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The hyperbolic geometry of Markov's theorem on
Diophantine approximation and quadratic forms

Boris Springborn

Abstract. Markov's theorem classifies the worst irrational numbers with respect to rational

approximation and the indefinite binary quadratic forms whose values for integer arguments

stay farthest away from zero. The main purpose of this paper is to present a new proof

of Markov's theorem using hyperbolic geometry. The main ingredients are a dictionary to

translate between hyperbolic geometry and algebra/number theory, and some very basic

tools borrowed from modern geometric Teichmüller theory. Simple closed geodesies and

ideal triangulations of the modular torus play an important role, and so do the problems:

How far can a straight line crossing a triangle stay away from the vertices? How far can

it stay away from all vertices of the tessellation generated by this triangle? Definite binary

quadratic forms are briefly discussed in the last section.

Mathematics Subject Classification (2010). Primary: 11J06, 32G15.

Keywords. Modular torus, simple closed geodesic, Markov equation, Ford circles, Farey

tessellation.

1. Introduction

The main purpose of this article is to present a new proof of Markov's
theorem [48, 49] (Sees. 2, 3) using hyperbolic geometry. Roughly, the dictionary
shown on the following page is used to translate between hyperbolic geometry
and algebra/number theory.

The proof is based on Penner's geometric interpretation of Markov's equation

[55, p. 335 f] (Sec. 12), and the main tools are borrowed from his theory of
decorated Teichmüller space (Sec. 11). Ultimately, the proof of Markov's theorem

boils down to the question:

How far can a straight line crossing a triangle stay away from all
vertices?
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Dictionary: Hyperbolic Geometry - Algebra/Number Theory

Hyperbolic Geometry Algebra/Number Theory

horocycle

geodesic

point

signed distance between horocycles

signed distance between horocycle and

geodesic/point

ideal triangulation of the modular torus

nonzero vector (p,q) 6 M 2

indefinite binary quadratic form /
definite binary quadratic form /

Sec. 5

Sec. 10

Sec. 16

(24)2log J det q\ g)
(29) (46)

Markov triple Sec. 12

It is fun and a recommended exercise to consider this question in elementary
euclidean geometry. Here, we need to deal with ideal hyperbolic triangles,
decorated with horocycles at the vertices, and "distance from the vertices" is

to be understood as "signed distance from the horocycles" (Sec. 13).

The subjects of this article, Diophantine approximation, quadratic forms,
and the hyperbolic geometry of numbers, are connected with diverse areas

of mathematics and its applications, ranging from from the phyllotaxis of
plants [16] to the stability of the solar system [37], and from Gauss' Disquisitiones
Arithmeticae to Mirzakhani's Fields Medal [53]. An adequate survey of this area,

even if limited to the most important and most recent contributions, would be

beyond the scope of this introduction. The books by Aigner [2] and Cassels [11] are
excellent references for Markov's theorem, Bombieri [6] provides a concise proof,
and more about the Markov and Lagrange spectra can be found in Malyshev's

survey [47] and the book by Cusick and Flahive [20]. The following discussion
focuses on a few historic sources and the most immediate context and is far from
comprehensive.

One can distinguish two approaches to a geometric treatment of continued

fractions, Diophantine approximation, and quadratic forms. In both cases, number

theory is connected to geometry by a common symmetry group, GL2(Z). The first
approach, known as the geometry of numbers and connected with the name of
Minkowski, deals with the geometry of the Z2 -lattice. Klein interpreted continued
fraction approximation, intuitively speaking, as "pulling a thread tight" around

lattice points [41, 42], This approach extends naturally to higher dimensions,

leading to a multidimensional generalization of continued fractions that was

championed by Arnold [3, 4], Delone's comments on Markov's work [22] also

belong in this category (see also [291).
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In this article, we pursue the other approach involving Ford circles and the

Farey tessellation of the hyperbolic plane (Fig. 6). This approach could be called

the hyperbolic geometry of numbers. Before Ford's geometric proof [27] of
Hurwitz's theorem [38] (Sec. 2), Speiser had apparently used the Ford circles to

prove a weaker approximation theorem. However, only the following note survives

of his talk [70, my translation]:

A geometric figure related to number theory. If one constructs in the

upper half plane for every rational point of the x-axis with abscissa ~

the circle of radius ^ that touches this point, then these circles do

not overlap anywhere, only tangencies occur. The domains that are not
covered consist of circular triangles. Following the line x — co (irrational
number) downward towards the x-axis, one intersects infinitely many
circles, i.e., the inequality

has infinitely many solutions. They constitute the approximations by

Minkowski's continued fractions.

If one increases the radii to ^ 2
then the gaps close and one obtains

the theorem on the maximum of positive binary quadratic forms.

See Rem. 9.2 and Sec. 16 for brief comments on these theorems. Based

on Speiser's talk, Züllig [75] developed a comprehensive geometric theory of
continued fractions, including a geometric proof of Hurwitz's theorem.

Both Züllig and Ford treat the arrangement of Ford circles using elementary
euclidean geometry and do not mention any connection with hyperbolic geometry.
In Sec. 9, we transfer their proof of Hurwitz's theorem to hyperbolic geometry.
The conceptual advantage is obvious: One has to consider only three circles
instead of infinitely many, because all triples of pairwise touching horocycles are

congruent.
Today, the role of hyperbolic geometry is well understood. Continued fraction

expansions encode directions for navigating the Farey tessellation of the hyperbolic
plane |7, 33, 67]. In fact, much was already known to Hurwitz [39] and

Klein [40, 42]. According to Klein [42, p. 248], they built on Hermite's [35]

purely algebraic discovery of an invariant "incidence" relation between definite
and indefinite forms, which they translated into the language of geometry. While
Hurwitz and Klein never mention horocycles, they knew the other entries of
the dictionary, and even use the Farey triangulation. In the Cayley-Klein model

of hyperbolic space, the geometric interpretation of binary quadratic forms is

easily established: The projectivized vector space of real binary quadratic forms
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is a real projective plane and the degenerate forms are a conic section. Definite
forms correspond to points inside this conic, hence to points of the hyperbolic
plane, while indefinite forms correspond to points outside, hence, by polarity, to

hyperbolic lines. From this geometric point of view, Klein and Hurwitz discuss

classical topics of number theory like the reduction of binary quadratic forms,
their automorphisms, and the role of Pell's equation. Strangely, it seems they

never treated Diophantine approximation or Markov's work this way.
Cohn [12] noticed that Markov's Diophantine equation (4) can easily be

obtained from an elementary identity of Fricke involving the traces of 2 x
2-matrices. Based on this algebraic coincidence, he developed a geometric
interpretation of Markov forms as simple closed geodesies in the modular
torus [13, 14], which is also adopted in this article.

A much more geometric interpretation of Markov's equation was discovered

by Penner (as mentioned above), as a byproduct of his decorated Teichmüller

theory [55, 56], This interpretation focuses on ideal triangulations of the modular

torus, decorated with a horocycle at the cusp, and the weights of their edges

(Sec. 12). Penner's interpretation also explains the role of simple closed geodesies

(Sec. 14).

