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L'Enseignement Mathématique (2) 52 (2006), 239-253

INTERPOLATION APPROACH TO THE SPECTRAL

RESOLUTION OL SQUARE MATRICES

by Luis VERDE-STAR

ABSTRAGT. We present a proof of the spectral resolution theorem for square
matrices that are not necessarily diagonalizable. The: construction of the idempotent
and nilpotent component matrices and the proofs of their properties use only simple
properties of the basic Hermite interpolation polynomials. The relevant results from
polynomial interpolation are presented in detail. Determinants, canonical forms, inner
products, and integrals are not used in our development.

1. Introduction

The spectral decomposition theorem for linear operators on finite dimensional

spaces is a very important result. Its generalizations to inimité dimensions

constitute a fundamental part of the theory of operators. The spectral
resolution may be used in many situations as an alternative to the Jordan

canonical fonn, since it gives a decomposition of a linear operator as a sum
of orthogonal idempotents and ni I potent s. although it does not iimnediately
give the finer decomposition of the nilpotents provided by the Jordan canonical

fonn. The Structure of the nilpotents can easily be obtained from the spectral

decomposition. See [8].

Most linear algebra textbooks present the spectral resolution theorem only
for special kinds of operators, such as diagonalizable operators. The general

case is usually considered as part of the theory of functions of matrices. Lor
this subject the main reference is [6]. See also [4], [7], and [12].

Lancaster and Tismenetsky [7, Ch. 9] use the Jordan canonical fonn to

prove the properties of the component matrices. Hille [5] uses detenninants to
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express the resolvent, and then finds a partial decomposition of the resolvent in
which the numerators are the component matrices. Dunford and Schwartz [1,
Ch. VII] present a more analytical approach and use Cauchy's integral
representation.

In the present paper we show that the spectral resolution of a square
matrix A can be obtained in a simple way if we know a nonzero polynomial
ir (z) such that iu(A) — 0. The polynomial w need not be the characteristic nor
the minimal polynomial of A, but, of course, the minimal polynomial must
divide w. We use only polynomial interpolation and properties of the map
that sends the polynomial p(z) to the matrix p(A). In particular, determinants,
canonical forms, inner products, and integrals are not used. We present a

construction of the basic Hennite interpolation polynomials based on [9]
and [10]. The explicit expressions for these polynomials are our main tools to
obtain the properties of the component matrices. We include in section 2 some

basic results and present a restricted form of the spectral resolution, related

to Lagrange's interpolation, which is the version that appears most often in
the literature. We also try to clarify the relationships among resolvents, partial
decomposition, and interpolation.

One of the results that we will use frequently is the relationship between

polynomial interpolation and the division algorithm for polynomials that we
describe next.

Let uiz) be a monic polynomial of degree n+ 1 with roots Ao, A|

which are pairwisc distinct, with multiplicities wo, Bti,.., -, ms respectively, The

Hennite interpolation theorem, which we prove in section 4, states that for

any given numbers o;./, where 0 <j < s and 0 < k < nij — 1, there exists a

unique polynomial v(z) of degree at most equal to n, such that vik>(\:) U]j,
for 0 < / < .v and 0 < k < nij — 1.

Let p(z) be a polynomial. By the division algorithm there exist unique

polynomials q and r such that p — wq + r and, either r — 0 or r has degree

at most equal to n. Since each A; is a root of qw with multiplicity at least

equal to m,, the equation p — wq A r implies that p(k\\j) — for
0 <j<s and 0 < k < nq — 1. Therefore the remainder r(z) of the division
of p by w is the polynomial of degree at most S that interpolates the values

p(k)(\j). This clearly implies the following proposition.

