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ON INTEGRAL SOLUTIONS OL QUADRATIC INEQUALITIES

by J. Bochnak and T. Jackson

Dedicated to Professor Henri Cartan for his 100 th birthday

Abstract. This paper studies the small values of indefinite quadratic forms with
real coefficients in n variables. It shows that for n > 3 all the Markoff-type spectra of
these forms consist of isolated points (apart possibly from the point 0). This improves
a previous result which was obtained with much more complicated methods.

1. Introduction

The aim of the paper is to prove the following isolation theorem.

THEOREM 1.1. Let n > 3 be an integer. Then for any e > 0 and any given

non-singular indefinite quadratic form f in n variables, with real coefficients,
there are integers x\,...,xn such that

(1) 0</(x1,...,x,1)<e|D(/)|1/"

unless f is equivalent to a positive multiple of one of a finite number of
forms.

In the statement above, D(f) is the determinant of /, that is, D(f)
det(//7), where / - hxixj with fj — fji• As usual, two forms / and g are

said to be equivalent if / g o L for some linear transformation L given by
a unimodular matrix with integral coefficients.

By the celebrated result of Margulis (previously the Oppenheim conjecture)
[4], for every indefinite irrational quadratic form / in n > 3 variables the set

f(7T) is dense in R. It follows that in order to prove Theorem 1.1 it suffices

to consider only forms with rational coefficients.
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A result slightly weaker than Theorem 1.1 was obtained by Vulakh [11]
(he dealt with |/| rather than /). His approach is entirely different from ours,
more complex and using a variety of arithmetical tools, while we use the

geometry of numbers.

Let £n be the set of non-singular indefinite quadratic: forms in n variables
with coefficients in R. Given / G £n let

P(f) inf{ strictly positive values of /(x) for x G Z" }

and

a(f)=P(f)/\D(f)\l/n.
Theorem 1.1 can be stated in the following equivalent form, more in the spirit
of the classical Markoff Chain Theorem (see for example [1]).

THEOREM 1.2. Given an integer n > 3, there is a decreasing sequence
(c//)/eN of positive rational numbers, and a sequence (f)ien of quadratic
forms in £n with coefficients in Z, such that

(i) ai —» 0 as i oo ;

(ii) a(f) gfäi for i= 1,2,... ;

(iii) each f G £n with a(f) > zfafff is equivalent to a positive multiple of
one of the forms f\,...Jk.

Example 1.3. For n — 3, the first 6 terms of the sequence (ai)ien are
known from the classical works of Davenport [5] and Watson [14]. They are

ai a2 a3 — a4 — a5 a6 4. The corresponding forms

fs 1 < / < 6, are also known explicitly. For example, j\ 4xy — z2.

Example 1.4. For n — 4 the first 12 terms of the sequence (ai)ien (and
the corresponding forms) are known from the work of Oppenheim [8] and
Jackson [7]. They are a{ 16, a2 ^, a3 a4 y, a5 a6 a7 ^,
a8 a9 aw au a{2 4.

EXAMPLE 1.5. For n > 4 the first term zfaf is 2 for even n and is

2at for odd n (see [12]). In particular, given any / in £n with n> 3, the

inequality 0 <f(x) < 2\D(f)\l^n can always be satisfied for some jc G Zw.

It follows from Theorem 1.1 that for n > 3 the non-zero points of the

Markoff spectrum
Mn {a(f):fe£n}
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are isolated. The spectrum Mn comes from inequalities of the type 0 < /. More

generally, there are other Markoff spectra of Sn associated with inequalities
o </, o < l/l and 0 < |/|. These spectra are proper subsets of Mn and

thus their non-zero points are also isolated. The first 11 terms of the Markoff
spectrum of S3 associated with the inequality 0 < |/| are given in [10]. It
should be stressed that when zero is included in the inequalities of Theorem 1.1

(so that (1) becomes 0 < f(x\,...,xn) < e\D(f)\l^n) the problem becomes

less difficult because the need for Lemma 2.4 below disappears.

We shall give the proof of Theorem 1.1 after some preparation in the next
section. Theorem 1.2 follows directly from Theorem 1.1.

2. Preliminaries

For / G Sn we shall make use of the notation N(f) to denote P(—f).
We shall also frequently use the following inequality ([9]) linking P(f) and

Am

Proposition 2.1 (The Oppenheim inequality). For n > 3

W))2"-2 <cn(P(f))"-2\D(f)\

where cn is a constant depending only on n. For n 3 we can take C3 22.

LEMMA 2.2. For n > 3 let {fk)keN be a sequence of quadratic forms in
Sn such that lim^oo a(fk) > 0. Then there is a subsequence (fk^ien such

that lim^oo a(—fkt) > 0.