Markov's original proof (see [6] for a concise modern exposition) is based on

an analysis of continued fraction expansions. Using the interpretation of continued
fractions as directions in the Farey tessellation mentioned above, one can translate

Markov's proof into the language of hyperbolic geometry. The analysis of allowed
and disallowed subsequences in an expansion translates to symbolic dynamics of
geodesies [661.

In his 1953 thesis, which was published much later, Gorshkov [30] provided a

genuinely new proof of Markov's theorem using hyperbolic geometry. It is based

on two important ideas that are also the foundation for the proof presented here.

First, Gorshkov realized that one should consider all ideal triangulations of the

modular torus, not only the projected Farey tessellation. This reduces the symbolic
dynamics argument to almost nothing (in this article, see Proposition 15.1, the

proof of implication "(c) => (a)"). Second, he understood that Markov's theorem

is about the distance of a geodesic to the vertices of a triangulation. However,

lacking modern geometric tools of Teichmüller theory (like horocycles), Gorshkov

was not able to treat the geometry of ideal triangulations directly. Instead, he

considers compact tori composed of two equilateral hyperbolic triangles and lets

the side length tend to infinity. The compact tori have a cone-like singularity at

the vertex, and the developing map from the punctured torus to the hyperbolic
plane has infinitely many sheets. This limiting process complicates the argument
considerably. Also, the trigonometry becomes simpler when one needs to consider

only decorated ideal triangles. Gorshkov's decision "not to restrict the exposition to
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the minimum necessary for proving Markov's theorem but rather to execute it with
considerable completeness, retaining everything that is of independent interest"
makes it harder to recognize the main lines of argument. This, together with an

unduly dismissive MathSciNet review, may account for the lack of recognition
his work received.

In this article, we adopt the opposite strategy and stick to proving Markov's
theorem. Many natural generalizations and related topics are beyond the scope of
this paper, for example the approximation of complex numbers [21, 25, 26, 61],

generalizations to other Riemann surfaces or discrete groups [1, 5, 9, 31, 46, 62, 63],

higher dimensional manifolds [36, 73], other Diophantine approximation theorems,

for example Khinchin's [71], and the asymptotic growth of Markov numbers and

lengths of closed geodesies [8, 50, 52, 68, 69, 74], Is the treatment of Markov's

equation using 3x3 -matrices [57, 59] related? Do the methods presented here

help to cover a larger part of the Markov and Lagrange spectra by considering
more complicated geodesies [18, 17, 19]? Can one treat, say, ternary quadratic
forms or binary cubic forms in a similar fashion?

The notorious Uniqueness Conjecture for Markov numbers (Rem. 2.1 (iv)),
which goes back to a neutral statement by Frobenius [28, p. 461], says in geometric
terms: If two simple closed geodesies in the modular torus have the same length,
then they are related by an isometry of the modular torus [65], Equivalently, if two
ideal arcs have the same weight, they are related this way. Hyperbolic geometry
was instrumental in proving the uniqueness conjecture for Markov numbers that

are prime powers [10, 44, 64], Will geometry also help to settle the full Uniqueness

Conjecture, or is it "a conjecture in pure number theory and not tractable by

hyperbolic geometry arguments" [51]? Will combinatorial methods succeed? Who
knows. These may not even be very meaningful questions, like asking: "Will a

proof be easier in English, French, Russian, or German?" On the other hand,

sometimes it helps to speak more than one language.

2. The worst irrational numbers

There are two versions of Markov's theorem. One deals with Diophantine
approximation, the other with quadratic forms. In this section, we recall some

related theorems and state the Diophantine approximation version in the form in
which we will prove it (Sec. 15). The following section is about the quadratic
forms version.

Let x be an irrational number. For every positive integer q there is obviously
a fraction ^ that approximates x with error less than ~. If one chooses
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denominators more carefully, one can find a sequence of fractions converging to

x with error bounded by '

Theorem. For every irrational number x, there are infinitely many fractions ~

satisfying
PI 1

x — <

This theorem is sometimes attributed to Dirichlet although the statement had

"long been known from the theory of continued fractions" [23], In fact, Dirichlet
provided a particularly simple proof of a multidimensional generalization, using
what later became known as the pigeonhole principle.

Klaus Roth was awarded a Fields Medal in 1958 for showing that the exponent 2

in Dirichlet's approximation theorem is optimal [60]:

Theorem (Roth). Suppose x and a are real numbers, a > 2. If there are infinitely

many reduced fractions ^ satisfying

x —
1

<

then x is transcendental.

In other words, if the exponent in the error bound is greater than 2 then

algebraic irrational numbers cannot be approximated. This is an example of a

general observation: "From the point of view of rational approximation, the

simplest numbers are the worst" (Hardy & Wright [32], p. 209, their emphasis).

Roth's theorem shows that the worst irrational numbers are algebraic. Markov's

theorem, which we will state shortly, shows that the worst algebraic irrationals

are quadratic.
While the exponent is optimal, the constant factor in Dirichlet's approximation

theorem can be improved. Hurwitz [38] showed that the optimal constant is

and that the golden ratio belongs to the class of very worst irrational numbers:

Theorem (Hurwitz). (i) For every irrational number x, there are infinitely many
fractions P satisfying

(1) x <
•v/5 q2

(ii) If X > \/5, and if x is equivalent to the golden ratio f |(1 + V5), then

there are only finitely many fractions 2- satisfying

(2) x <
Xq2
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(3)

Two real numbers x, x' are called equivalent if
ax + b

cx + d

for some integers a, b, c, d satisfying

Iad — be | 1.

If infinitely many fractions satisfy (2) for some x, then the same is true for any
equivalent number x'. This follows simply from the identity

!\2W)
p' 2 p

x q x
q' q lex + d I

where x and x' are related by (3) and p' ap + bq, q' cp + dq. (Note that
the last factor on the right hand side tends to 1 as | tends to x.)

Hurwitz also states the following results, "whose proofs can easily be obtained
from Markov's investigation" of indefinite quadratic forms:

• If x is an irrational number not equivalent to the golden ratio cp, then

infinitely many fractions satisfy (2) with A 2*Jl.

• For any A < 3, there are only finitely many equivalence classes of numbers
that cannot be approximated, i.e., for which there are only finitely many
fractions satisfying (2). But for A 3, there are infinitely many classes that

cannot be approximated.

Hurwitz stops here, but the story continues. Table 1 lists representatives x of
the five worst classes of irrational numbers, and the largest values L(x) for A

for which there exist infinitely many fractions satisfying (2). For example, -J2

belongs to the class of second worst irrational numbers. The last two columns

will be explained in the statement of Markov's theorem.

Markov's theorem establishes an explicit bijection between the equivalence
classes of the worst irrational numbers, and sorted Markov triples. Here, worst
irrational numbers means precisely those that cannot be approximated for some
A < 3. A Markov triple is a triple (a,b,c) of positive integers satisfying Markov's

equation

(4) a2 + b2 + c2 — 3abc.

A Markov number is a number that appears in some Markov triple. Any
permutation of a Markov triple is also a Markov triple. A sorted Markov triple
is a Markov triple (a,b,c) with a < b < c.