PROPOSITION 1.1. Let iu(z) be as defined above and let p and u be

polynomials. Then we have p u mod w if and only if p^(Xj) — »'*"'(A,),

for 0 < j < s and 0 < k < ttij — 1.
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2. THE RESOLVENT ANE LAGRANGE'S INTERPOLATION

Let w(z) be a monic polynomial of degree n + 1. Define the difference

quotient

r W{Z) ~ Wit)
M - t

The polynomial identity

k

(2.1) - tk+i (z - t) Y zfè~j
j= o

implies that w[z, t\ is a symmetric polynomial in z and t, of degree n in each

variable. If w(z) - #« + hf + + • • -•+ bn+t then a simple reordering
of summands yields

n

(2.2) w[z, r| Y "'k{z)
k=0

where u\iz) - zk + bkzk~l + • • • + b,t, for 0 < k < n. These are called the

Horner polynomials of w. It is clear that they form a basis for hie vector

space V„ of all polynomials of degree at most equal to n. Tins basis is often
called the control basis [2].

PROPOSITION 2.1. Let w be a monic polynomial of degree n+ 1 and let

{/o,/i,... ,/„} be a basis of V„. There exists a unique basis {FofFi,... ,F„}
of V„ such that

n

(2.3) n-\z.t\ Y'^
k=0

Furthermore, if fk has degree k then Fk has degree k, for 0 < k < n.

Proof. Let C — [c&j] be hie nonsingular matrix hiat satisfies

n

1"~k E 'T.-./i- .('), 0 <k<n.
i=o

Substitution in (2.2) and the interchange of the sums yields

n n n n

®ia t\ Ywk^ E Ckjfi-At) EE CkJ Wkiz)fn-j{t)
k—0 j—0 j—0 k—0
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Define
n

Fj(z) ^2 Ckj wk(z), 0 < j < n

k=0

Therefore (2.3) holds. Since C1 is nonsingular it is clear that the Fj form
a basis for Vn. If C is upper triangular then CT is lower triangular. This

proves the last part of the assertion.

We will show next how the difference quotient w\z,t] can be used to

construct the resolvent of a matrix.

Let w(z) be a monic polynomial of degree n + 1 and let A be a

square matrix of order N with complex entries that satisfies w(A) — 0.
The polynomial identity (t — z)w[t, z\ — w(t) — tv(z) gives us

(2.4) (tl — A)w[tl, A] w(t)l — w(A) — w(t)I.

Therefore, for any complex number t such that w(t) -/- 0, we have

<2.5,
wit)

This construction of the resolvent is quite old and has been rediscovered many
times. See [3] and [4].

By Proposition 2.1, for each basis {fs} of V„ we obtain

Fk{t)
-A)

k̂=0

For example, (2.2) yields

(2.6) (tl - A)"1 ^2 ^fn-kiA)U w(f)

(2.7) (tl - A)-1 — "22 i^j-^A,~k,
U w(r)

and

<2.8, w-4r' Ê^ï».
k=o - '

Let us consider another example. Let the roots of w be A,, .A i..... A„,
not necessarily distinct. Define A'o(z) - 1 and

(2.9) Nk(z) (z - Xo)(z - Ai) • • • (z - An), 1 <k<n.
These are tlie Newton polynomials associated with the sequence of roots

Ao, Ax,..., A„ Let Fk be the Newton polynomials associated with the sequence

A„,A„_i,..., Aq. Then, by a simple telescopic summation we have
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Wfc, t\ - F"~k(t)Nk(i)
k=0

and thus

<210)

Since the only restriction we have imposed on w is that it be monic
and w(A) — 0, it is possible that some of the roots of w are not in the

spectrum of A. Let us see what happens in such a case. Suppose now that

w(z) u(z)v(z) where u(A) 0. Then, since w\t,z] can be written in the

form tr[r. z\ — u(z.)v\t, z\ + r(t)u\t. z\, we obtain

w\tl. AI u\tl. A |r(r)
w(t) u(t)v(t)

Therefore the roots of m are removable singularities of w
Let us now consider a simple case. Let w(z) — 11 n(r Aß where tlie Aj

are piiirwise distinct complex numbers. It is obvious that w\\j, Ar] Sj.kw'(Xk).
Dehne the basic Lagrange interpolation polynomials associated with the

nodes Aj by

(2.11) tkC.) 0 < k < n.
w'(Xk)

Note that 4 is a polynomial of degree n and 4(A/) — Sj,k- Therefore

n

(2.12) p(z) J]p(Xk)idz), P e Vn

k=0

This is Lagrange's interpolation formula.

