Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	49 (2003)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	ATIYAH'S \$L^2\$-INDEX THEOREM
Autor:	Chatterji, Indira / Mislin, Guido
Kapitel:	4. On K-homology
DOI:	https://doi.org/10.5169/seals-66679

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 02.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

For R a fixed set of representatives for G/H, the map

$$\varphi_R \colon \operatorname{Ind}_H^G(S_{\widetilde{D}}) \to S_{\overline{D}}$$
$$f \mapsto \{f(r)\}_{r \in R}$$

is well-defined by *H*-equivariance of the elements of $S_{\widetilde{D}}$ and one checks that it defines a *G*-equivariant isometric bijection. Similarly for the adjoint operators.

The following example is a particular case of the previous lemma.

EXAMPLE 3.2. Let us look at the case $\widetilde{M} = M \times G$. A section $\widetilde{s} \in C_c^{\infty}(\widetilde{M}, \pi^*E)$ is an element $\widetilde{s} = \{s_g\}_{g \in G}$ where $s_g \in C^{\infty}(M, E)$ and $s_g = 0$ for all but finitely many g's. Note that $L^2(\widetilde{M}, \pi^*E)$ can be identified with $\ell^2(G) \otimes L^2(M, E)$. Now

$$\widetilde{D}\,\widetilde{s} = \{Ds_g\}_{g\in G} \in C^{\infty}_c(\widetilde{M}, \pi^*F)$$

and hence $S_{\widetilde{D}}$ may be identified with $\ell^2(G) \otimes S_D \cong \ell^2(G)^d$, where $d = \dim_{\mathbb{C}}(S_D)$. In this identification the projection P onto $S_{\widetilde{D}}$ becomes the identity in $M_d(\mathcal{N}(G))$ and thus

$$\dim_G(S_{\widetilde{D}}) = \sum_{i=1}^d \langle e, e \rangle = d = \dim_{\mathbf{C}}(S_D).$$

A similar argument for D^* shows that in this case not only does the L^2 -Index of \widetilde{D} coincide with the Index of D, but also the individual terms of the difference correspond to each other. This is not the case in general, see Example 2.2.

4. On K-homology

Many ideas of this section go back to the seminal article by Baum and Connes [3], which has been circulating for many years and has only recently been published.

An elliptic pseudo-differential operator D on the closed manifold M can also be used to define an element $[D] \in K_0(M)$, the K-homology of M, and according to Baum and Douglas [4], all elements of $K_0(M)$ are of the form [D]. The index defined in Section 2 extends to a well-defined homomorphism (cf. [4])

Index: $K_0(M) \rightarrow \mathbb{Z}$,

such that $\operatorname{Index}([D]) = \operatorname{Index}(D)$. On the other hand, the projection $\operatorname{pr}: M \to \{pt\}$ induces, after identifying $K_0(\{pt\})$ with \mathbb{Z} , a homomorphism

(*)
$$\operatorname{pr}_* \colon K_0(M) \to \mathbf{Z},$$

which, as explained in [4], satisfies

 $\operatorname{pr}_*([D]) = \operatorname{Index}([D]).$

More generally (cf. [4]), for a not necessarily finite CW-complex X, every $x \in K_0(X)$ is of the form $f_*[D]$ for some $f: M \to X$, and $K_0(X)$ is obtained as a colimit over $K_0(M_\alpha)$, where the M_α form a directed system consisting of closed Riemannian manifolds (these homology groups $K_0(X)$ are naturally isomorphic to the ones defined using the Bott spectrum; sometimes, they are referred to as *K*-homology groups with *compact supports*). The index map from above extends to a homomorphism

Index: $K_0(X) \rightarrow \mathbb{Z}$,

such that $\operatorname{Index}(x) = \operatorname{Index}([D])$ if $x = f_*[D]$, with $f: M \to X$.

We now consider the case of X = BG, the classifying space of the discrete group G, and obtain thus for any $f: M \to BG$ a commutative diagram

$$\begin{array}{cccc} K_0(M) & \stackrel{\operatorname{Index}}{\longrightarrow} & \mathbf{Z} \\ & & & & \\ f_* \downarrow & & & \\ K_0(BG) & \stackrel{\operatorname{Index}}{\longrightarrow} & \mathbf{Z} \end{array}.$$

Note that (*) from above implies the following naturality property for the index homomorphism.

LEMMA 4.1. For any homomorphism $\varphi: H \to G$ one has a commutative diagram

We now turn to the L^2 -index of Section 2. It extends to a homomorphism

Index_G: $K_0(BG) \rightarrow \mathbf{R}$

as follows. Each $x \in K_0(BG)$ is of the form $f_*(y)$ for some $y = [D] \in K_0(M)$, $f: M \to BG$, M a closed smooth manifold and D an elliptic operator on M. Let \widetilde{D} be the lifted operator to \widetilde{M} , the G-covering space induced by $f: M \to BG$. Then put

 $\operatorname{Index}_G(x) := \operatorname{Index}_G(\widetilde{D}).$

One checks that $\operatorname{Index}_G(x)$ is indeed well-defined, either by direct computation, or by identifying it with $\tau(x)$, where τ denotes the composite of the assembly map $K_0(BG) \to K_0(C_r^*G)$ with the natural trace $K_0(C_r^*G) \to \mathbb{R}$ (for this latter point of view, see Higson-Roe [10]; for a discussion of the assembly map see e.g. Kasparov [12], or Valette [14]). The following naturality property of this index map is a consequence of Lemma 3.1.

LEMMA 4.2. For H < G the following diagram commutes:

Atiyah's L^2 -Index Theorem 2.1 for a given G can now be expressed as the statement (as already observed in [10])

Index_G = Index:
$$K_0(BG) \rightarrow \mathbf{R}$$
.

5. Algebraic proof of Atiyah's L^2 -index theorem

Recall that a group A is said to be *acyclic* if $H_*(BA, \mathbb{Z}) = 0$ for * > 0. For G a countable group, there exists an embedding $G \to A_G$ into a countable acyclic group A_G . There are many constructions of such a group A_G available in the literature, see for instance Kan-Thurston [11, Proposition 3.5], Berrick-Varadarajan [5] or Berrick-Chatterji-Mislin [6]; these different constructions are to be compared in Berrick's forthcoming work [7]. It follows that the suspension ΣBA_G is contractible, and therefore the inclusion $\{e\} \to A_G$