We review some basic facts about Markov triples and refer to the literature for
details, for example [2, 11 J. First and foremost, note that Markov's equation (4) is
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Table 1

The five worst classes of irrational numbers

Rank X L(x) a b c Pi P2

1

2

3

4

5

è(i + Vs)

a/2

^(9+ A/22T)

^(23 + V1517)

dg (5 + A/7565)

A/5 2.2...

2a/2 2.8...

4722!= 2.97...

-4^1517 2.996...

4g A/7565 2.9992...

1

1

1

1

2

1

1

2

5

5

1

2

5

13

29

0

-1

-1

-3

-7

1

1

2

2

3

quadratic in each variable. This allows one to generate new solutions from known

ones: If (a,b,c) is a Markov triple, then so are its neighbors

(5) (a',h,c), (a,b',c), (a,b,c'),

where

h2 + c2
(6) a' 3be — a

a

and similarly for b' and c'. Hence, there are three involutions 07. on the set of
Markov triples that map any triple (a,b,c) to its neighbors:

(7) o\(a,b,c) — (a',b,c), n2{a,b,c) (a,b',c), cj2(a,b,c) (a,h,c').

These involutions act without fixed points and every Markov triple can be obtained

from a single Markov triple, for example from (1, 1,1), by applying a composition
of these involutions. The sequence of involutions is uniquely determined if one
demands that no triple is visited twice. Thus, the solutions of Markov's equation (4)
form a trivalent tree, called the Markov tree, with Markov triples as vertices and

edges connecting neighbors (see Fig. 1).

Theorem (Markov, Diophantine approximation version), (i) Let (a,b,c) be any
Markov triple, let p\, p2 be integers satisfying

(8) p2b~pxa=c,

and let
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Figure I

Markov tree

111en there are infinitely many fractions jj- satisfying (2) with

(10) A

but only finitely many for any larger value of X.

(11) Conversely, suppose x' is an irrational number such that only finitely many
fractions ^ satisfy (2) for some X < 3. Then there exists a unique sorted Markov

triple (a,b,c) such that x' is equivalent to x defined by equation (9).

Remark 2.1. A few remarks, first some terminology.
(i) The Lagrange number L{x) of an irrational number x is defined by

L(x) sup {A e 1R I infinitely many fractions ~ satisfy (2)},

and the set of Lagrange numbers {L{x)\x e 1\Q} is called the Lagrange

spectrum. Equation (10) describes the part of the Lagrange spectrum below 3,
and equation (9) provides representatives of the corresponding equivalence classes

of irrational numbers.

(ii) It may seem strangely unsymmetric that p2 appears in equation (9) and

Pi does not. The appearance is deceptive: Markov's equation (4) and equation (8)

imply that equation (9) is equivalent to

pi a 3 19 l~
X

b be ^ 2 V 4 c2
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(iii) The three integers of a Markov triple are pairwise coprime. (This is true
for (1,1,1), and if it is true for some Markov triple, then also for its neighbors.)
Therefore, integers p\, p2 satisfying (8) always exist. Different solutions (p\, p2)
for the same Markov triple lead to equivalent values of x, differing by integers.

(iv) The following question is more subtle: Under what conditions do different
Markov triples (a,b,c) and (a',b',c') lead to equivalent numbers x, x'l Clearly,
if c ^ c', then x and x' are not equivalent because A^A'. But Markov triples
(a,h,c) and (b,a,c) lead to equivalent numbers. In general, the numbers x
obtained by (9) from Markov triples (a,b,c) and (a',k',c') are equivalent if
and only if one can get from (a,b,c) to (a',b',c') or (b',a',c') by a finite
composition of the involutions o\ and a2 fixing c. In this case, let us consider
the Markov triples equivalent. Every equivalence class of Markov triples contains

exactly one sorted Markov triple. It is not known whether there exists only one
sorted Markov triple (a,b,c) for every Markov number c. This was remarked

by Frobenius [28] some one hundred years ago, and the question is still open.
The affirmative statement is known as the Uniqueness Conjecture for Markov
Numbers. Consequently, it is not known whether there is only one equivalence
class of numbers x for every Lagrange number L(x) < 3.

(v) The attribution of Hurwitz's theorem may seem strange. It covers only
the simplest part of Markov's theorem, and Markov's work precedes Hurwitz's.
However, Markov's original theorem dealt with indefinite quadratic forms (see the

following section). Despite its fundamental importance, Markov's groundbreaking
work gained recognition only very slowly. Hurwitz began translating Markov's
ideas to the setting of Diophantine approximation. As this circle of results became

better understood by more mathematicians, the translation seemed more and

more straightforward. Today, both versions of Markov's theorem, the Diophantine
approximation version and the quadratic forms version, are unanimously attributed
to Markov.

3. Markov's theorem on indefinite quadratic forms

In this section, we recall the quadratic forms version of Markov's theorem.

We consider binary quadratic forms

with real coefficients A, B, C The determinant of such a form is the determinant

of the corresponding symmetric 2 x 2-matrix,

(11) f(p.q) Ap2 + 2 Bpq + Cqz,

(12) det / AC- B2.



The hyperbolic geometry of Markov's theorem 343

Markov's theorem deals with indefinite forms, i.e., forms with

det / < 0.

In this case, the quadratic polynomial

(13) f(x,\) Ax2 +2Bx + C

has two distinct real roots,

(14) -«±7^57
A

provided A ^ 0. If A 0, it makes sense to consider and oo as two roots
in the real projective line 1P1 ^1U {oo}. Then the following statements are

equivalent:

(i) The polynomial (13) has at least one root in QU {oo}.

(ii) There exist integers p and q, not both zero, such that f(p,q) 0.

Conversely, one may ask: For which indefinite forms / does the set of values

{/\p, q) I (p, q) e z2, (p, q) ^ (0,0)} c R

stay farthest away from 0. This makes sense if we require the forms / to be

normalized to det / — 1. Equivalently, we may ask: For which forms is the

infimum

(15) M(f) inf
(P,q)ez2 y/\ det f I

ip,q)j=0

maximal? These forms are "most unlike" forms with at least one rational root,
for which M{f) 0. Korkin and Zolotarev [43j gave the following answer:

Theorem (Korkin and Zolotarev). Let f be an indefinite binary quadratic form
with real coefficients. If f is equivalent to the form

p2 - pq-q2,

then

W)-^.
Otherwise,

(16) M(/)<_L.
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Binary quadratic forms /, / are called equivalent if there are integers a,
b, c, d satisfying

I ad — bc\ \,

such that

(17) f(p,q) f(ap + bq,cp + dq).

Equivalent quadratic forms attain the same values on I?.
Hurwitz's theorem is roughly the Diophantine approximation version of Korkin

& Zolotarev's theorem. They did not publish a proof, but Markov obtained one
from them personally. This was the starting point of his work on quadratic
forms [48, 49], which establishes a bijection between the classes of forms for
which M{f) M and sorted Markov triples:

Theorem (Markov, quadratic forms version), (i) Let (a,b,c) be any Markov triple,
let p\, p2 be integers satisfying equation (8), let

(is) *„ ^ + 4-2,
a ac 2

let

'-VI4
and let f be the indefinite quadratic form

(20) f(p, q) p2 - 2x0 pq + (x„ - r2) q2.

