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L'Enseignement Mathématique (2) 55 (2009h 359-371

ON THE CAUCHY-KOWALEVSKI THEOREM

by Marc CHAPERON

In memory of Adrien Douady

Abstract. After a short review of the basic properties of analytic functions, we
apply the infinite-dimensional theory to get a simple proof of the Cauchy-Kowalevski
theorem, in an infinite-dimensional version which seems to be new.

Introduction

Most mathematicians no longer teach differential calculus in Banach spaces,

though the theory has proved increasingly useful since Henri Cartan's first
lectures on the subject [1]. Paradoxically, Cartan himself never included
in Iiis lectures the basic properties of analytic functions in Banach spaces,
which Iiis student Adrien Douady had written down in a simple and aesthetic

way [6] (more references can be found at the end of the present paper).

After a short introduction to this elegant theory, we recall (in the analytic
case) Joel Bobbin's proof of the existence theorem for differential equations
via the implicit function theorem in Banach spaces [14] and explain how to
adapt it to get the Cauchy-Kowalevski theorem.
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The painless proof casts some light on the reason why this result is true

only in the analytic category. Throughout the paper, /:. F denote two Banach

spaces over K R or C.

1. Analytic functions Ä arbitrary dimension

POWER SERIES.: We let L°(E,F) L'flf /*') F and, for each positive

integer «, we endow the space L"(lu /*') of continuous «-linear maps

a„: E" —7- F with its standard norm |o„| := sup|Vi||r |_t |a„(xi, ...,|,
wliich makes it into a Banach space. Denoting by L"(E,F) the closed subspace

consisting of symmetric «-linear maps, we associate to each a„ L"{E,F) the

homogeneous polynomials I 9 i 4 anx^ G L"~((E,F), 0 < £ < n, dehned

as follows: for x, xypi,... E, we have that anX^xyy. i,,..,x„) is tlie
value of o„(xi,... ,x„) when xj x for 1 • / • / (hence a„x° a„). As

when E K, the j-th derivative of a„x" is anxn~-< for j < n and 0

otherwise. In particular, its «-th derivative is the constant n\a„ and, if K C,
the homogeneous polynomial x a„x" is holomorphic, meaning that it is

differentiable and that its derivative at each point is C -linear.

A power series on E with values in F is a series of functions u„ of
E into F whose general term is a homogeneous polynomial m„(x) a„x",
an G L"(E, F). We shall call it the power series J^ng-N a»x" or J2anx" •

The strict convergence radius p G [0, +oo] of the power series ^a„x"
is the supremum of those r > 0 satisfying W a„ \ r" < oo. It is given by

p~l lim sup |o„|5. When p is positive, the power series is called convergent ;

it converges at every point of the open ball Bp(0), (normally) uniformly in
B, (0) for 0 < r < p. Hence, its sum f:Bp(0)^F is continuous and more :

PROPOSITION 1.1. Every convergent power series ^2a„xn on E with
values in F, having strict convergence radius p, converges in the C°° sense

in Bp(0). Its sum f : Bp(0) —> F is C' x and, if K C. it is holomorphic. More

precisely, for j G N, the power series J] x" obtained by j times

differentiating hos the same strict convergence radius p as a„ x'1,

and its sum is D f : Bp(0) —> LJS(E,F). Hence, D'f(O) jlaj, showing that,

in Bp(0), the function f is the sum of its Taylor expansion at 0.
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Proof. For an £ L"(E, F) and 0 < i < ti. the symmetric fonn defining

no anx^ has the same norm as a„ since a„ ha V| v, i—> anxi • • • xy)
is an isometric linear map of L"(E,F) onto L':(E,L"~e(E,F)).

REMARK. For dimE > I, the ball of strict convergence Bp(0), which
depends on the norm and not just on the topology of E, is definitely not
the largest open subset in which the power series converges, as shown by the

power series ^2bnx"yn on K2 when b„f1 is convergent in one variable.