Proposition 2.2.
n

(i) 1 ^LL").
k=0

n

(ü) r xkU(:.),
k—0

(hi) ijfk Sgkh mod w

Proof. Parts i) and ii) are cases of (2.12).

It is clear that £jtk is a multiple of w if I k. Since L(A, - 4 the

polynomial that interpolates i?| at the roots of tu is 4, mid this is the same

as the remainder of the division of |§ by tu. This proves part iii).
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Since tu[z, f] is a polynomial in z of degree n, by Lagrange's interpolation
formula we have

n

(2.13) mfetf| ^2 wI'A(r.).
k—0

This formula gives us

(2.14) ¥Ar'-± - Ê •

4=0 v ' 4=0 K

Replacing z by A in Proposition 2.2 we obtain iimnediately the following
theorem.

THEOREM 2.3 (Spectral Resolution; simple case).

Let A be an N x N matrix. Suppose that w is a monic polynomial of
degree n + 1 with pairwise distinct roots Ao, Aj„..., A„, such that w(A) — 0.

Let 4 fe) be the basic Lagrange polynomials associated with the Ai and let
Ek — I'4 (A), for 0 < k < n. Then

(i) I »•k=0

(ii) A — ^ AkEk,
4=0

(iii) EjEk Sijtk

Suppose that w(z) — u(z)y(z) and it(A) — 0. Then

iv\t, z| u(z)v\t. z\ + v{t)u\t, z,\

and hence

w'(t)

Ej ij(Ä)

u(i)r'(t) + u'{f)v(t)

v(Aj)u[AjI, A]

u(Xj)v'(Xj) + u'(Xj)v(Xj)

Therefore, if Ay is not in the spectrum of A, that is, if c(A;) — 0 (and
thus «(Ay) / 0) then If — 0. In the other case we have «(Ay) — 0 and

v(X,)) / 0 and thus If — «[Ay/, A]/«'(Ay). Tliis means tlrat we can reduce

w to the minimal polynomial of A, and therefore that Theorem 2.3 holds

for any diagonalizable matrix. In some textbooks the existence of a spectral
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decomposition like that of Theorem 2.3 is presented as a condition equivalent
to diagonalizability of A.

The case when w is the characteristic polynomial of A is particularly
simple, since A is then a matrix of order n + 1 that has n + 1 distinct
characteristic roots Aim Consequently, the image of each idempotent Eg is a

one-dimensional subspace and hence Eg is a matrix of rank one. Let V be a

matrix such that its k th column vg is an eigenvector corresponding to Ag-

Since the tig are linearly independent, the matrix V is nonsingular. Let xg be

the k ill row of V~l. It is easy to see that Eg — VgXg. Note that this simple
construction of the idempotents Eg does not work if the minimal polynomial
has distinct roots but is not equal to the characteristic polynomial of A, since

then some of the Eg are projections on subspaces of dimension greater than

one.

3. I Il.KMI I'l .N INTERPOLATION

Let
S

(3.1) w(z) l[(z-Xj)"\
M

where the A; are distinct and the multiplicities ms are positive integers with
in, « : l, Dehne the index set

T. — {(y, k) : 0 < j < s, 0 < k < nij}

Note that 1 has n + 1 elements.

Dehne the polynomials

(3-2) C.ri:) U,k)el.

