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TWO CAT(O) GROUP QUESTIONS

by Kim Ri am:

We say a group G acts geometrically on a complete, proper, geodesic metric

space X if G acts properly discontinuously and cocompactly by isometries

on X. If G acts geometrically on a CAT(O) space, then G is called a

CAT(0) group. Recall that if G acts geometrically on a S -hyperbolic metric

space, then G is word hyperbolic.

For G word hyperbolic, the following facts are well known and can be

found in [5], Of course, many careful proofs have been written down in other

places, most notably [1] and [4],
1. Any Cayley graph of G is 8 -hyperbolic using the corresponding word

metric.
2. The boundary of G, denoted dG, is well-defined up to homeomorphism

— i.e., if G acts geometrically on spaces X and Y, then X and Y are quasi-
isometric and this quasi-isometry extends to an (equivariant) homeomorphism
of boundaries ÔX —> dY.

3. G acts as a convergence group on dG.
4. G satisfies the Tits Alternative.
5. Any finite index subgroup and any finite extension of G are again word

hyperbolic.

The two questions here involve the last two facts listed above, but for
CAT(0) groups as opposed to word hyperbolic groups. If G is word hyperbolic,
it is easy to see that any finite index subgroup or any finite extension of G
is again word hyperbolic. Indeed, any such group is quasi-isömetric to G and

thus inherits word hyperbolicity via the quasi-isometry.

If G is a CAT(O) group acting on a CAT(O) space X and H is a finite
index subgroup of G, then H is again a CAT(O) group. Indeed, any subgroup
of G will again act properly discontinuously and by isometries. Since H is
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of finite index, H will also act cocompactly. But if K :1s a finite extension

of G, then the question remains:

Question 56.1. Suppose K is a finite extension of a CAT(O) group G.

Is K also a CAT(O) group

The main problem here is that there is no geometric construction that

models the group theoretic finite extension. It is still the case that K and G

are quasi-isometric groups, but there is no natural candidate for a CAT(O) space
for K to act on. Well, that isn't quite true... there is a candidate. Suppose G

is a finite index normal subgroup of K of index D and suppose G acts on

a topological space X. A construction of Serre gives an action of K on the

direct product of D copies of X (this construction can be found in [3]). In our

setting, if G acts geometrically on X, then Serre's construction will produce a

properly discontinuous and isometric action of K on the product of D copies
of X (which is still CAT(O) using the product metric). The problem is finding
a convex subspaee on which K acts cocompactly.

The second question concerns the Tits Alternative for CAT(O) groups.
Recall that a group G satisfies the Tits Alternative if for every subgroup H
of G, either H is virtually solvable or H contains a free subgroup of rank 2.

If G is word hyperbolic, then G satisfies the Tits Alternative. This fact

was first proved in [5], The beauty of this result is that the proof is quite
simple using the action of the group G on its boundary <9G. The proof goes

like this : suppose H is an infinite subgroup of G and consider the closure H
Of H inside GUÖG. The limit set of H, denoted C(H), is HC\dG. One

first shows that \£(H)\ >2 — this follows from the fact that any infinite
subgroup of G must contain an element of infinite order [7], If \£(H)\ — 2,
then H is virtually Z. Otherwise, there must be two infinite order elements

a,b e H with £((a))n £{(b)) — 0. Using the dynamics of the action on ÖG,

one can do a ping-pong argument using carefully chosen open sets around the

limit points of these two cyclic subgroups to show that powers of a and b

generate an W% in H.
For a CAT(O) group G acting on X, one could try to use the action

of G on ÔX. However, this is not a convergence group action. For example,

every element of Z © Z acts trivially on OE2 S1 which cannot happen in
a convergence group action. The most recent result of interest here is from
M, Sageev and D. Wise for groups acting properly on CAT(O) cube complexes,
see [6], If such a group G has a bound on the order of finite subgroups then

any subgroup either contains Fo or is virtually a finitely generated abelian
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subgroup. If G does not have a bound on the order of finite subgroups, then

the conclusion does not hold. Thus the following general question remains

open :

QUESTION 56.2. Does the Tits Alternative hold for G if G is a CAT(O)

group

This question is still open even if G admits a geometric action on a

CAT(O) manifold X.
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