However, convergence depends only on the topologies of E and F.

Analytic maps. A map f of an open subset U of F into F is called

analytic when, for all ,t0 £ U, there exists a convergent power series V a„ ,r"

such that f{x) ]Ta„(x — xq)" in a neighbourhood of aq. By Proposition 1.1,

this implies that / is C" (and, if K C, holomorphic) and can be

expressed in a neighbourhood of every point % £ U as the sum of its

Taylor expansion at a"o. As in one variable, the following fundamental result

can be deduced from Cauchy's formula (see for example [2], chap. 5, théorème

principal) :

PROPOSITION 1.2. If K C, a function f of an open subset U of
E into F is analytic if and only if it is holomorphic. When a sequence
(g„) of holomorphic functions of U into F converges locally uniformly to a

function g, the latter is holomorphic,

COROLLARY 1.3 (analyticity of inverse maps). If an analytic local map

f: (E,.\~q) -A F has invertible derivative at xo, then its local inverse

(F,f{xo)) -A (E,x0) is analytic. Hence, given a third Banach space A over
K and an analytic local map j: (Ax £,(Ao,a;o)) -A (F, 0), if the partial
di5(Ao,-%): E —f F is invertible, the implicit function tp: (A, Ao) —> (E,Xo)
whose graph coincides with g~'(0) near (Ao,Xo) is analytic.

Proof. As the inverse of a C-linear isomorphism is C-linear, this is

obvious if K C. The real case follows by complexification [2], together
with

COROLLARY 1.4. The sum of a convergent power series is analytic in

its ball of strict convergence. The composed map of two analytic maps is

analytic.
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2. Analytic local CaüChy problems

2.1 Cauchy' s theorem on ordinary DIFFERENTIAL EQUATIONS

Let / be an analytic map on an open subset dorn/ of K x F, taking its
values in F. Given (to, uo) clomf, we are interested in the local analytic
solutions of the Cauchy problem

(% =/(M0
(1) Idt -

ll(t0) i/o

i.e. analytic germs (ft: (K,to) —) F which satisfy the initial condition

ip(t0) m0 and are solutions of tire differential equation ^ /(t, u), meaning

that <p'(t) f(t,<p(t)).

THEOREM (Cauchy). Under these hypotheses, the Cauchy problem (1) has

a unique local analytic solution.

Proof. If K R, the complexified map of a solution of (1) is a solution
of the complexified Cauchy problem. Now, if the theorem is true in the

complex case, the solution ep of the complexified Cauchy problem must be the

complexified map of a solution of (1) (hence existence and uniqueness in the

real case), since otherwise t p(t) would be another solution, contradicting
uniqueness. This reduces the question to the complex case.

If K C, (1) is equivalent to the equation

(2) v(t) f(t, u0 + jj* v(t) dr)

in the unknown local holomorphic function » — ' (C, t0) —> F, where

J'ov(r)dT denotes the local primitive of v which vanishes at to-

Robbin's idea is to use a small parameter s G C. For e f 0, setting

(3) t t0+sT, V(T) v(t), d~lV(T):= Jif V(r) dr,

one has j' c(r)dr sd~1V(T) ; hence, (2) can be written

(4) V(T) =f (t0 + eT, no + ed~lV(T))

an equation wliicli still makes sense for s 0.

Let ?-/./,(D, /*') denote the Banach space (Proposition 1.2) of all bounded

holomorphic maps of the open unit disk D C C into /*', equipped with the

norm of uniform convergence | - | x, For nonzero s C, the "microscope"
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(3) defines a bijection of tlie set of solutions V G Hb(D. F) of (4) onto the

set of those solutions v of (2) which are defined and bounded in the open
disk of radius M centred at to. Therefore, to establish Cauchy's theorem, we
should just prove that there exist i/ > 0 and r > 0 such that, for |e| < //. the

equation (4) has a unique solution V G ?-/;,(D. /-') satisfying | V — Vo|oo <
where \"u G ?-//,(D, /*') denotes the constant /(r0,«o)-

LEMMA 2.1. The formula 0(6, V)(T) : / (to + gT, i/o + ti/_1V(T))
defines a local holomorphic map <t>: (C x TLb(D,F),(0,Voj) —> (Tlb(J),F),Vo)
such that <f>(0. V) Vo and therefore öy<t>(0, Vo) 0.