Then

(21) M(f) -,r
and the infimum in (15) is attained.

(ii) Conversely, suppose f is an indefinite binary quadratic form with

M{f) >

Then there is a unique sorted Markov triple (a,b,c) such that f is equivalent
to a multiple of the form f defined by equation (20).

Note that the number jc defined by (9) is a root of the form / defined by (20),
and M(f) — Table 2 lists representatives f{p,q) of the five classes of
forms with the largest values of M{f).
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Table 2

The five classes of indefinite quadratic forms whose values stay farthest away from zero

Rank f(p,q) AT(/) ab c p \ P2

1 p2-pq-q2 2
Vs 0.89... 1 1 1 0 1

2 p2 - 2q2 1

V2 0.70... 1 1 2 -1 1

3 5p2 + pq - 1 \q2 10
^/22T 0.67... 1 2 5 -1 2

4 Up2+23pq- 19q2 26 0.667 1 5 13 -3 2
V1517

5 29p2 — 5pq — 65q2 58 0.6668 2 5 29 -7 3
V7565

Remark 3.1. Here, too, the apparent asymmetry between p\ and p2 is deceptive

(cf. Remark 2.1 (ii)). Equation (18) is equivalent to

pi a 3
X°

b he '
2

4. The hyperbolic plane

We use the half-space model of the hyperbolic plane for all calculations. In
this section, we summarize some basic facts.

The hyperbolic plane is represented by the upper half-plane of the complex
plane,

H2 {z e C I Imz > 0},

where the length of a curve y : [to, H] -»• H2 is defined as

r"j m_
J to Imy(t)

The model is conformai, i.e., hyperbolic angles are equal to euclidean angles. The

group of isometries is the projective general linear group,

PGL2(R) GL2(R)/R*

^{Ae GL2(R) ||deM| \}/{±Id),

where the action M : PGL2(M) ->• Isom(H2) is defined as follows:
For

A (acbä)£GL2(R),
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az + b

Ma{z) cz + d

az + b

cz + d

if det 4 > 0,

if det A < 0.

The isometry Ma preserves orientation if det A > 0 and reverses orientation

if det A < 0. The subgroup of orientation preserving isometries is therefore

PSL2(R) ^ SL2(M)/{±Id}.
Geodesies in the hyperbolic plane are euclidean half circles orthogonal to the

real axis or euclidean vertical lines (see Fig. 2). The hyperbolic distance between

points x + iy0 and x + iy\ on a vertical geodesic is

log Zi
To

Apart from geodesies, horocycles will play an important role. They are the

limiting case of circles as the radius tends to infinity. Equivalently, horocycles
are complete curves of curvature 1. In the half-space model, horocycles are

represented as euclidean circles that are tangent to the real line, or as horizontal
lines. The center of a horocycle is the point of tangency with the real line, or oo

for horizontal horocycles.

The points on the real axis and oo e CP1 are called ideal points. They do

not belong to the hyperbolic plane, but they correspond to the ends of geodesies.

All horocycles centered at an ideal point x e R U {oo} intersect all geodesies

ending in x orthogonally. In the proof of Proposition 8.1, we will use the fact
that two horocycles centered at the same ideal point are equidistant curves.

Figure 2

Geodesies and horocycles
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5. Dictionary: Horocycle - 2D vector

We assign a horocycle h(p,q) to every (p, q) e R2 \ {(0,0)} as follows (see

Fig. 2):

• For q ^ 0, let h{p,q) be the horocycle at ^ with euclidean diameter

• Let h(p, 0) be the horocycle at oo at height p2.

The map (p,q) m* h(p, q) from R2\{0} to the space of horocycles is surjective
and two-to-one, mapping ±(p,q) to the same horocycle. The map is equivariant
with respect to the PGL2(R)-action [24, p. 665]. More precisely:

Proposition 5.1 (Equivariance). For A e GL2(R) satisfying ] det 4| 1 and for
v e I2 \ {0}, the hyperbolic isometry Ma maps the horocycle h(v) to h{Av).

Proof. This can of course be shown by direct calculation. To simplify the

calculations, note that every isometry of H2 can be represented as a composition
of isometries of the following types:

(22) z z + h, m Az, z —z, zh>1
z

(where be R, A 6 R>o). The corresponding normalized matrices are

» (: :)• >•<) f; (; :)

(The first two maps preserve orientation, the other two reverse it.) It is therefore

enough to do the simpler calculations for these maps. (For the inversion, Fig. 3

indicates an alternative geometric argument, just for fun.)
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6. Signed distance of two horocycles

The signed distance d{h\, h2) of horocycles hi, h2 is defined as follows (see

• If hi and h2 are centered at different points and do not intersect,
then d(h[, h2) is the length of the geodesic segment connecting the horocycles
and orthogonal to both. (This is just the hyperbolic distance between the

horocycles.)

• If hi and h2 do intersect, then d(h\, h2) is the length of that geodesic

segment, taken negative. (If h\ and h2 are tangent, then d(h\ ,h2) 0.)

• If hi and h2 have the same center, then d{h\, h2) —oo.

Remark 6.1. If horocycles hi, h2 have the same center, they are equidistant
curves with a well defined finite distance. But their signed distance is defined to
be —oo. Otherwise, the map (hi,h2) d{hi,h2) would not be continuous on
the diagonal.

Proposition 6.2 (Signed distance of horocycles). The signed distance of two

horocycles hi — h{pi,qi) and h2 h(p2,q2) is

Proof. It is easy to derive equation (24) if one horocycle is centered at oo (see

Fig. 2). To prove the general case, apply the hyperbolic isometry

Fig. 4):

Figure 4

The signed distance of horocycles

(24) d(hi,h2) — 2log \piq2 p2qi I•

that maps one horocycle center to oo and use Proposition 5.1.
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7. Ford circles and Farey tessellation

Figure 5 shows the horocycles h(p,q) with integer parameters (/;, q) e Z2.
There is an infinite family of such integer horocycles centered at each rational
number and at oo. (Only the lowest horocycle centered at oo is shown to save

space.) Integer horocycles h(p\,qi) and h(p2,q2) with different centers

do not intersect. This follows from Proposition 6.2, because piq2 — p2q\ is a

non-zero integer. They touch if and only if p\q2 — p2q\ ±1. This can happen

only if both {pi,q\) and (p2,q2) are coprime, that is, if ~ and ~ are reduced

fractions representing the respective horocycle centers.

Figure 6 shows the horocycles h(p,q) with integer and coprime parameters

(p,q). They are called Ford circles. There is exactly one Ford circle centered

at each rational number and at 00. If one connects the ideal centers of tangent
Ford circles with geodesies, one obtains the Farey tessellation, which is also

shown in the figure. The Farey tessellation is an ideal triangulation of the

hyperbolic plane with vertex set Q U {00}. (A thorough treatment can be found

in [7].)