Note that Aj is a root of qj± of multiplicity k, for k > 1, and is not a root
of qj.o- Note also that (c A/)*(/j.o(»")- The Taylor functionals 7)y
are dehned by

T,J /U(A,). (./-A), /..

for any function f sufficiently differentiable at Aj. We dehne the functionals

Lj j; on the space of polynomials by

(3.3) Ljgp — Tj_gî (j,A)eX.
qj.ofe)
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By Leibniz's rale we have

V- 1

— X! Tj,iP,
to

and hence is a linear combination of Taylor functionals.

Proposition 3.1.

(3.4) /•/., '/a ('• ' )• (./• £) 6 I,
o«d hence {qj.k} is a basis of Vn and is its dual basis.

The proof is a direct application of Leibniz's rale. See [9].

Corollary 3.2 (Lagrange-Sylvester interpolation formula).

(3.5) p(z) ^2 LJ,kP '/ad- P V„.
(j-.k)Ç.Z

Dividing both sides of (3.5) by w(z) and using (3.2) we obtain the partial
fraction decomposition formula.

Corollary 3.3.

p(z) \ - Lj,kP „(3-6) "TT 2^ 7 x v„-k ' P G P""d {: A,)

Leibniz's rule yields

(3.7) I o''|:. t] qptif), (j, i')l,
where tlie functional acts with respect to r. We define the polynomials

(3.8) Hj.k(t) -- Ljj,lj_1_icw[z, f], (j, k) ëZ,
where tlie functional acts with respect to z. Then, using Leibniz's rule, the

definition of tlie functionals l..A, and (3.7) we get

rrij — l — k

Hj.k(t) V" Tu '/).,» I X p/'U". t|

« î/.°
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Therefore

rrij — l — k

(3.9) HjM 'l.s(t) Y '
'

<' " ¥
i=o qm

Note that each Ils± is a polynomial of degree n.

By the Lagrange-Sylvester interpolation formula we have

(3.10) w[z, r] E ^k(z) tfj,mj — l—k(f) 5

(j,k)Ç,T

and thus

o in fl _ iij.dz)
mi t\ J (t —w(t) ^ (t — X j)k+lv y UMeIv JJ

Proposition 3.4.

(3.12) '//., //.a hmiM i ^) £ XL.

Proof. Using the definition of the fjlu and interchanging the linear
functionals we get

Ijjlljjft: LjJU _ I _/. Ll} //'[-A ^ I l'j.}!!,— I — k^liML — I 7

where 7) acts with respect to r.

The polynomials Bp are tire basic Hermite interpolation polynomials
associated with the roots of w.

We say that a function / is defined on the roots of w if Tjjf is defined

for /. k) G X. Proposition 3.4 gives us immediately the following

PROPOSITION 3.5 (Hennite's interpolation fonnula).
For any function f defined on the roots of w, the polynomial

(3.13) p{t) Y T¥Hj¥)
U4pc

is the unique element of V„ that satisfies Tj.uf — Tj.kP for (j^) XL.

We can write (3.9) in the fonn

rrij — l — k

//,,(') i A,)A</,„ri) v Tjj—fi-XjY.
~r. m
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The sum above is the Taylor series of l/qj o(t) at t — A., tmncated at the

(fiij — 1 — k)-tli power of (f — A.). A simple computation yields

n—rrij

(3.14) Hj.k(t) {t - Ajf ~(t~ Aj)m> V r,(t - A,f,
r—0

where

(3.15) -
1

o

PROPOSITION 3.6. The bask Hennite interpolation polynomials satisfy:
i) o mod w if j fy i,

J Hj^+r mod w if 0 < k + r < nij
0 mod w if k + r > ///..

ii) fljßfr (t A,)'//,.ri') S

Proof. From tlie definition of tlie polynomials q;x it is clear that qirfy.k
is a multiple of w if i / j. From (3.9) we see tliat c/, divides //, and qj±
divides IIjj,. Therefore //, - //,, is also a multiple of m. Tliis proves part i).