Ulis yields Cauchy's theorem : by the implicit function theorem, there exist

i/ > 0 and r > 0 such that, for |t| < if, the equation V —<4>(c, V) 0, i.e. (4),
has a unique solution V p(s) G T) satisfying | V — Vo|oo < r

Proof of Lemma 2.1. <t> is obtained by composing two holomorphic maps :

• the polynomial map IT: C X fLb(D,F) > "?f/,(D. C x F) defined by
fl(£, V)(T) (t0 + eT, Uq + ed-^VFT))

(indeed, IT is a holomorplfic polynomial with values in 'Hb{D, C x F)
because d~1 is a continuous endomorpliism of T//,(D. /*") since we have

\ä~lV{T)\ < \T\ IV]^ < [VU, V G Hb(D,F), f GD);
• the local map f. : (7f;,(D, C x F), (t0, M0)) {T~tb(F>, F), V0) defined by

f*W f o W.

Indeed, if / is well-defined and bounded on the open ball Bp(to,uo) of
radius p > 0 centred at (r0,i/(l), then, for each W G H/,(D.C xf) witli
j IV — (to, ho) |oo < p, the map f o W is well-defined, holomorplfic and bounded

on D. To see that fi is holomorplfic near the constant (to,*o), notice that if Dzf
satisfies \D2f(t,x)\ < c < oo on Bp(to, i/o), then, for all W, 8W G 7/ft(D. C x /-")

with I TV — (to,«o)|oo < P an(i IIV + 8W — (to,«o)U < Taylor's formula
yields

\f(W(T) +SW(T)) -f(W(T))-Df(W{T))5W(T)\

Jj(1 - s)D1f(W{T) + sSW(T))SW(T)2d&\ < ||filV|^ T G D,

implying that fi is differentiable at W and that Dffi W) is the complex
endomorpliism of Hh(D.CxF) given by (Dfi(W)()Wj(T) Df(W(T))àW(T).
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2.2 The Càuchy-Kowalevski theorem

Hypotheses and notation. Let Jl(E,F) : E x F x L(F. F) and let

/ be an analytic map on an open subset dorn/ of K x J U.E. F), taking
its values in F. Given to G K and an analytic germ uq\ (E,x0) —)- F
satisfying {?ö J1 «<*£%>) dorn/, where /m0(r0) := (x0, u0(x0),Du0(x0)) we

are interested in the local analytic solutions of the Cauchy problem

(d,u =f(t,X,u,dxii)
[iifex) M0(x),

i.e. analytic genns ip: (K X F. (0,xo)) —>• F such that, setting y,(x) := ip(t,x),
• tp is a solution of the partial differential equation dtu f(t, x, u,dxii),

meaning that dt<p(t,x) f [t, jlipt{x)) ;

• the initial condition ip,0 i/o is satished.

THEOREM (Cauchy-Kowalevski). Under these hypotheses, the Cauchy

problem (5) has a unique local analytic solution.

Reduction OF the problem. Denoting by g the analytic function dehned

on an open subset (loin <j 3 0 of K x JUIF F) by

g(t,x, y, z) =f (to + t, x0 + x, ii0(x0 + x) + yf Dii0(x0 + x) + z)

(5) is equivalent to the local Cauchy problem

f/C gU.x.w.ihir)

\ // (O. v) 0

in the unknown function iv(t.x) := u(t(} [ r.xo a) — £/0(a0 \ x) near 0 cKxF.
Replacing w(t,x) by w(t,x)-tg(0) and g(t,x,y,z) by g(t,x,y+tg(0),z)-g(0),
we may assume that

(7) 5(0) 0.

