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LECTURES ON QUASI-INVARIANTS OF COXETER GROUPS

AND THE CHEREDNIK ALGEBRA

by Pavel Etingof and Elisabetta Strickland*)

I Introduction

This paper arose from a series of three lectures given by the first author
I at the Université di Roma "Tor Vergata" in January 2002, when the second
I author extended and improved her notes of these lectures. It contains an

elementary introduction for non-specialists to the theory of quasi-invariants
I (but no original results).

Our main object of study is the variety Xm of quasi-invariants for a finite
I Coxeter group. This very interesting singular algebraic variety arose in work
I of O. Chalykh and A. Veselov about 10 years ago, as the spectral variety of

the quantum Calogero-Moser system. We will see that despite being singular,
I this variety has very nice properties (Cohen-Macaulay, Gorenstein, simplicity
j of the ring of differential operators, explicitly given Hilbert series). One
I should remark that although the definition of Xm is completely elementary, it
j is helpful, in order to understand the geometry of Xm, to use representation
I theory of the rational degeneration of Cherednik's double affine Hecke algebra,
j and the theory of integrable systems. Thus, the study of Xm leads us to a

junction of three subjects — integrable systems, representation theory, and

algebraic geometry. The content of the paper is as follows. In Lecture 1

we define the ring of quasi-invariants for a Coxeter group, and discuss its
- elementary properties (with proofs), as well as deeper properties, such as

Cohen-Macaulay, the Gorenstein property, and the Hilbert series (whose partial
;j

j j
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proofs are postponed until Lecture 3). In Lecture 2, we explain the origin of
the ring of quasi-invariants in the theory of integrable systems, and introduce

some tools from integrable systems, such as the Baker-Akhieser function.

Finally, in Lecture 3, we develop the theory of the rational Cherednik algebra,
the representation-theoretic techniques due to Opdam and Rouquier, and finish
the proofs of the geometric statements from Chapter 1.

1. Lecture 1

1.1 Definition of quasi-invariants

In this lecture we will define the ring of quasi-invariants Qm and discuss

its main properties.
We will work over the field C of complex numbers. Let W be a finite

Coxeter group, i.e. a finite group generated by reflections. Let us denote by
I) its reflection representation. A typical example is the Weyl group of a

semisimple Lie algebra acting on a Cartan subalgebra f). In the case the Lie
algebra is si(«), we have that W is the symmetric group Sn on n letters and

\) is the space of diagonal traceless n x n matrices.

Let X C W denote the set of reflections. Clearly, W acts on X by
conjugation. Let m : X —» Z+ be a function on X taking non negative integer
values, which is W-invariant. The number of orbits of W on X is generally

very small. For example, if W is the Weyl group of a simple Lie algebra of
ADE type, then W acts transitively on X, so m is a constant function.

For each reflection s G X, choose as E f}* — {0} so that, for x G I),

as(sx) —as(x) (this means that the hyperplane given by the equation as 0

is the reflection hyperplane for s).

Definition 1.1 ([CV1, CV2]). A polynomial q E C[f)] is said to be

m-quasi-invariant with respect to W if, for any s E X, the polynomial
q(x) - q(sx) is divisible by as(x)2rrlsJrl.

We will denote by Qm the space of m-quasi-invariant polynomials with

respect to W.

Notice that every element of C[f)] is a 0-quasi-invariant, and that every
W-invariant is an m-quasi-invariant for any m. Indeed if q e C[f)]w, then

we have q(x) - q(sx) 0 for all s E X, and 0 is divisible by all powers of
as(x). Thus in a way, C[l)]w can be viewed as the set of oo-quasi-invariants.
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