Proof The Oppenheim inequality above implies that

{a(±f))ln-2 <cn(a(Tf))n-2

which in turn implies the result.

We shall let s(f) be the signature of the form / G Sn and then we have

COROLLARY 2.3. If Theorem 1.1 holds for all forms in Sn with signature
s, then it also holds for all forms in Sn with signature —s.

Proof. The corollary follows immediately from Lemma 2.2, in view of
the fact that —s(f) s(—f).
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Now fix a form p G £n. We say that a lattice A in R'7 defines the form

f G £n (with respect to p if, for some basis aj a(/ of A, we have

/(x) ip ^Xja,j for each x (n,...,x„)eR".

If A is an automorph of p and A defines /, then A(A) also defines /. For
a lattice AcR" define

IAI min{||a|| : a G A\ {0}}
where ||a|| max{|<2?| : 1 < i < n} if a (ci\,... ,an). Also let

/%(A) inf{y(a) : a G A, y(a) > 0}

If A defines /, then clearly

Pv(A) P(f) and i

where d(A) is the determinant of A.

LEMMA 2.4. f be a form in £3 with signature 1. If P(f) 1 there
is a lattice A in R3, defining f with respect to p xl -f yzand such that

where ß min (l, (22 \D(f)\) ]).

Proof For n — 3 the Oppenheim inequality mentioned above and applied
to —f gives

(P(f))4 <22N(f)\D(-f)\.
Since P(f) 1 by assumption, we obtain

ß<(22\D(f)\r]
Let Z y_1(0) and H y-1(] — ß,l[)\ {0}. The previous inequality and

the equality P(f) 1 imply that for every lattice X in R3 defining / we
have

x n (H \ z) 0.
If w G R3 \H and w / 0, then clearly 11 w II > yjj2 > Hence, in order

to prove the lemma, we only have to check that for some lattice A defining

/ we have 11 w 11 > ß/2 for every non-zero w G A D Z.
Let X be any lattice in R3 defining /. Since P(f) -- 1, and therefore / is

necessarily a rational form by the Margulis theorem, it follows that / takes the
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value 1 at some point in Z3. This, together with the fact that (/?( 1,0,0) 1,

implies the existence of an automorph B of <p such that the point v (1,0,0)
is in B(X) (see [13], p. 11, Theorem 5). Therefore, replacing X by B(X), we
can assume from the beginning that (1,0,0) G X.

Let w G XnZ. Assume first that w is not orthogonal to v (1,0,0).
Then w (a,b,c) with a/0. We claim that \\w\\ > \ > ß/2. Replacing
w by — w, if necessary, we may assume that a < 0. If \a\ < ^ then

0 < p(w + v) (1 + a)2 + be 1 +2a < 1 ;

in other words w + v G X D (H \ Z), contradicting the fact that X D (H \ Z)
is empty.

So if X is any lattice defining / and containing v (1,0,0) then for each

non-zero w in X we have ||w|| > ß/2, except possibly when w e XflZ and

w is orthogonal to v.
We shall now deal with the case where wGlfl Z, w/0, and w is

orthogonal to v. Then w must be of the form (0,/,0) or (0,0,0 for some
t 0. (If no such vector exists the proof is finished.)

If there are two points Wj and w2 in X H Z that are orthogonal to v
and linearly independent, we can choose these points to be wi (0,^,0)
and w2 (0,0, t') with, say, 0 < t < t' and t and t' least possible. Then

necessarily 8 tt' > 1, as otherwise 0 < ^>(W| + w2) tt' < 1 and wi + w2
would be in XD(H\Z) which is empty. Let A be an automorph of (p defined
by

/\(.V. V. ;;) (x,

Then A A{X) is a lattice defining / with v G A and, for each wGAflZ,
we have either ||w|| >1 if w is of the form (0,w,0) or ||w|| > ö > 1 if
w is of the form (0,0, u). Hence, in the case under consideration, for each

non-zero w G AnZ that is orthogonal to v, we have 11w11 > 1 > ß/2.
In other words, A is a lattice with the required properties : it defines / and

\A\>ß/2.
Finally, if each vector in IflZ, orthogonal to v, is a multiple of a

single vector w (0,^,0) (or w (0,0,0), for some t ^ 0, then taking the

automorph A of (p defined by A(x,y,z) (x,y/t,tz) (or (x,ty,z/t)), we again
obtain a lattice A A(X) with the required properties. O

LEMMA 2.5. Let At be a sequence of lattices in R" converging to a
lattice A and let <p be in £n. Then

lim sup Pp(Ai) < P(p(A).
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Proof. Let M p~l{{—oo, 0]) and take a G A\M. Then there are points
a; G A/ such that a/ —» a as i -A oo. Since a, is not in M for all large
enough /, we have

<p(a/) > inf{v?(y) : y G A/ \ M} P^(A/)

for all large i. By the continuity of p we therefore have

(/?(a) > lim sup P^ (A/).
i—^ oo

Since a was an arbitrary point of A \ M, the lemma follows.