Solving (6) in an open convex subset C 3 0 of K x F is equivalent to finding
an analytic map r : C -3 F (the partial derivative v := dtw) such that

(8) v(t,x) g (f, X, d'hit^x), dxd'hit^j),
where, as in [13],

<9,_1p(f, x) /q v(t, x) dr t [( v(st, x) ds.
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Again, we introduce a small parameter e K, whose use is subtler than

before, due to derivation with respect to .v : for e 0, setting

(fix) (e2T,£X), V(T,X) v(t,x),

one has e2dfi1V(T,X) and (fiiJfi1 r(f,.i) sdxOj
' V{i\ X), hence

(8) can be written

(9) V(T, X) g (e2T, sX, s2df1 V(T, A), edxdf1 V(T, X))

THE FUNCTION space. The presence of dxdf1V(T,X) in (9) makes it
harder to find a function space for which the analogue of Lemma 2.1 holds.

PROPOSITION 2.2. Given Banacli spaces Ei,Fi, let B be the open unit ball
of Ei. The set hF(.Ei,Fi) of all V : B > F\ of the form V(.\) V»

with V„ G L"(Ei,Fi) and |V,,| < oo is a Banach space over K for the

norm |L|i := an^ elements are analytic functions.

Proof The power series whose sum belongs to HF(Ei,Fi) have strict

convergence radius > 1. Therefore, by Corollary 1.4, the elements of T(E\,F\)
are analytic. As each V G iF(E\. Et identifies to the sequence consisting of
the coefficients V„ fil)"V(()) of the power series defining it, a standard

argument proves that lF(Et, Fy is a Banach space.

Notation. Let !Fo(Ei,Fi) be tlie closed subspace of lF(Et. Et) consisting
of all V with L(0) 0. The following result, implicit in [13] (p. 44, estimate

line —4), has no Cx analogue. This may be viewed as "the" reason why the

Cauchy-Kowalevski theorem is true only in the analytic category:

PROPOSITION 2.3. Let Ey denote the Banach space K x E endowed with
the norm |(T.A)j |T| + |X|. For V G fo(Ey,F), one has dfilV G fo(Ei,F),
dxdflV G T0{EuL{EfF)), \dflV\i < ||F[a and \VxdfxV\x < [V^.

Proposition 2.3, whose easy proof is given in Appendix 2.2, provides
tlie analogue of the first point in the proof of Lemma 2.1. We turn to the

second point, again inspired by [13] (Proposition 1.11, p. 42) and proved in
Appendix 2.2:

PROPOSITION 2.4. Given three Banach spaces Ex, W% I'l and an analytic
local map g: (Fj,0) -A (F2,0), the formula g*(W) := go W defines a local

analytic map g*: Fi), 0) -G (lFo{F-\-Fz)- 0)
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Proof of the theorem. Here is the analogue of Lemma 2.1 :

LEMMA 2.5. With the notation of Proposition 2.3, the formula

<I>(c. IOC/', X) := g (s2T, -:X. e2dflV(T,X), càxdf[V(T. X))

defines an analytic map <t> : (K X

Proof Proposition 2.3 asserts that we have iff1 C L{fiFo(F\. /•'), kFfilfi. /*'))

and hence 0x0)
1

G L {kFfiJp, /*'), iFififfi L(F. /-'))), implying that the formula

nO, V)('i\X) := (c27\ eX, -fiOf1 V('r,X). clfiOf1 V('I\X)) defines an analytic

map H: (K x JF0(£j, F), {0} x Fts(E\, F)) -4 (fojfii.K x J1 ("fi, /•')) - 0). Since
<f> g. o n, we conclude by Proposition 2.4.

