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310 E. MEINRENKEN

cohomology class in Hl(M, U(l)) H2(M, Z) defined by this cocycle is

the Chern class of the line bundle. Chatterjee-Hitchin [10, 18, 17] suggested
to realize classes in 7/3(M, Z) in a similar fashion, replacing U(l)-valued
functions with Hermitian line bundles. They define a gerbe to be a collection
of Hermitian transition line bundles Lab Ua D Ub and a trivialization, i.e.

unit length section, tabc of the line bundle (SL)abc LbcL~clLab over triple
intersections. These trivializations have to satisfy a compatibility relation over
quadruple intersections,

(fit)abed, — tbcdt^rftabdt^ — 1

which makes sense since (St)abcd is a section of the canonically trivial
bundle. (Each factor Lab cancels with a factor L~bl.) After passing to a

refinement of the cover, such that all Lab become trivializable, and picking
trivializations, tabc is simply a Cech cocycle of degree 2, hence defines a class

in 7/2(M, U(l)) Z). The class is independent of the choices made in
this construction, and is called the Dixmier-Douady class of the gerbe.

Note that in practice, it is often not desirable to pass to a refinement.

For example, if M is a connected, oriented 3-manifold, the generator of
7/3(M, Z) Z can be described in terms of the cover U\, U2, where U\ is

an open ball around a given point p G M, and U2 M\{p}, using the degree

one line bundle over U\ D U2 S2 x (0,1).

2.2 Bundle gerbes

Bundle gerbes were invented by Murray [24], generalizing the following
construction of line bundles. Let tt : X M be a fiber bundle, or more

generally a surjective submersion. (Different components of X may have

different dimensions.) For each k > 0 let X^ denote the &-fold fiber product
of X with itself. There are k + I projections dl : X[k+1] —) X[k], omitting
the z'th factor in the fiber product. Suppose we are given a smooth function

X[2] —> U(l), satisfying a cocycle condition Sx 1 where

Sx ^d*0xdïx-ld*2X-Xm->V(

Then x determines a Hermitian line bundle L M, with fibers at m G M the

space of all linear maps <p: Xm — ir~l(m) —C such that fi(x) xCl-xO^C*7)-

Given local sections cra : Ua —> X of X, the pull-backs of % under the maps
(<ja, ab): UaC\Ub -A-X[2] give transition functions Xab for the line bundle.

Again, replacing U(l)-valued functions by line bundles in this construction,

one obtains a model for gerbes: A bundle gerbe is given by a line bundle

L and a trivializing section t of the line bundle SL — cÇL09*L_109JL
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over X[3], satisfying a compatibility condition St 1 over (which
makes sense since St is a section of the canonically trivial bundle SSL).

Given local sections aa: Ua -A X, one can pull these data back under the

maps ((Ja,(Jb): Ua n Ub -A X[2] and (aa, (?b-> <rc): Ua H Ub n Uc -A X[3] to

obtain a Chatterjee-Hitchin gerbe. The Dixmier-Douady class of (X,L,t) is

by definition the Dixmier-Douady class of this Chatterjee-Hitchin gerbe; again

this is independent of all choices. The Dixmier-Douady class behaves naturally
under tensor product, pull-back and duals.

Notice that Chatterjee-Hitchin gerbes may be viewed as a special case of
bundle gerbes, with X the disjoint union of the sets Ua in the given cover.

Remark 2.1. In his original paper [24] Murray considered bundle gerbes

only for fiber bundles, but this was found too restrictive. In [25], [29] the

weaker condition (called 'locally split') is used that every point x G M admits

an open neighborhood U and a map a: U -A X such that tt o a id.
However, this condition seems insufficient in the smooth category, as the fiber

product X xMX need not be a manifold unless tt is a submersion.

2.3 SlMPLICIAL GERBES

Murray's construction fits naturally into a wider context of simplicial
gerbes. We refer to Mostow-Perchik's notes of lectures by R. Bott [23] and

to Dupont's paper [12] for a nice introduction to simplicial manifolds, and to
Stevenson [29] for their appearance in the gerbe context.

Recall that a simplicial manifold M. is a sequence of manifolds (Mn)fL{),
together with face maps dt : Mn -A Mn_i for i v= 0,..., n satisfying relations
9/ o dj dj-1 o di for i < j. (The standard definition also involves degeneracy

maps but these need not concern us here.) The (fat) geometric realization
of M. is the topological space \\M\\ An x Mnj where An is
the n-simplex and the relation is (f, dfx)) ~ (9z'(f),jc), for dl\ A"-1 -> An
the inclusion as the i th face. A (smooth) simplicial map between simplicial
manifolds is a collection of smooth maps fn : Mn -a M'n intertwining
the face maps; such a map induces a map between the geometric realizations.

Examples 2.2.

(a) If S is any manifold, one can define a simplicial manifold E.S where
EnS is the n+ 1-fold cartesian product of A, and dj omits the jth factor. It
is known [23] that the geometric realization \\ES\\ of this simplicial manifold
is contractible. More generally, if I a M is a fiber bundle with fiber S,
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