Figure 5

Horocycles h(p,q) with integer parameters (p,q) Z2

Figure 6

Ford circles and Farey tessellation
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We will see that Markov triples correspond to ideal triangulations of the

hyperbolic plane (as universal cover of the modular torus), and (1,1,1) corresponds
to the Farey tessellation (Sec. 11). The Farey tessellation also comes up when one
considers the minima of definite quadratic forms (Sec. 16).

8. Signed distance of a horocycle and a geodesic

For a horocycle h and a geodesic g, the signed distance d(h,g) is defined

as follows (see Fig. 7):

• If h and g do not intersect, then d(h,g) is the length of the geodesic

segment connecting h and g and orthogonal to both. (This is just the

hyperbolic distance between h and g.)

• If h and g do intersect, then d(h,g) is the length of that geodesic segment,
taken negative.

• If h and g are tangent then d(h,g) — 0.

• If g ends in the center of h then d(h,g) —oo.

h

The signed distance d d(h,g) of a horocycle h and a geodesic g

An equation for the signed distance to a vertical geodesic is particularly easy
to derive:

Proposition 8.1 (Signed distance to a vertical geodesic). Consider a horocycle
h — h(p,q) with q f 0 and a vertical geodesic g from x E to oo. Their

signed distance is

(25) d(h,g) log (lq2\x - -|).

Proof. See Fig. 8.
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<?

Figure 8

Signed distance of horocycle h h(p,q) and vertical geodesic g

Equation (25) suggests a geometric interpretation of Hurwitz's theorem and the

Diophantine approximation version of Markov's theorem: A fraction £ satisfies

inequality (2) if and only if

(26) d(h{p,q),g) <- log ^

The following section contains a proof of Hurwitz's theorem based on this
observation. An equation for the signed distance to a general geodesic will be

presented in Proposition 10.1.

9. Proof of Hurwitz's theorem

Let x be an irrational number and let g be the vertical geodesic from x
to oo. By Proposition 8.1, part (i) of Hurwitz's theorem is equivalent to the

statement:

Infinitely many Ford circles h satisfy

V5
(27) d(h,g) < — log

This follows from the following lemma. Let us say that the midpoint of an

edge of the Farey tessellation is the point where the horocycles centered at its
ends meet (see Fig. 6). Accordingly, we say that a geodesic bisects an edge of
the Farey tessellation if it passes through the midpoint of the edge (see Fig. 9).

Lemma 9.1. Suppose a geodesic g crosses an ideal triangle T of the Farey
tessellation. If g is one of the three geodesies bisecting two sides of T, then

d(h, g) - log —
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1 VS A 1 I 1 I V5 _ (K
2 2~~

U 2
1

2 5 2~~

Figure 9

Geodesic gi bisecting the two vertical sides of the

triangle 0, l,oo, and geodesic g from <t> to oo

for all three Ford circles h at the vertices of T. Otherwise, inequality (27) holds

for at least one of these three Ford circles.

Proof of Lemma 9.1. This is the simplest case of Propositions 13.2 and 13.4, and

easy to prove independently. Note that it is enough to consider the ideal triangle
0, 1, oo, and geodesies intersecting its two vertical sides (see Fig. 9).

To deduce part (i) of Hurwitz's theorem, note that since x is irrational,
the geodesic g from x to oo passes through infinitely many triangles of the

Farey tessellation. For each of these triangles, at least one of its Ford circles
h satisfies (27), by Lemma 9.1. (The geodesic g does not bisect two sides of
any Farey triangle. Otherwise, g would bisect two sides of all Farey triangles
it enters; see Fig. 9, where the next triangle is shown with dashed lines. This
contradicts g ending in the vertex oo of the Farey tessellation.)

For consecutive triangles that g crosses, the same horocycle may satisfy (27).
But this can happen only finitely many times (otherwise x would be rational),
and then the geodesic will never again intersect a triangle incident with this

horocycle. Hence, infinitely many Ford circles satisfy (27), and this completes
the proof of part (i).

To prove part (ii) of Hurwitz's theorem, we have to show that for

x 4> and e > 0,

only finitely many Ford circles h satisfy

(28) d{h,g)<- log^-e,
where g is the geodesic from 4> to oo.
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To this end, let gi be the geodesic from $ 1(1 + V5) to ^(1 — V5), see

Fig. 9. For every Ford circle h,

V5
d{h,gi) > - log—.

Indeed, the distance is equal to — log ~ for all Ford circles that gi intersects,
and positive for all others.

Because the geodesies g and g\ converge at the common end O, there is

a point Peg such that all Ford circles h intersecting the ray from P to 4>

satisfy
\d(g, 4>) — d(gi, <I>)| < e,

and hence
V5

d(g,$) > - log — -e.
On the other hand, the complementary ray of g, from f to oo, intersects only
finitely many Ford circles. Hence, only finitely many Ford circles satisfy (28),
and this completes the proof of part (ii).

Remark 9.2. The gist of the above proof is deducing Hurwitz's theorem from
the fact that the geodesic g from an irrational number x to oo crosses infinitely
many Farey triangles. A weaker statement follows from the observation that g
crosses infinitely many edges. Since each edge has two touching Ford circles at

the ends, a crossing geodesic intersects at least one of them. Hence there are

infinitely many fractions satisfying (2) with A 2. In fact, at least one of any
two consecutive continued fraction approximants satisfies this bound. This result
is due to Vahlen [58, p. 41] [72], The converse is due to Legendre [45] and 65

years older: If a fraction satisfies (2) with A — 2, then it is a continued fraction

approximant. A geometric proof using Ford circles is mentioned by Speiser [70]
(see Sec. 1).

10. Dictionary: Geodesic - indefinite form

We assign a geodesic g(f) to every indefinite binary quadratic form /
with real coefficients as follows: To the form / with real coefficients A, B,
C as in (11), we assign the geodesic g(f) that connects the zeros of the

polynomial (13). (If 4 0, one of the zeros is oo, and g(f) is a vertical

geodesic.) The map / h> g(f) from the space of indefinite forms to the space
of geodesies is

• surjective and many-to-one: g(f) g(f) f ~ ßf for some ß e IB.*.
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equivariant with respect to the left GL2(R) -actions:

/ 1 » / °

AeGL2(R)

g(f) I

MA
> M4S(/) *(/ ° ^)

Proposition 10.1. 77ze signed distance of the horocycle h(p,q) and the
geodesic g(f is

(29) d(h{p, q), g(f)) log -

y/— det /
Proof. First, consider the case of horizontal horocycles (q 0). If g(/) is

a vertical geodesic (f(p, 0) 0), equation (29) is immediate. Otherwise, note
that p2,/— det //1 /"(/?, 0) | is half the distance between the zeros (14), hence the

height of the geodesic.
The general case reduces to this one: For any A e GL2(R) with |det/4| 1

and A(*) (p),

d(h{p,q),g{f)) d(MAh(p,q),MAg(f)) d(h(p,0),g(f or1))
,„J(/o^-')(y.0)| ,„c

I/Om)! q
V/-det(/ or1) y/-det/

Equation (29) suggests a geometric interpretation of the quadratic forms version

of Markov's theorem, and it is easy to prove most of Korkin & Zolotarev's
theorem (just replace inequality (16) with M(f) c -2=) by adapting the proof
of Hurwitz's theorem in Sec. 9. To obtain the complete Markov theorem, more

hyperbolic geometry is needed. This this is the subject of the following sections.