As <h(0, V) 0 yields <f>(0.0) 0 and OyOfO, 0) 0, the implicit
function theorem implies that there exist rj > 0 and r > 0 such that, for
|e| < >], the equation V — (I>(r, V) 0, i.e. (9), has a unique solution
V ip(e) G T()(P\ /*') satisfying | V\, < r. Now, if v is a solution of (8)
which is analytic near 0, then, for |e| G (0, r/) small enough, tlie solution

V(i\X) v(s2T,sX) of (9) is well-defined in B, belongs to iFfi/f. /*') and

satisfies | V\, < r, proving the local existence and uniqueness of the solution
of (8), hence of (5).

Remarks. With the notation of Lemma 2.5, for k G N* and V G .F, the

/(-ill order Taylor polynomial j'fiHs. V) of <t>(e, V) at 0 depends only on e

and ffiV. Denoting it by (I>/<(£\/fll/) and replacing <I> by <t>k in what we have

just done, we get that the solution of (5) is formally unique.
One can avoid Proposition 2.4 and just show that the map V t-f <f>(c. V)

is a contraction of the closed unit ball of iFfilfi. F) for small enough s.
However, this requires the same ingredients as the proof of Proposition 2.4.

Appendix A
Proof of Proposition 2.3

For V G Wi,F), we have that V(T,X) Vn{TrXf with

V„ := ±D"V(0,0) G L'^EUF), i.e. V(T,X) E f iï)TkV„(l, 0/(0,X)"~k
«£N*k=0

since X) 7(1,0) + (Q,X) ; hence, near 0,
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(10) drW(T,X) wi'fo.xr*
neN* &=0

EdrrÊ(';:i)T+,v.(i,oMx>
n + 1 V k + 1

«£N* k=0

\n—k

1
w

F-F,^ n ^ V k
n>2 /t=l

r* v,,_i(i, 0)*-1(0,X)"-*

and, denoting by (0, dX) the injection E 3 5X i-i (0, SX) 6 £j

(id 1

v (/..vi y F (f)<n-
n>2

11

k= 1 A /

=ee(" *V V,,_!(!, 0)k-\0,X)"-k-\0,dX)
n>2 £=1

' nEE J V„(l, O)^1 (0, JO—^O.dX).
neN* /t=l ^ '

By (10), one has d^1V(T,X) 1 f^PTjJXjf near 0, where

-;iEE COTa(i) ' ' 'r<Ttt) v"-i(1' o)"_1(o'z^h) • • • (°>y<«3*
&=1

and therefore 1

K<yio„(7jÄ)-- -er,,, x„)i

s v; V I^V(1)| ' ' ' I^Vcol |-^<T(t+l)| ' • ' |-^<T(H)I

cre&n k= 1

s bv£ Ë l^(l)| * * * | T(j(k) | |Xcr(Ä:H-l) | * * * |^<T(«)|
*

ae&n k=0 ^ '
I é r^y E ir-<i)i • • • M

&=0 <r©n

+ W) - • - Cl^l+M) ;

1

Using, in the last equality, the fact that there are k\ (n — k)\ permutations d Ç 6«
preserving a given subset with k elements.
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hence, |(^r
1

V)„ | < ± |V,,-i| and E„>2 [Ä V)„| < E„n* TR"! vA < |Fk.
which does yield dj V G Tq(Ei,F) and JP^T1 T/]j <

By (11), one has dxdj1V(T,X) V%(f,X)"' near 0, where

0xdr1V)„(TuX1)---(T„,X„)

'h Y Yu)wsf~:• • • (o,^(„))(o,dx),
11 ' <?&„ k=1 ^ '

and tlierefore

\(dxdjXV\{JxXx)---{Tn,Xn)\

1
U \siftiwiEE m I Tcr(k) | P^t(£+1)| * ' * I^t(«)I

•

ae<Sn k=1 ^ '

£ lv"lî £ l ''r(l>l ' ' ' 1^(01 |XrH |,| ' • * |-ï<r(n)|
' #SÉ» k=0 ^ '

1 V„| IJÎî [ + pi]) - • (JrB| -+• IX, [) ;

hence, \{dxdjlV)n\ < \V„\ and EnN* K^fV)„| < E„6n» \v»\ Ft»
wliich does yield dxdjlV G ^{Ei^LiE^F)) and \dxdjlV\\ < |V|i.

