+ai="b+b3+bl+b+ b3,
(22) ai + a5 + a3 + ds + ai = b} + b3 + by + b} + b2,

so as to get an ideal non-symmetric solution of the Tarry-Escott problem of
degree four. We write

ar =2px —(E+ 1y, by = 2px + 1y,

ay = 2qx + 1y, by = 2gx — (£ +n)y,
(23) as = rx, bz =rx+(y,

as =sx—(Cy, by = sx,

as = Cy, bs = —(Cy.

We will first choose p,q,r,s,&,m and ¢ such that equations (19), (20) and
(21) are identically satisfied for all values of x and y. In the equation obtained
from (22) by substituting the values of a;,b; as given above, the coefficients
of x* and y* on the two sides are equal, and we will choose p,q,r,s,&,1
and ¢ so as to satisfy the additional condition that the coefficient of xy?
also becomes equal on both sides of this equation. Thus, equation (22) would
reduce to an equation containing only the terms x*y and x?y? and accordingly
it can be readily solved for x and y. These values of x and y together with
the already suitably chosen values of p,q,r,s,&,n and ( substituted in (23)
will give a solution of equations (19), (20), (21) and (22).

When a;, b; are defined by (23), we observe that equation (19) is identically
satisfied. Substituting the values of g;,b; in (20), we note that this equation
will also be identically satisfied for all values of x and y if the following
condition is satisfied:

(24) 2€6+2mp —g) +C(r+9)=0.

Next, we substitute the values of a;,b; as given by (23) in equation (21) and
observe that the coefficients of x> and y® on both sides are equal. Equating
the coefficients of x?y and xy> on both sides of this equation, we get the
following two conditions :

(25) AE+2m@P* —¢*) + (P +57) =0,
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and

(26) 26+ 2mp—q) — Cr+Cs=0.

Finally, in the equation obtained by substituting the values of a;, b; in (22),
we equate, as already discussed, the coefficients of xy> on both sides to get
the additional condition:

(27) 2E +3 N+ + 20—+ Cr+5)=0.

We now proceed to solve equations (24), (25), (26) and (27). Equations
(24) and (27) may be considered as two linear equations in the two linear
variables (p —¢) and (r+s), and they will be consistent only if &, n and (
satisfy the condition

E+2)E+én+n° =) =0.

Taking (¢ + 27) = 0 leads to trivial solutions, so we will choose &, n and
¢ such that

(28) E+ént+n' =0,
The complete solution of (28) is readily found to be
(29) £ = 2mn — m°, n=m?— n, C=m?—mn+n®,

Next, we solve equations (24) and (26) for r and s, and substitute their values
in equation (25) which now has a linear factor (p — ¢) that can be ignored
and then equation (25) is readily seen to be satisfied if we choose p and g
as follows:

p=¢&+2En+6C0 + 2% -2,
q =8 +26n+ €60 +2n¢* + 203
With these values of p and g, we immediately get
r=—4€2¢ — 8n¢ + 4£¢* + 8n¢?,
s = 4E2¢ + 8EnC + 4£¢7 + 8¢

Thus, when &, 1, ¢ are defined by (29), and p, g, r and s are given by
(30) and (31), equations (24), (25), (26) and (27) are all satisfied. With these

values of p,q,r,s,&,m and (, equation (22) reduces, on removing the factor
64x*y(*(§ + 21), to

(6€° +24€7n + 246" 0% — 126%¢> — 4863n¢% — 48¢22C% — 262
—8¢n¢* — 8n*C* + 8C0)x — (36* + 667 — 322 — 6EncY)y = 0.

(30)

€1
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Thus, equation (22) will be satisfied if we choose

(32)

A solution of equations (19), (20), (21) and (22) can now be obtained in
terms of the parameters m and n by taking &, n and ( as given by (29),
substituting these values of &, n and ¢ in (30), (31) and (32) to obtain p,
q, r, S, x and y in terms of m and n, and then substituting the values of
p, g, r,s, &, n, (, x and y in (23). The solution so obtained may, after
simplification and removal of common factors, be written explicitly in terms

x = 3% + 663 — 3¢6%¢* — 6¢6n¢?,
y = 6£° + 24870 + 244 — 126°¢* — 48¢°n¢?
— 4882 PP — 2£7¢" — 8¢t — 8¢t +8¢°.

of the arbitrary parameters m and n as follows:

(33)

a; = 12m'n — 3Tm®n® + 24m’n® + 12m*n* — 20m°n°
+ 15m*n® — 18mn’ + 8n8,

a» = 10m'n — 30m®n? + 54m°n® — 13m*n* — 48m°n’
+ 45m*n® — 14mn’ |

as = 4m® + 6m’'n — 28m°n? + 8m’n® + 66m*n*
—128m°n° + 112m*n® — 48mn’ + 8n®,

as = 4m® — 12m'n + 35m®n? — 55m°n® + 66m*n*
— 65m’n° + 49m*n® — 30mn’ + 8n®,

as = —4m® + 14m’'n — 27Im°n® + 55m°n® — 80m*n*
+ 81m’n’ — 49m*n® + 14mn’ |

by = —4m® + 14m’n — 22m®n* + 10m°n® + 6Tm*n*
— 140m°n> + 113m*n® — 46mn’ + 8n®,

by = 4m® + 8m'n — 45m®n* + 68m°n® — 68m*n*
+72m*n° — 53m*n® + 14mn’ |

by = 20m’n — 55m®n* + 63m’n’> — 14m*n* — 47Tm’n’
+ 63m*n® — 34mn” + 8n®,

by = 2m'n + 8m®n® — 14m*n* + 16m>n®> — 16mn’ + 8n®,

bs = 4m® — 14m’n + 27m®n?* — 55m°n® + 80m*n*

— 81m3n° + 49m*nb — 14mn’ .
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We may apply Frolov’s theorem to the above solution to obtain other non-
symmetric solutions. For instance, an arbitrary constant K can be added to
all the terms a;, b;, i =1,2,3,4,5.

As a numerical example, taking m = 3, n = 1, we get, on suitable
re-arrangement, the following solution:

(—1659)" + 1406" + 2784" 4+ 4025 + 5915"
= (—1675)" + 1659" + 2366" + 4256" + 5865",

where r = 1,2,3,4. Adding the constant 1676 to all the terms, we get the
following solution in positive integers:

17" +3082" + 4460" + 5701" + 75917 = 1" + 3335" + 4042" 4+ 5932" + 7541",

where r =1,2,3,4.

4. THE DIOPHANTINE SYSTEM Zle g = Zle bl, r=1,2,3,4,6

We will now state the theorem given by Gloden [7, p.24] to which a
reference has already been made in the introduction and then apply it to
obtain a parametric solution of this diophantine system.

THEOREM 4.1. If

then
k+1 k41

ST+ =3 "bi+ry,  r=12.. . kk+2,
=1 i=1

where
k41

t=—0 a)/k+1).
i=1

As5 we have already obtained, in the preceding section, a parametric solution
5 . .

of ) i ,aj =3 . b, r=1,2,3,4, adirect application of the above theorem

gives a parametric solution of Zf:l ar = Z?:l by, r=1,2,3,4 and 6. We

multiply the (a;+1), (b;+1), i=1,2,3,4,5 by 5 to cancel out denominators,
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