11. Decorated ideal triangles

In this and the following section, we review some basic facts from Penner's

theory of decorated Teichmüller spaces [55, 56]. The material of this section, up
to and including equation (30) is enough to treat crossing geodesies in Sec. 13.

Ptolemy's relation is needed for the geometric interpretation of Markov's equation
in Sec. 12.

An ideal triangle is a closed region in the hyperbolic plane that is bounded

by three geodesies (the sides) connecting three ideal points (the vertices). Ideal

triangles have dihedral symmetry, and any two ideal triangles are isometric. That

is, for any pair of ideal triangles and any bijection between their vertices, there is
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Figure 10

Decorated ideal triangle in the Poincaré disk
model (left) and in the half-plane model (right)

a unique hyperbolic isometry that maps one to the other and respects the vertex

matching. A decorated ideal triangle is an ideal triangle together with a horocycle
at each vertex (Fig. 10).

Consider a geodesic decorated with two horocycles hi, h2 at its ends (for
example, a side of an ideal triangle). Let the truncated length of the decorated

geodesic be defined as the signed distance of the horocycles (Sec. 6),

a d(hi,h2),

and let its weight be defined as

a eal2.

(We will often use Greek letters for truncated lengths and Latin letters for weights.
The weights are usually called X-lengths.)

Any triple (ct\,a2,a3) e M 3 of truncated lengths, or, equivalently, any triple
(1a\,a2,a-i) e M30 of weights, determines a unique decorated ideal triangle up to

isometry.
Consider a decorated ideal triangle with truncated lengths ak and weights ak.

Its horocycles intersect the triangle in three finite arcs. Denote their hyperbolic
lengths by ck (see Fig. 10). The truncated side lengths determine the horocyclic
arc lengths, and vice versa, via the relation

(30) ck — ei
UiUj

where (i,j,k) is a permutation of (1,2,3). (For a proof, contemplate Fig. 10.)
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Now consider a decorated ideal quadrilateral as shown in Fig. 11. it can be

decomposed into two decorated ideal triangles in two ways. The six weights a,
b, c, d, e, f are related by the Ptolemy relation

(31) ef ac + bd.

It is straightforward to derive this equation using the relations (30).

Figure 11 Figure 12

Ptolemy relation Triangulations T and T' of a punctured torus

12. Triangulations of the modular torus and Markov's equation

In this section, we review Penner's 155, 56] geometric interpretation of
Markov's equation (4), which is summarized in Prop. 12.1. The involutions

were defined in Sec. 2, see equation (7). The modular torus is the orbit space

M H2/G,

where G is the group of orientation preserving hyperbolic isometries generated

by

(32) A(z)
Z 1

B{z)
—z + 2 z + 2

Figure 13 shows a fundamental domain. The group G is the commutator subgroup
of the modular group PSL2(Z), and the only subgroup of PSL2(Z) that has a once

punctured torus as orbit space. It is a normal subgroup of PSL2CZ) with index

six, and the quotient group PSL2(Z)/G is the group of orientation preserving
isometries of the modular torus M. It is also symmetric with respect to six

reflections, so the isometry group has in total twelve elements.
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-1 0 1

Figure 13

The modular torus

Proposition 12.1 (Markov triples and ideal triangulations), (i) A triple x — (a,h,c)
ofpositive integers is a Markov triple if and only if there is an ideal triangulation
of the decorated modular torus whose three edges have the weights a, h, and

c. This triangulation is unique up to the \2-fold symmetry of the modular torus.

(ii) If T is an ideal triangulation of the decorated modular torus with edge

weights x (a,b,c), and if T' is an ideal triangulation obtained from T by

performing a single edge flip, then the edge weights of T' are x' o^x, with
k e {1,2,3} depending on which edge was flipped.

To understand the logical connections, it makes sense to consider not only the

modular torus but arbitrary once punctured hyperbolic tori.

A once punctured hyperbolic torus is a torus with one point removed, equipped
with a complete metric of constant curvature —1 and finite volume. For example,
one obtains a once punctured hyperbolic torus by gluing two congruent decorated

ideal triangles along their edges in such a way that the horocycles fit together.

Conversely, every ideal triangulation of a hyperbolic torus with one puncture
decomposes it into two ideal triangles.

A decorated once punctured hyperbolic torus is a once punctured hyperbolic
torus together with a choice of horocycle at the cusp. Thus, a triple of weights

(a,b,c) e determines a decorated once punctured hyperbolic torus up to

isometry, together with an ideal triangulation. Conversely, a decorated once

punctured hyperbolic torus together with an ideal triangulation determines such

a triple of edge weights.

Consider a decorated once punctured hyperbolic torus with an ideal triangulation

T with edge weights (a,b,c) e R>0 • By equation (30), the total length of
the horocycle is
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This equation is equivalent to

a2 + h2 + c2 - abc.
2

Thus, the weights satisfy Markov's equation (4) (not considered as a Diophantine
equation) if and only if the horocycle has length I — 6. From now on, we assume

that this is the case: We decorate all once punctured hyperbolic tori with the

horocycle of length 6.

Let T' be the ideal triangulation obtained from T by flipping the edge

with weight a, i.e., by replacing this edge with the other diagonal in the ideal

quadrilateral formed by the other edges (see Fig. 12). By equation (6) and Ptolemy's
relation (31), the edge weights of T' are (a',h,c) oi(a,b,c). Of course, one
obtains analogous equations if a different edge is flipped.

The modular torus M, decorated with a horocycle of length 6, is obtained by

gluing two decorated ideal triangles with weights (1,1,1). Lifting this triangulation
and decoration to the hyperbolic plane, one obtains the Farey tessellation with
Ford circles (Fig. 6). This implies that for every Markov triple (a,b,c) there is

an ideal triangulation of the decorated modular torus with edge weights a, b, c.
To see this, follow the path in the Markov tree leading from (1,1,1) to (a,b,c)
and perform the corresponding edge flips on the projected Farey tessellation.

On the other hand, the flip graph of a complete hyperbolic surface with

punctures is also connected [34] [54, p. 36ff], The flip graph has the ideal

triangulations as vertices, and edges connect triangulations related by a single
edge (lip. (Since we are only interested in a once punctured torus, invoking this

general theorem is somewhat of an overkill.) This implies the converse statement:

If a, b, c are the weights of an ideal triangulation of the modular torus, then

(ia,h,c) is a Markov triple.
Note that there is only one ideal triangulation of the modular torus with

weights (1,1,1), i.e., the triangulation that lifts to the Farey tessellation. The

symmetries of the modular torus permute its edges. Since the Markov tree and

the flip graph are isomorphic, this implies that two triangulations with the same

weights are related by an isometry of the modular torus. Altogether, one obtains

Proposition 12.1.