3. Proof of Theorem 1.1

We shall prove Theorem 1.1 in two steps. First for n 3, then, using
induction, for n> 4.

3.1 Case n 3

If Theorem 1.1 is false for n 3, then there is an infinite sequence fn of
ternary forms in S3, having the same signature, such that no fm is equivalent
to a multiple of fq for q f=- m, and such that

o(fn) -> 0 > 0 as m oc

Moreover, replacing fn by —fm if necessary, and taking possibly a subsequence,

we can assume without loss of generality (using Lemma 2.2) that all the fm

have signature 1. Then we scale each fm to have

PUm) 1

and thus

(2) \D(fm)\ -A a~3 as m -a 00

Let Am be a lattice in R3 defining fm with respect to p x2 + yz. In

particular, d{Am) \D(fm)f- and P^(Am) 1. It follows from (2) that for
each m

(3) d{Am) < 7 for some 7 > 0

From (3) and Lemma 2.4, we can assume that for some 77 (for example

77 min(±, TA) we have
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(4) 0 < 77 < I Am I

for every m.

By Mahler's compactness theorem ([2], p. 137, Theorem IV), properties

(3) and (4) imply that {A^}mGN contains a subsequence T, Am. converging

to a lattice T. Let B be a basis of F and let Bt be a basis of Tt such that

Bi converges to B. Let gL be a quadratic form in S3 which is defined, with

respect to (p, by (Tn #,•). Similarly let g be a quadratic form in S3 which is

defined, with respect to p,by (F,B). Then the sequence of forms gt converges
to the form g. Since g{ is equivalent to /Wf, we have P^Tf) P(gt) 1.

By Lemma 2.5

P(g) P<p(r) > lim sup P^(T/) 1

which implies that g is a multiple of a rational form (by Margulis' theorem

again).

By the Cassels-Swinnerton-Dyer theorem ([3], p. 86, Theorem 8), for each

gi close enough to g, there is an X; G Z3 with 0 < gi(\i)<1, contradicting
the fact that P(gf) 1.

This completes the proof of the case n — 3.

3.2 Case n > 4

First we need a preliminary result about binary quadratic forms.

Lemma 3.1. Let F be a form in S3. Then for each n> 3

(5) P(F)nN(F)n~2< 140(F) |"_1.

Proof. If F does not represent zero on Z2, except trivially, the inequality
is implied by stronger results in [6], Theorems 2-4. When F represents zero

non-trivially we may scale it to have determinant —1 and then, by an integral
unimodular transformation, suppose that it has the shape

2xy — Oy2

where 0 < 0 < 1. This gives P(F) <2 — 6 and either N(F) 2 if 6 0 or
N(F) < 6. Then either P(F)nN(F)n~2 — 2ln~2 if F is equivalent to 2xy or
P(F)nN(F)n~2 < (2 — 6)n6n~2 < 2n otherwise. Thus (5) holds in all cases.

We shall now prove Theorem 1.1 for n > 4. We suppose that the theorem
has already been established for indefinite forms in n — 1 variables and we
shall prove it for n variables using induction on n. It suffices, without losing
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generality, to consider the case of forms in £n having signature less than n-2.
The remaining case of signature n-2 would follow from Corollary 2.3.

For a given s > 0 we shall concentrate on establishing

(6) P(f)n<e\D(f)\
where / G £n and s(f) < n — 2. This is a convenient alternative to the original
inequality in Theorem 1.1. By the Margulis Theorem it suffices to consider
only rational forms. For such a form / we have P(f) > 0 and N(f) > 0 and

we then scale / to have

N(f) 1.

Since / is rational it takes the value —1 and an integral unimodular
transformation puts it in the shape

-(Xi + a2x2H 1- anxnf + g(x2, v„

Here g is a rational form in n — 1 variables which is indefinite, the signature
of / being by assumption less than n — 2. Also

\D(f)\ \D(g)\.

