
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 54 (2008)

Heft: 1-2

Artikel: Rigidity and reliability for H3(PSL(2, C)^ ; Z)

Autor: Dupont, John / Neumann, Walter D.

DOI: https://doi.org/10.5169/seals-109897

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-109897
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


L'Enseignement Mathématique (2) 54 (2008), 83-85

28

RIGIDITY AND REALIZABILITY FOR //3(PSL(2, C)ä;Z)

by Johan Dupont and Walter D. Neumann

This discussion collates work of Bloch, Bökstedt, Brun, Parry, Sah, Susiin,

Wigner, Yang, ourselves, and others. For more details and detailed reterences

see Dupont's book [1] or Neumann's survey [2],

Conjecture 28.1 (Rigidity Conjecture for H}(P SF(2, C)d ; Z) The group
//3(PSF(2, C)Ä;Z) is countable (the

6
means discrete topology).

This conjecture is equivalent to the conjecture that the map

HAPSL(2.Q)rt";Z) -a //,(PSL(2. Cf; Z)

is an isomorphism. It is alsd equivalent to the corresponding rigidity conjecture
for K'"d(C), which has been formulated in greater generality by Suslin, and

it is implied by some much more far-reaching conjectures of Ramakrishnan
in algebraic K -theory, and Of Zagier in number theory.

It is thus a little drop in a big bucket. However, the latter conjectures seem

currently unapproachable, so this drop is worth pursuing. Moreover, it has

beautiful geometry attached, so it represents a combination very appropriate
to our honoree, Guido Mislin.

One aspect of the geometry is scissors congruence. The "Dehn-Sydler
theorem" gave cilbiure to Hilbert's 3rd problem by showing that volume

vol(P) and Dehn invariant ö(P) determine the scissors congruence class of a

Euclidean polytope P. Here, SiP) e RSq R/jtQ is defined as the sum of
(length)®(dihedral angle) over the edges of P.

The corresponding result for polytopes in H3 or S3 remains conjectural.

If, for X H3 or S3, we denote by £>(X) the kernel of Dehn invariant S

on the Grothendieck group of X-polytopes modulo scissors congruence, then
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asking if vol and ö classify X-polytopes up to scissors congruence becomes

the question whether

vol : Di X —> R

is injective. Ulis map has countable image (e.g., [1] chapters 10 and 12), so

its injectivity would imply countability of f>(X). On the other hand, there is

a natural isomorphism:

(*) //UPSI.<2. o" !ÊT V(S3)/Z © P(H3).

So countability of both T>(H3) and X>(S3) is equivalent to Conjecture 28.1.

In fact, countability of either one Suffices. (In particular truth of the "Dehn-
Sydler theorem" for H3 -scissors congruence would imply Conjecture 28.1.

But this is injectivity of vol: X>(H3) s R, which seems currently no more

approachable than Zagier's conjecture, which wildly generalized it.)

Any compact hyperbolic 3-manifold M — H3/F has a "fundamental

class" ß(M) e O/; Z) : the image of the fundamental
class [M] g H-}(M) IhiV) under tire map induced by the inclusion
F —» Isom(H3) - PSL(2, C). The image of 0(M) in X>(H3) for the above

splitting (*) is just the scissors congruence class of M, but the image in
X>(S3)/Z is more mysterious. It is orientation sensitive and its volume gives
the Chern-Simons invariant of M.

The: class ß(M) is defined more generally for any finite volume: M H3/T
(using a natural splitting //;(PSI.i2,C)'\P) ~ //-,(PSI.(2.C)'{J : H<P)
where P is the parabolic subgroup), and lies in Wq'PSI0k. Q) j ; see |3j.

The validity of the following rather wild conjecture would clearly imply
Rigidity Conjecture 28.1.

CONJECTURE 28.2 (Realizability Conjecture). //3(PSL(2, C)Ä) is generated

by fundamental classes of hyperbolic 3-manifolds.

The torsion of //;(PSI.<2. CP) is Q/Z (it is in the summand T>(S3)/Z,
where it is generated by lens spaces), while //uPSI.(2. CP uTorsion is,

amazingly, a Q-vector-space (of infinite dimension). So a slightly less wild
version of Conjecture 28.2 is

CONJECTURE 28.3 (Realizability over Q), /AtPSLtZ, C)d)/Torsion is

generated over Q by fundamental classes of hyperbolic 3-manifolds.
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Neither version is likely to be useful for Conjecture 28.1: each is

equivalent to the same conjecture restricted to //3(PSL(2, Q)'5 together with
Conjecture 28.1, which look like rather independent conjectures.

There is no strong evidence for Conjecture 28.2 or the weaker 28.3. Tire

only justification for going out so far on a limb is that the conjecture is enticing,
and there is some very weak experimental evidence for the //3(PSL(2, Q)s)
version of the conjecture (and the Rigidity Conjecture is widely believed). One

could formulate the conjecture just for the first summand in (*) — scissors

congruence — but computational evidence suggests that this is no more or
less likely to be true than the full conjecture.
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