13. Geodesies crossing a decorated ideal triangle

For the proof of Markov's theorem in Sec. 15, we need to know how far a

geodesic crossing a decorated ideal triangle can stay away from the horocycles at
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the vertices. To prove Hurwitz's theorem (see Sec. 9), it was enough to consider

a triangle decorated with pairwise tangent horocycles. In this section, we consider
the general case, more precisely, the following geometric optimization problem:

Problem 13.1. Given a decorated ideal triangle with two sides, say a\ and a2,
designated as "legs", and the third side, say a3, designated as "base". Find, among
all geodesies intersecting both legs, a geodesic that maximizes the minimum of
signed distances to the three horocycles at the vertices.

It makes sense to consider the corresponding optimization problem for
euclidean triangles: Which straight line crossing two given legs has the largest
distance to the vertices? The answer depends on whether or not an angle at the

base is obtuse. For decorated ideal triangles, the situation is completely analogous.
We say that a geodesic bisects a side of a decorated ideal triangle if it intersects

the side in the point at equal distance to the two horocycles at the ends of the

side.

Proposition 13.2. Consider a decorated ideal triangle with horocycles hi, h2,

lis, and let ai, a2, a2 denote both the sides and their weights {see Fig. 14 for
notation).

(i) If
(33) a\ < a\ + a\ and a\ < a\ + a\,

then the geodesic g bisecting the sides a \ and a2 is the unique solution of
Problem 13.1.

(ii) If, for (j,k) e {(1,2), (2,1)},

(34) aj>a\+a\,
then the perpendicular bisector g' of side ak is the unique solution of
Problem 13.1. In this case, the minimal distance is attained for hj and /z3,

(35) d(h,, g') d(h3, g') °^< d{hk,g').

In the proof of Markov's theorem (Sec. 15), the base a3 will always be a

largest side, so only part (i) of Proposition 13.2 is needed. We will also need some

equations for the geodesic bisecting two sides, which we collect in Proposition 13.4.

Proof of Proposition 13.2. 1. The geodesic g has equal distance from all three

horocycles. Indeed, because of the 180° rotational symmetry around the
intersection point, any geodesic bisecting a side has equal distance from the two
horocycles at the ends.
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2. For k e {1,2,3} let be the foot of the perpendicular from vertex Vk to
the geodesic g bisecting u\ and a2 (see Fig. 14). If P3 lies strictly between Pj
and P2 (as in Fig. 14, left), then g is the unique solution of Problem 13.1. Any
other geodesic crossing a i and a2 also crosses at least one of the rays from P^

to Vk, and is therefore closer to at least one of the horocycles.

3. If P\ lies strictly between P3 and P2 (as in Fig. 14, right) then the unique
solution of Problem 13.1 is the perpendicular bisector of a2. Its signed distance

to the horocycles h\ and h3 is half the truncated length of side a2. Any other

geodesic crossing a2 is closer to at least one of its horocycles. The signed distance

of g and the horocycle h2 is larger. The case when Pi lies strictly between P3

and P2 is treated in the same way.

5. If P2 P3 (or l'i P3 then the geodesic g with equal distance to all

horocycles is simultaneously the perpendicular bisector of side a2 (or a \

6. It remains to show that the order of the points Pk on g depends on whether
the weights satisfy the inequalities (33) or one of the inequalities (34). To this
end, let ,s'i be the distance from the side a\ to the ray P3v3, measured along the

horocycle h3 in the direction from ci\ to a2 Similarly, let s2 be the distance

from the side a2 to the ray P3v3, measured along the horocycle h3 in the

direction from a2 to ci\. So .vj and s2 are both positive if and only if P3 lies

strictly between Pi and P2. But if, for example, Pi lies between P3 and P2 as

in Fig. 14, right, then s2 < 0. By symmetry, .vi is also the distance from ci\ to

P2v2, measured along h2 in the direction away from a3. Similarly, s2 is also

the distance between a2 and P\V\ along h\. Finally, let s3 > 0 be the equal
distances between a3 and P\V\ along h\, and between u3 and P2v2 along h2.
Now

ci —s2 + s3, c2 —si 4- s3, c3 s\ + s2

implies

(30) a 1 a2 a3 aj-aj+aj(36) 2.s'i =ci-c2 + c3 1 —
a2a3 a3a\ aia2 (i\a2a3

and similarly

_ a\ + a22+a23
'2

axa2a3

Hence, P3 lies in the closed interval between Pi and P2 if and only if
inequalities (33) are satisfied. The other cases are treated similarly.

Remark 13.3. The above proof of Proposition 13.2 is nicely intuitive. A more
analytic proof may be obtained as follows. First, show that for all geodesies
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intersecting ax and a2, the signed distances u\, u2, u3 to the horocycles satisfy
the equation

It makes sense to consider the special case ci\ a2 — a3 1 first, because

the general equation (37) can easily be derived from the simpler one. Then

consider the necessary conditions for a local maximum of min(wi, u2, uf) under
the constraint (37): If a maximum is attained with wi u2 u3, then the three

partial derivatives of the left hand side of (37) are all >0 or all < 0. If a

maximum is attained with wi u2 < w3, then this sign condition holds for the

first two derivatives, and similarly for the other cases.

Proposition 13.4. Let g be the geodesic bisecting sides ci\ and a2 of a decorated

ideal triangle as shown in Fig. 14. (Inequalities (33) may hold or not.) Then the

common signed distance of g and the horocycles is

(37) (cjMi + c2u2 + C31/3)2 — Ac\c2u\u2 — 4 0

d(hi,g) d(h2,g) d(h3,g) - log r,

where

(38)

and S is the sum of the lengths of the horocyclic arcs,

(39) s _ _ a\ a2
0 — Ci + c2 + C3 — 1 1

a2a3 a3ai a\a2

Moreover, suppose the vertices are

(40) Vi < v2, V3 00,

and the horocycle h3 has height 1. Then the ends x\t2 of g are

(41) xi>2 x0 ± r,

where

(42)
a3a\ 2

Proof. Assuming (40) and h3 h(1,0), let xo v2 — s 1. Then the proposition
follows from (36), some easy hyperbolic geometry, Pythagoras' theorem, and

simple algebra (see Fig. 14).
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14. Simple closed geodesies and ideal arcs

In this section, we collect some topological facts about simple closed geodesies
and ideal arcs that we will use in the proof of Markov's theorem (Sec. 15). They

are probably well known, but we indicate proofs for the reader's convenience.

An ideal arc in a complete hyperbolic surface with cusps is a simple geodesic

connecting two punctures or a puncture with itself. The edges of an ideal

triangulation are ideal arcs, and every ideal arc occurs in an ideal triangulation.
(In fact, ideal triangulations are exactly the maximal sets of non-intersecting ideal

arcs.) Here, we are only interested in a once punctured hyperbolic torus. In this

case, every ideal triangulation containing a fixed ideal arc can be obtained from

any other such triangulation by repeatedly flipping the remaining two edges. Ideal

arcs play an important role in the following section because they are in one-

to-one correspondence with the simple closed geodesies (Proposition 14.1), and

the simple closed geodesies are the geodesies that stay farthest away from the

puncture (Proposition 15.1).

Proposition 14.1. Consider a fixed once punctured hyperbolic torus.

