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a distinguished, equivariant pseudo-line bundle (Z%, sg) (where Ey is trivial),
with connection VEij induced from the connection %. From the definition

of Oij, it follows that the equivariant error 2-form for this connection is the

pull-back of the equivariant symplectic form on the coadjoint orbit through

ßj ~~ ßi •

We now modify the bundle gerbe connection by adding the equivariant
2-form (voj)G G QçiVj) t0 the gerbe connection. Proposition 5.2(d) shows that

the equivariant error 2-form of VEij with respect to the new gerbe connection

vanishes. The other conditions from the gluing construction in §4 are trivially
satisfied. Since the equivariant 3-curvature for the new gerbe connection on

Qj is dg(^j)g VgWj, we have constructed an equivariant bundle gerbe with
connection, with equivariant curvature-form t}g

Remark 5.6. For G SU(d + 1) this construction reduces to the

construction in terms of transition line bundles: All Z*, Ey, are trivial
in this case, hence the entire information on the gerbe resides in the functions

Sy : (Xij)[2] -A U(l) defined by the differences pj — fit. The condition Ssy- 1

for these functions means that Sy defines a line bundle Ly over Vy, as

remarked at the beginning of Section 2.2. The condition SySjkSu 1 over Xyk
is the compatibility condition over triple intersections.

6. Pre-quantization of conjugacy classes

It is a well-known fact from symplectic geometry that a coadjoint orbit
O G.p through p G tÜj_ has integral symplectic form, i.e. admits a pre-
quantum line bundle, if and only if \x is in the weight lattice A* The analogous
question for conjugacy classes reads : For which ß G 21 and m G N does the
pull-back of the rath power of the basic gerbe Qm to the conjugacy class
C G.exp(/x) admit a pseudo-line bundle, with mcjc as its error 2-form?
For any positive integer ra > 0 let

a7; a* n ra&

be the set of level ra weights. As is well-known [26], the set parametrizes
the positive energy representations of the loop group EG at level ra.

Theorem 6.1. The restriction of Qm to a conjugacy class C admits a
pseudo-line bundle £, with connection, with error 2-form muoc, if and only
if C ~ G. exp(/x/ra) with p G A* Moreover C has an equivariant extension
in this case, with mujc as its equivariant error 2-form
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Proof. Given a conjugacy class C C G, let g G ra2l be the unique point
with g := exp(g/m) G C, and let K Gg so that C G/K. Pick an index j
with C C Vj, and let

v — m^jig) — g — m/ij

Then

GßcKcGu.
Let (9M, öv C 0 denote the adjoint orbits of g, i/, arid (cum)g, (^)g their

equivariant symplectic forms. The pull-back i*cQm is the gerbe over G/K
defined as in Section 3 by the homomorphism g G Hom(7ri(X),U(l)), given
as a composition

7TI(K) -> 7Ti(Gj) U(l),
where the fist map is push-forward under the inclusion K and the

second map is the homomorphism defined by the element m/ij G t for G7.

Suppose now that g G A^. Then nifij equals — 1/ up to a weight lattice

vector, which means that g is the image of — v G (£*)^ in the exact sequence
(3.2). Hence, Proposition 3.2 says that we we obtain an equivariant pseudo-line
bundle for i*cQm, with equivariant error 2-form

(^)g - ^ Lc(wj)G mLÜc •

Here we have used part (b) of Proposition 5.2.

Conversely, suppose that Qm\c admits a pseudo-line bundle with error
2-form mujc- Consider the pull-back of Q under the exponential map

exp: g —» G. The pull-back exp* g G G3(g) is exact, and the homotopy

operator for the linear retraction of g to the origin defines a 2-form vo G L£(ö)
with d w — exp* g. As in Proposition 5.2, one shows that for any adjoint
orbit O C g, with exp Ö C,

LqUJ — exp* LÜC — Uq

where loq is the symplectic form on (9. In particular this applies to

O öß/m. Choose a pseudo-line bundle for exp* Q with error 2-form —zu.

We then have two pseudo-line bundles for exp* Gm\o obtained by restricting
the rath power of the pseudo-line bundle for exp* Q or by pulling back

the pseudo-line bundle for C. Their quotient is a line bundle over (9, with
curvature the difference of the error 2-forms:

ra(exp* lüc — mujo •

Thus m(ii/m) g must be in the weight lattice.
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Remark 6.2. Z. Shahbazi has proved that if Q is a gerbe with connection

over a manifold M, with curvature 3-form 77, and O: TV -> M is a map with

0*77 + dcj 0, then the pull-back gerbe <D*£ admits a pseudo-line bundle,

with to as its error 2-form, if and only if the pair (77, u) defines an integral
element of the relative de Rham cohomology H3(0, R). This means that for

any smooth 2-cycle S C N, and any smooth 3-chain B C M with boundary

O(S), one must have JBrj — fs w G Z. The particular case where the target
of O is a Lie group G is relevant for the pre-quantization of group-valued
moment maps [1].

Appendix A. Proof of Lemma 4.4

In this Appendix we prove Lemma 4.4, concerning the construction of a

certain cover Uj of M from a given cover V). Write M UZA/ where

A f>AU v
j0

Notice that Äj C |J/C/A/. By induction on the cardinality k |/| we will
construct open sets Uj C Vj, having the following properties:

(a) the closure Ui does not meet Uj for |/| < |/| unless J C /,
(b) each Äj is contained in the union of Uj with J C I.
The induction starts at k 0, taking U0 0. Suppose we have

constructed open sets Uj with L/C V7 for |/| < fc, such that the properties
(a), (b) hold for all |/| < k. For \I\ k consider the subsets

B]:j=A/\( (J [/,).

Note that (unlike A/) the set B, is closed. B, does not meet Äj unless c
and it also does not meet Üj for |/| < unless J c I. That is, 5/ is disjoint
from

C,:= (J uU^Jf-
J$J,\J\<k K^I

Choose open sets U, for |/| - k with B, r (J, C Dr C M\Q, and such
that the closures of the sets U, for distinct I with |/| k are disjoint. The
new collection of subsets will satisfy the properties (a), (b) for |/| <k. We
next show that V[ Dj is a cover of M. Write J^Z)/ with
Di — U/\ IJI y I < I / Uj.ThenDjnUj —0 unless / C i, so Dj is contained
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