Appendix B

Proof of Proposition 2.4

Let W(Z) E„est* W"Z" and 9(w) E„n* 9»w" be the Taylor
expansions of W and g at 0. Since g o W(Z) E«eN* 9" W{Z)n near 0,
the Taylor expansion E„pn* §*®V" of g* at 0 must be given by g*„W"(Z)
g„W(Z)",i.e.

(12) g*„(Wu..., H-vMZ) g„(WdZ)t*.., Wn(Z))

There remains to show that (12) defines amap G L" (TR/o, /*) jTo(/4, F2))
for all n G N* and that the power series E«n5*«^" converges (what follows
is essentially Proposition 1.11 page 42 of [13] and should be classical).
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Clearly, g.,„ is n -linear and symmetric. To see that it sends ToUg. /*) )" into

.FoCEi,/^), we inject into (12) the Taylor expansion W,(Z) WjjZf
of Wj at 0 for 1 <j<n: denoting by //,,,(Uj,.... \l'„)< ZA the Taylor
expansion of !/.,„(Wt,..., W„), we get

g*n(Wu..., Wn)k Zk ]T g„ (Wu^,W>ut„Ze")
em*"

e\=k

and therefore

JPmCWTJ W„)k (Zy » Zk)

^7 ^ ^ ^ 5» If I * * * Zrjft'i )): * * < î f I) ' * ' ^«i)j >

'
<t6* <eN*"

hence

IStoÄi > • • • Pt, • • •, Zk) I

- X X, fall '^Mi I • • • Wn,e„\ 1^(1)1 • • • |Z(JÄ)|

<r&t iÇN*"
\t\=k

15» I X lW»-0,l N •••Pi I

fN*"
M=4

and finally

|5*»(Wy - • •, W„)kI < |p„I V IWi4s,! ' ' Iw»,u.

em*"
\e\=k

From this, we deduce the inequality

X 15*»w, • • •, w„)k I < |5» I X I• I W'M-„ I 15»I \Wt [r -..I,keN

which does prove that 5*« and \g*n\ < y,
Thus, the strict convergence radius of the power series X)«eN* 5*»^" is

at least equal to that of gn'Uf and therefore positive, proving our
result.
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NOTÉS2). Unfortunately, tili s part of the proof requires some modest
calculations with power series3) since we have been unable to stick (as in the

case of differential equations) to Cauchy's viewpoint on holomorphic maps
and Iladamard's strong maxim: 'The shortest way between two truths in the

real domain passes through the complex domain."
Cartan's version of differential calculus à la Fréchet first appeared in

Dieudoilllé'S famous book [3], whose exposition of analytic functions of several

variables, followed in 1971 by a proof of the Cauchy-Kowalevski theorem [4],
did not venture into infinite dimensions.

Bobbin's celebrated proof [14] of Cauchy's theorem on ordinary differential
equations (in the usual differentiable setting) is a wonderful application of
infinite-dimensional differential calculus, slightly distorted by Lang in an
otherwise very good book [11] — and by the author in [2|.

Before Douady's thesis [6], the theory of analytic functions between Banach

spaces had been developed by Max Zorn in the mid-forties (see the last chapter
of [7], which provides many references).

Hans Lewy [12, 4] showed that the existence part of the Cauchy-Kowalevski
theorem is false in the smooth category without further hyperbolicity
hypotheses. The uniqueness part is much strengthened by Holmgren's theorem

[8, 10, 9, 5], of which no infinite-dimensional version seems to be known.
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