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THE DEHN FUNCTION OF SL„(Z)

by Tim Riley

For a word w on ai±l,... ,am±l representing 1 in a finite presentation
V (fli,..., am I 1Z) of a group F, define Area(w) to be the minimal
A e N such that there is an equality w — IT=i in the &ee

group I 'ia a„ for some e, ±1, some words itif and some r,- e R,
Equivalently, Areaf«)) is the minimal A such that there is a van Kampen

diagram for w over V with at most A 2-cells. Defining Area(n) to be

the maximum of Areata?) over all w that have length at most n and

represent 1 in T, gives the Dehn function Area: N -> N of P. Whilst
Area : N —s- N is defined for V, a different finite presentation V' for F will
yield a Dehn function Area' : N -> N that is qualitatively the same — for
example, (3C > 1, V«, (1 fC)n2 < Area'f«) < Cn2) if and only if the same

is true for Area : N —> N, (The C may differ.

Question 55.1. Is the Dehn function of SF„(Z) quadratic when n > 4

Presenting this as a question, rather than a claim, conjecture, or the like,

may be unduly conservative. In his 1993 survey article [5], Gersten describes

the quadratic Dehn function as an assertion of W. P. Thurston.

I am not even aware of a proof that the Dehn function of SF„(Z) is

bounded above by a polynomial when n > 4. By contrast, Hie Dehn function
of SFmZj is known to grow linearly — SF2(Z) is hyperbolic — and that

of SFsf Z) grows like n M- exp(«) : Epstein-Thurston [4] proved the lower
bound and a result sketched by Gromov [6] §5Ay gives the upper bound. (An
elementary proof might be a step towards 55.1.)

Of course, 55.1 presupposes SE„(Z) is finite presentable, but that has

been long known. The n1 - n matrices gy with 1 's on the diagonal, the

Off-diagonal (/-entry 1, and all others 0, generate SF„(Z). Milnor [11],
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following J. R. Silvester and in turn Nielsen and Magnus, explains that the

Steinberg relations 11 <',.<% I and {[ejk,ekI] eß}j^i together with
{(eijeji~1eij)4 1}^ are defining relations. A proof of 55.1 would be an

exacting quantitative proof of finite presentability.

One can regard 55.1 as a higher dimensional version of the Lubotzky-
Mozes-Raghunathan Theorem ([9], [10]) establishing the existence of efficient
words representing elements g of SL„(Z) for n > 3, that is, words of length
like the log of the maximum of the absolute values of the matrix entries. As a

word representing g amounts to a path in the Cayley graph from 1 to g, the

L.-M.-R. Theorem can be thought of as saying that 0-spheres admit efficient

fillings by 1-discs, A word w representing 1 in a finite presentation P
corresponds to a loop pm in the Cayley graph ; a van Kampen diagram for w

can be regarded as a combinatorial homotopy disc for p.w in the Cayley
2-complex of P. So 55.1 is, roughly speaking, the claim that 1-spheres admit

efficient fillings by 2-dises in SL,f(Z) for n > 4.

Gromov [6], §5D(5)(c), cf. §2Bi, takes this further and suggests that in

SL„(Z), Euclidean isoperimetric inequalities concerning filling k-spheres by
(k + 1)-discs persist up to k — n — 3. (For k — n - 2, the exponential lower
bound of [4] applies.)

One attack on 55.1 is that whilst SL„(Z) is not a cocompact lattice in
the, symmetric space X SL„(R)/ SO(n), and so the quadratic isoperimetric
inequality enjoyed by X does not immediately pass to SL„(Z), open horoballs

can be removed from X to give a space X0 on which SL„(Z) acts cocompactly.
Drupi [2] and Leuzinger-Pittet [8] have made progress in this direction,

including a quadratic isoperimetric inequality for the boundary horosphere of
each removed horoball.

Chatterji has asked whether for n > 4, SL„(Z) enjoys her property Ls

for some ö > 0, which would imply a sub-cubic Dehn function |3|.

The author's efforts towards 55.1 have, to date, yielded [12] a version of
L.-M.-R. giving explicit efficient words. This may aid the construction of
van Kampen diagrams, but that remains to be Seen. However it has led to

progress elsewhere [7],

Finally, we mention that for n > 3, the Dehn functions Of the cousins

Auu l'„ and Out(F„) of SL„(Z) are also unknown [1],



158 T. RILEY

REFERENCES

[1] BridsoN, M. R. and K. VOGTMANN. Automorphism groups of free groups,
surface groups and free abelian groups. In : Problems on Mapping Class
Groups and Related Topics, (edited by B. Farb), 301-316. Proc. Sympos.
Pure Math. 74. Amer. Math. Soc., 2006.

[2] I )l<rn '. C. Filling in solvable groups and in lattices in semisimple groups.1

Topology 43 2004)., 983-1033.
[3] ELDER, M. Ls groups are almost convex and have a sub-cubic Dehn function.

Algebi: Geom, Topol. 4 (2004), 23-29.

[4] Epstein, D.B.A., J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson
and W. P. THURSTON. Word Processing in Groups. Jones and Bartlett
Publishers, Boston, London, 1992.

[5] GERSTEN. S. M. Isoperimetric and isodiametric functions of finite presentations.
In: Geometric Group Theory, Vol. 1 (Sussex, 1991), 79-96. London Math.
Soc. Lecture Note Ser. 181. Cambridge Univ. Press, Cambridge, 1993.

[6] Gromov, M. Asymptotic invariants of infinite groups. In: Geometric Group
Theory, Vol. 2 (Sussex, 1991), 1-295. London Math. Soc. Lecture Note
Ser. 182. Cambridge Univ. Press, Cambridge, 1993.

[7] KassABOV, M. and T. R. Riley. Diameters of Çayley graphs of Chevalley
groups. European J. Combin, 28 (2007), 791-800.

[8] LEÜZINQBR, B. and ('II. I'll 11,1. On quadratic Dehn functions. Math, Z 248
(2004), 725-755.

[9] l.rnoi/KY. A., S. Mo/I.s and M.S. RaghUNAtHaN. Cyclic subgroups of
exponential growth and metrics on discrete groups. C. R. Acad. Sei.
Paris Sér. I Math. 317 (1993), 735-740.

[10] LubotzKY, A.. S. MOZES and M. S. RAGHUNATHAN. The word and Riemannian
metrics on lattices Of semisimple groups. Puhl. Math. Inst. Hautes Etudes
Sei. 91 (2000), 5-53.

[11] MILNOR, J. Introduction to Algebraic K-Theory. Annals of Mathematics
Studies 72. Princeton University Press, Princeton, 1971.

[12] RILEY, T.R. Navigating in the Cayley graphs of Sl.vfZi and SLaTF/). Geom.
Dedicate 113 (2005). 215-229.

*

T. Riley

Department of Mathematics
University Walk
Bristol
BS8 1TW
United Kingdom
e-mail : tini.riley@bris.ac.uk


	The Dehn function of SLn(Z)