By Proposition 1.1, for any pair of polynomials p and u we have p u

mod w if and only if TjxP — Tj.kU for (/. k) Ç 27 Then it is clear that part
ii) follows from (3.14), which gives an explicit formula for the expansion of

Hjx in powers of (t — Aj).

We will use in tlie next section the following special cases of Hennite's

interpolation formula :

S

(3.16) I - y lljfyz).
j=o

(3.17) £ - V {XjHJfi(z) - //,,(£)} •

j=o

The difference quotient w[z, t] can be considered as the kernel function
of an interpolation operator, as we show next. Let us define tlie linear
functional A„,, called tlie divided difference with respect to the roots of

w, as follows. For any function / defined on tlie roots of w,
S

(3.18) A.,/'
j=o
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Since each Ljjt is a linear combination of Taylor functionals, so is A«,. It is

easy to see that

A ; — S Residue of — at A,
w

j=0
Using Proposition 3.1, equation (3.10), and Hennite's interpolation the

proof of the following theorem is a simple compulation.

Theorem 3.7 (General interpolation formula).
For any function f defined on the roots of w,

(3.19) p(t) Aw{w[z,t]nz)}
is the polynomial of degree at most n that interpolates f at the roots of w.

Note that by the above theorem and Proposition 2.1 we can express the

interpolating polynomial in tenus of any given basis of the space V„. See [9]
and [10],

4. Spectral resolution

Let ir(z) be as in the previous section a monic polynomial of degree n + 1

with roots Ao, Aj As with multiplicities mo, nq,..., ms, respectively. Let
A be a square matrix such that tr(A) — 0. Dehne

(4.1) /-;-/;,o(A), and N, - HU(A), 0 <i<s,
where the //, /. are tlie basic Hennite interpolation polynomials associated

with the roots of w. From Proposition 3.6 and equations (3.16) and (3.17)

we obtain iimnediately the following theorem.

THEOREM 4.1 (Spectral resolution).

i) ^
ü)

iii) /•//•. SijEj,

iv) Ni — {A - XiI)Ei Ei(A - A,/),

v) NjEi EiNj 5tjN(,

vi) N;Nj öjjNf,
vii) For 1 < r < mi — 1 we have Nf — Hi,{A) — (A — XfYEi,
viii) Nf — 0.
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From (3.11) we obtain the following expression for the resolvent of A :

<«> —' ÉfcVlî<F^}-
Note that we can also write this in the form

<«> <«-*>-
/—0 I, k=0 v u

Suppose now that w has a factorization w — uv, where u(A) — 0,

r s

m(z)=ri(z- W'' aud 11 ^ -Vf" •

j=0 j=r+1

If j > r then </!M(z) u(z)vjfi(z), where vJfi(z) v{z)/(z - XjP By
equation (3.9) the polynomial </,.<, is a factor of Ils± and hence u is also a

factor of II, k. Therefore Ej — Hj.o{A) 0 and Nj — Hj_i(A) -- 0.

If 0 < j < r tlien (jjsAz.) — v(z)iijp(z), where iij,0(z) — u(z)/(z -
Then, by (3.8) and (3.3) we have

The last term is the basic Hennite interpolation polynomial associated with
the roots of u(z), with indices /'.k. Let us denote it by (fjft)• Therefore we
have Hj t Gj^ mod u, and consequently H;k(A) — G,^(A), since u(A) — 0.

This means that the roots of ass tliat are not in the spectrum of A do not
contribute to the spectral decomposition of A.

We consider next the possibility of reducing the multiplicity of a root A,

of ir(z) for the construction of the spectral resolution of A.

