Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	54 (2008)
Heft:	1-2
Artikel:	Proper actions on acyclic spaces
Autor:	Leary, Ian J.
DOI:	https://doi.org/10.5169/seals-109917

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 15.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

48

PROPER ACTIONS ON ACYCLIC SPACES

by Ian J. LEARY

Here are a few questions about proper cellular actions of discrete groups G on acyclic spaces. I have deliberately avoided the classifying space for proper G-actions, <u>E</u>G, partly because some of the questions have already been answered for this space, and partly because I know that some other people will write in this volume about questions concerning <u>E</u>G. I start with a version of the classic question that was posed by Ken S. Brown [1], p. 226.

QUESTION 48.1. If G is of finite virtual cohomological dimension, does G act properly on some acyclic space of dimension equal to vcd G?

REMARK 48.2. If vcd G is not equal to 2, then 'acyclic' in the above question can be replaced by 'contractible' without changing the question. The answer is 'yes' when vcd G = 1 by a theorem of Martin Dunwoody [2], and Quillen's plus construction can be used to replace an acyclic space of dimension n by a contractible space of dimension equal to the maximum of n and 3.

Brita Nucinkis and I found examples to show that the dimension of the space $\underline{E}G$ can be strictly greater than vcd G [5]. Some of the techniques that we used in [5], including Bredon cohomology, were learned from Guido Mislin.

Secondly, a rather vague question. It is well known that $\operatorname{vcd} G$ is finite if and only if G is virtually torsion-free and G acts properly on some finite dimensional contractible space [1].

I.J. LEARY

QUESTION 48.3. Are there any results concerning group cohomology where virtual torsion-freeness plays a role? For example, are there any results about $H^*(G; \mathbb{Z}G)$ that hold for groups of finite vcd, but do not hold for all groups in Peter Kropholler's class $H_1\mathfrak{F}$?

Peter Kropholler's class $H_1\mathfrak{F}$ consists of the groups that admit a proper action on some finite-dimensional contractible CW-complex. (See [3] for further details and for the definition of the larger class $H\mathfrak{F}$.)

Finally, a few questions concerning the connection between algebraic and topological finiteness conditions. See also [4], [5].

QUESTION 48.4. If G is of type FP over a ring R, does G act cellularly cocompactly on some R-acyclic CW-complex X with stabilizers whose orders are units in R?

There is an algebraic version of this question too. Define a *projective permutation module* for the group algebra RG to be a direct sum of modules isomorphic to RG/H, where H ranges over the finite subgroups whose orders are units in R. Say that G is *of type* FPP *over* R if there is a finite resolution of R over RG by finitely generated projective permutation modules.

QUESTION 48.5. If G is FP over R, is G necessarily of type FPP over R?

For $R = \mathbb{Z}$, this question is equivalent to the famous question of whether every group of type FP is FL.

QUESTION 48.6. If G is FL over a prime field F, does G act freely cellularly cocompactly on some F-acyclic CW-complex?

REMARK 48.7. There are groups that are FP but not FL over \mathbf{Q} , and are FL over \mathbf{C} [4].

Such a group cannot act freely cellularly cocompactly on any C-acyclic CW-complex. It is because of these examples that the previous question is stated only for the fields Q and F_p .

I.J. LEARY

REFERENCES

- [1] BROWN, K.S. Cohomology of Groups. Graduate Texts in Mathematics 87. Springer-Verlag, 1982.
- [2] DUNWOODY, M. J. Accessibility and groups of cohomological dimension one. *Proc. London Math. Soc. (3) 38* (1979), 193–215.
- [3] KROPHOLLER, P.H. On groups of type FP_{∞} . J. Pure Appl. Algebra 90 (1993), 55–67.
- [4] LEARY, I.J. The Euler class of a Poincaré duality group. Proc. Edinb. Math. Soc. 45 (2002), 421–448.
- [5] LEARY, I.J. and B.E.A. NUCINKIS. Some groups of type VF. Invent. Math. 151 (2003), 135–165.

Ian J. Leary

Department of Mathematics The Ohio State University 231 West 18th Avenue Columbus, Ohio 43210 USA *e-mail*: leary@math.ohio-state.edu