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REMARKS ON THE HAUSDORFF-YOUNG INEQUALITY

by Srishti D. Chatterji

§1. Introduction

A standard version of the Hausdorff-Young inequality for a locally compact
commutative group G can be given as follows : for a fixed Haar measure in

G, let / e L\G)nL2(G) ; if 1 < p<2, p'- 1), then

(1) 11/11,. S11/11,

where

(2) 7(7) [fix) j(x) dx, 7
J G

G being the dual group of G, endowed with a Haar measure which is such

that for p p' — 2, there is equality in (1); that this last condition can be

met is one form of Plancherel's theorem in L2(G). Note that, for 1 <P<2,
\\f\\p <00 if / is in L!(G) HL2(G), the latter space being dense in each

LP(G), 1 < p <2. Hence, because of the Hausdorff-Young inequality (1), the
Fourier transform Tpf can be defined uniquely for all / G LP{G), 1 < p < 2,
in such a way that

(3) Tp\ U{G) U'(G)

is a linear contraction with Tpf f for all / in Ll(G) flL2(G). It is known
that, for each p G [1,2], is injective and that if / G LPl(G) HLP2(G),
1 < P\,P2 < 2, then TPJ TPlf a.e. on G; see [HR] vol.2, chap.VIII
((31.26), p.229; (31.31), p.231). The purpose of the present note is to prove
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(Thm. 1) by a very simple general argument that the operator Tp in (3)
is surjective only in the following obvious cases: (i) p p' 2 or (ii)
G finite. This fact is now well-known ([HR] vol.2, p.227, pp.430-431);
however, most of the known proofs of this depend on a careful analysis of the

group G whereas our proof shows that this is an immediate consequence of a

general theorem concerning the isomorphism of arbitrary LP -spaces (stated in
§2). From this we deduce fairly simply that for any infinite locally compact
commutative group G, the inequality (1) cannot be extended to the case
2 < p < oo ; the exact statement is given as Thm. 2 in §3. I have not seen

this statement given in complete generality elsewhere, although it is highly
likely to be known to many.

We set up the necessary notations in §2, state and prove the facts alluded
to above in §3 and add a few historical comments in §4; a short appendix
(§5) is added to explain the LP -isomorphism theorem stated in §2.

We have not tried to extend our theorems to the case of G non-commutative,
using for G the set of all equivalence classes of continuous unitary irreducible

representations of G. For G compact, this has been done (for our Thm. 1)

in [HR] vol.2, (37.19), p. 429; our analysis carries over to this case as well
without any difficulty. However, we have preferred to leave out the non-
commutative case entirely in this paper, except to make a few remarks on it
in §4.

§2. Notations and some known facts

Our reference for general functional analysis and integration theory is [DS]
and that for group theory is [HR]. A measure space is a triple (A, £, p) where

£ is a cr-algebra of subsets of the abstract set X and ß : £ —» [0, oo] is a

a-additive positive measure; no finiteness or a-finiteness conditions will be

imposed a priori on ß. Then LP{ß), 1 < p < oo, will denote the usual Banach

space associated with £-measurable complex-valued functions / defined on X
with U/H p<oo, \\f\\p being the standard Z/-norm with respect to ß. If G

is a locally compact commutative group (always supposed to be Hausdorff),
LP(G), 1 < p < oo, will stand for the associated LP-space obtained by fixing
some Haar (invariant) measure on G, and G will stand for the dual group,
formed by the continuous homomorphisms (characters)

7:G^T {zeC:|z| l}.
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