The form g attains its least positive value P(g) g(l2,..., ln) v, say, for
some /,• G Z. The binary section F of f defined by

~f(x,l2y,hy,...,lny)
is then an indefinite non-singular binary form and so satisfies the inequality
in (5). Since / represents all the values of F we have

P(f) < P(F) and N(f) N(F) - 1

and hence

(7) P(ff <P{F)nN(F)"~2<|4D(F)|"_1 W"1
The case n — 1 of the theorem implies that we will have

vn~l < £4'-"|D(<7)|

unless g is equivalent to a positive multiple of one of a finite number of
forms. Apart from those possibilities, (7) gives the desired inequality

P{fT <e\D{g)\=e\D(f)\.
So either (6) holds or for some k > 0 the form / is equivalent to

(8) fixi,... ,xn) —(x\ + + • • • + OLnxn)2 + kg'{x2,... yxn)
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where

g'(x2,..., xn) (x2 + O3X3 + • • • )2 + as(x3 + • • • )2 + • • • + anx2

\D(f)\ \D(f)\ kn~l\D{g')\ and there are only a finite number of choices

for the form g' with g'{ 1,0,..., 0) 1.

Observe that by simple parallel transformations on x\, and thus without

changing kg', we can assume that a2, • • •, an satisfy 0 < at < 1. The strategy

for ending the proof is to show that for each g' in (8) there are only a finite

number of allowable values for a2, an with 0 < cl < 1.

The form f represents k — (x\ + a2)2 and for a suitable x\ we can have

9
1

k — 1 < k — (x\ + a2) < k —

This contradicts N(f') N(f 1 unless 4k > 1.

For each choice of g' the leading (n - l)-ary section f(xi,x2,... ,x„_i,0)
of f has determinant —kn~2D(g')/an / 0 and so, for any e\ > 0, it will

represent a positive value < E\ \kn~2D(g')/an \l^n
1

unless it is equivalent

to a multiple of one of a finite number of forms. Using 4k > 1 and choosing

£1 < ke\D(g')/an\~i/n~l the inequality for v\ implies

v\ < 2e\\D(g')/an\X/n~Xk < ek

so taking

et min (^e\D{g')/an\~l,n~\aln,n~l^j

we would have

PUT <v1< \£k"-]D(g')\

Hence, if P(f)n < e\D(f)\ fails, f(x1,... must be equivalent to

a positive multiple of one of a finite list of (n — l)-ary forms h\,..., ht which

we can take to be normalised in any way we please. Moreover, for each form
hi there can only be one multiple which makes f'(xi,x2,... ,xn_i,0)
equivalent to rihi because there will only be one value of rt making

N(rihi) N(f'(xux2,... ,xn_i,0)) 1.

This means that for each ht there will only be one allowable value of k

giving D(f(xi,x2,...,x„_i,0)) -kn"2D(g')/an r^~]D(hi). The number

of allowable values of k in (8) is therefore finite.

So, if P(f)n < e\D{f)\ fails, there are only a finite number of possibilities
for the form kg' in (8) and for each of these possibilities f'(xi,x2,
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must be equivalent to one of a finite number of forms 77Ä;. Now let q be
the least common denominator of the coefficients of rfa. If we could have

f{xu%2, - • • equivalent to r7/z, for an infinite number of possible
values of 02, with 0 < 02 < 1, there would be two allowable values, say
ß and 7, with 0 < \ß - 7I < Then considering /'(0,1,0,... ,0), we see

that f'(x\ ,X2,... represents k — ß2 for 02 ß and represents k — 72

for a2 7. However

\(k - ß2) - (lc - 72)\ |/?2-72| < ~\ß + 71 < -2q q

contradicting the fact that distinct values of rfii are never closer than 3

Similar considerations of /(0,0,1,..., 0),... ,/(0,0,.. 1,0) show that there
are only a finite number of allowable values of a3,.. an_ 1 for each rfa.

Finally, to show that the number of allowable values of an in (8) is

finite, consider the indefinite (n - l)-ary sections f(xi,jc2, ,jc„_2,0,jcw),
f{x1, a2,..., a„_2,Xn,xn) and /'(xi. aa, aw_2, 2xn,xn). At least one of
these, called aj,a2, ,a„_2,aw) say, has a non-zero determinant (whose
value depends only on k and the coefficients of g'). So, taking £2

£ ID(f)\x/" \D(ijj)\ X!n 1

> 0, -0 will represent a small positive value

v2 < £2\Dm\lJn-1 £\D(f)\l/n

unless it is equivalent to a multiple of one of a finite number of forms.
Since 1, there will again only be one allowable multiple for each of
the finite number of forms. As before, we can also see that for each of the
finite number of possibilities for «2,..., Oin-\, k, g' there will only be a finite
number of allowable values of an.

It follows that the number of forms / G En for which (6) fails (for a given
e > 0) is finite. So the theorem holds for n-ary forms.
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