PROPOSITION 4.2. Suppose that there is an index j such that Ej f 0 and

Nj 0 for some r with 1 < r < nij. Let u(z) ~ w(z)/(z — A Then

u(A) 0.
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Proof. Since u(z) — (z — \j)'qj.o(z) it is clear that ï)jii may be nonzero

only if i j and k > r. Then, by the Hennite interpolation fonnnla u(z) is a

linear combination of the polynomials Hj,.,Hjr+1,... ,Hj„, _j. By hypothesis

Nj — Hj ,{A) — 0 and thus by part vii) of Theorem 4.1, Hj r+i{A) — 0 for
/ > 0. Therefore u(A) - 0.

COROLLARY 4.3. If w is the minimal polynomial of A then nq is the

index of ni/potency of Nj, for 0 <j<s.

From (3.14) we obtain

n—rrii

(4.4) Pi - I-V cAA - Aiir+r,
/—o

where the coefficients ç, are given by equation (3.15). From (3.9) we also

get

"(i-l s

(4.5) Ei qM V Tlj \ — (A - AffU \,iiM J

Note that is a polynomial in A of degree n. We show next that the

idempotents Iq are essentially unique.

PROPOSITION 4.4. Let h be an element of V„ such that h2 h mod w.
Then h{z) f=t Ylj=o ^jHj.oiz) where each d, is an element of {0,1, ~1}.

Proof. The hypothesis h1 h mod w is equivalent to tire condition

Tjjf? Tjji, for each |j,k) in X. By Leibniz's rule, for each j we must
have

k

Y, Tj.jh Tj^-ih — Tj.kh, 0 < k < mj - 1.
/=o

Tliis system of equations has only the solutions T,nh G {0,1,-1} and

TjjJi — 0 for 1 < k < m, — 1. Applying die Hennite interpolation formula to

h we get the desired conclusion.

COROLLARY 4.5. Let h be a polynomial such that h(A) is an idempotent.
Then

S

h(A) J2dJEJ'
j=o

where the coefficients dj are elements of {0,1,-1}.
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The nilpotent matrices A'; have a similar property. Let w be the minimal

polynomial of A. Suppose that g is an element of V„ such that N g(A)
satishes Nr — 0 for some r > 0. Then w divides <f and thus (z — A,)"'
divides <[ for 0 <j< s. Therefore (z — A;) divides g for each j and,

by Hennite's interpolation, g(z) is a linear combination of the polynomials
H,x with k > 1. litis means that N — g(A) is a linear combination of the

nilpotents /Vf, with k > 1.

The spectral resolution of a matrix A is often used to lind functions of A.
For example, using the properties of the matrices £, and N; and the binomial
formula we obtain

s m, — 1 x

(4.6) A'' Y. E J E' ' '• > 0
1=0 k=0 V /

The same formula is obtained by linding the polynomial p that interpolates

£ at the roots of w and then computing p(A wliich is

s m{ — 1

p(A) EE TLkZrHu{A).
/—0 k—0

Formula (4.2) for die resolvent of A is obtained in tlie same way using the

polynomial that interpolates l/(f — z), as a function of z, at tlie roots of w.
The general interpolation formula of Theorem 3.7 yields

(4.7) g(A) Aw{w[zI,A]g(z)}:

for any function g defined on tlie roots of w. For example, for g(z) — e'~ we

get

s mi — 1 ^

(4.8) e'4 EE
/—0 k—0

Üsing fonnula (2.2) for /c|c..v| we get

n

(4.9) e'A Tjfk(t)A"~k
k=0

where fk(t) Aw(e'zWk(z)j and the divided difference functional acts with
respect to the vaiiable z. See [11] and [12] for some related formulas and

applications to tlie solution of matrix differential equations.

Let us note that (4.7) can be written in the form

5(A) ~ E Rcsiduc of {gfe)] at A' -
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Since u<\zl. A\,< iv(z) is the resolvent of A, this formula is analogous to the

Cauchy integral representation

9(A) — ——; f g(z)(zl - A)"1 dz,
27a Jc

where C is a simple curve whose interior contains the A, See [1, Ch. VII].
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