(i) For every ideal arc c, there is a unique simple closed geodesic g that does

not intersect c.

(ii) Every other geodesic not intersecting c has either two ends in the puncture,
or one end in the puncture and the other end approaching the closed geodesic

8-

(iii) If a, b, c are the edges of an ideal triangulation T, then the simple closed

geodesic g that does not intersect c intersects each of the two triangles of
T in a geodesic segment bisecting the edges a and b.

(iv) For every simple closed geodesic g, there is a unique ideal arc c that does

not intersect g.

Remark 14.2. Speaking of edge midpoints implies an (arbitrary) choice of a

horocycle at the cusp. In fact, the edge midpoints of a triangulated once punctured
torus are distinguished without any choice of triangulation. They are the three

fixed points of an orientation preserving isometric involution. Every ideal arc

passes through one of these points.

Proof (i) Cut the torus along the ideal arc c. The result is a hyperbolic cylinder
as shown in Fig. 15 (left). Both boundary curves are complete geodesies with
both ends in the cusp, which is now split in two. There is up to orientation
a unique non-trivial free homotopy class that contains simple curves, and

this class contains a unique simple closed geodesic.
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Figure 15

Cutting a punctured torus along an ideal arc

(left) and along a simple closed geodesic (right).

(ii) Consider the universal cover of the cylinder in the hyperbolic plane.

(iii) An ideal triangulation of a once punctured torus is symmetric with respect to
a 180° rotation around the edge midpoints. (This is the involution mentioned

in Remark 14.2.) It swaps the geodesic segments bisecting edges a and b in
the two ideal triangles, so they connect smoothly. Hence they form a simple
closed geodesic, which does not intersect c.

(iv) Cut the torus along the simple closed geodesic g. The result is a cylinder
with a cusp and two geodesic boundary circles, as shown in Fig. 15 (right).
Fill the puncture and take it as base point for the homotopy group. There

is up to orientation a unique non-trivial homotopy class containing simple
closed curves and this class contains a unique ideal arc.

15. Proof of Markov's theorem

In this section, we put the pieces together to prove both versions of
Markov's theorem. The quadratic forms version follows from Proposition 15.1.

The Diophantine approximation version follows from Proposition 15.1 together
with Proposition 15.2.

Two geodesies in the hyperbolic plane are GL2CZ) -related if, for some
A e GL2(Z), the hyperbolic isometry Ma maps one to the other.

Proposition 15.1. Let g be a complete geodesic in the hyperbolic plane, and let

Tt (g) be its projection to the modular torus. Then the following three statements

are equivalent:
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(a) n{g) is a simple closed geodesic.

(b) There is a Markov triple (a,h,c) so that for one (hence any) choice of
integers p\, P2 satisfying (8), the geodesic g is GL2(Z) -related to the

geodesic ending in xo ± r with xo and r defined by (18) and (19).

(c) The greatest lower bound for the signed distances of g and a Ford circle is

greater than — log |.
If g satisfies one (hence all) of the statements (a), (b), (c), then

(d) the minimal signed distance of g and a Ford circle is — log r,
(e) among all Markov triples (a,b,c) that verify (b), there is a unique sorted

Markov triple.

Proof, "(a) =4> (b)": If n(g) is a simple closed geodesic, then there is a unique
ideal arc c not intersecting it(g) (Proposition 14.1 (iv)). Pick an ideal triangulation
T of the modular torus that contains c, and let a and h be the other edges.

By Proposition 12.1, (a,b,c) is a Markov triple. (We use the same letters to

denote both ideal arcs and their weights.) The geodesic jr(g) intersects each

of the two triangles of T in a geodesic segment bisecting the edges a and b

(Proposition 14.1 (iii)).
Now let pi, p2 be integers satisfying (8) and consider the decorated ideal

triangle in H2 with vertices

sais P! P2
(43) vi — —, v2 —, u3 oo,

b a

and their respective Ford circles

(44) hi h(pi,b), h2 h(p2,a), h3 h{1,0).

Such integers pi, p2 exist because the numbers a, b, c of a Markov triple are

pairwise coprime. Moreover, this implies that the fractions in (43) are reduced, and

Vi and v2 are determined up to addition of a common integer. By Proposition 6.2,

this decorated ideal triangle has edge weights

(45) ai a, a2 b, a2 c

(see Fig. 14 for notation).
Conversely, every ideal triangle viv2v3 with i;3 oo and rational vj, v2,

that is decorated with the respective Ford circles, has weights (45), and satisfies

üi < v2 is obtained this way. (To get the triangles with v\ > v2, change c to —c

in equation (8).) This implies that any lift of a triangle of T to the hyperbolic
plane is GL2(Z)-related to v\v2v2 Use Proposition 13.4 with 8 3 to deduce

that g is GL2(Z)-related to the geodesic ending in x0 ±r.



366 B. Springborn

"(b) =>• (d)": Let f be the lift of the triangulation T to H2. The geodesic g
crosses an infinite strip of triangles of T. By Proposition 13.4, the signed distance

of g and any Ford circle centered at a vertex incident with this strip is — logr.
We claim that the signed distance to any other Ford circle is larger. To see this,
consider a vertex ueQU {00} that is not incident with the triangle strip, and

let p be a geodesic ray from r to a point peg. Note that the projected ray
n(p) intersects n(g) at least once before it ends in n(p), and that the signed
distance to the first intersection is at least — log r.

"(b) A (d) => (c)": This follows directly from r — yj| — ^ < |.
"(c) =4- (a)": We will show the contrapositive: If the geodesic g does not project
to a simple closed geodesic, then there is a Ford circle with signed distance

smaller than — log| +e, for every e > 0.
There is nothing to show if at least one end of g is in Q U {00} because

then the Ford circle at this end has signed distance —00. So assume g does not

project to a simple closed geodesic and both ends of g are irrational.
We will recursively define a sequence (Tn)n>0 of ideal triangulations of the

modular torus, with edges labeled an, bn, cn, such that the following holds:

(1) The geodesic rt(g) has at least one pair of consecutive intersections with
the edges an, bn.

(2) The edge weights, which we also denote by an, bn, cn, satisfy

Un < hn < c„,

so that (an,hn,cn) is a sorted Markov triple.

(3) c«+1 > cn

This proves the claim, because Propositions 13.2 and 13.4 imply that for each n,
there is a horocycle with signed distance to g less than —|log(| — ^), which
tends to — log | from above as n -» 00.

To define the sequence (Tn), let T0 be the triangulation with edge

weights (1,1,1), with edges labeled so that (1) holds.

Suppose the triangulation Tn with labeled edges is already defined for some

n > 0. Define the labeled triangulation Tn+1 as follows. Since n(g) is not a

simple closed geodesic, it intersects all three edges. Because g has an irrational
end (in fact, both ends are assumed to be irrational), there are infinitely many
edge intersections. Hence, there is pair of intersections with a„ and hn next to

an intersection with cn. If the sequence of intersections is anbncn, let Tn+l be

the triangulation with edges

(Un+1> bn+l> cn+l) — (fln> ^n> ^«)>



The hyperbolic geometry of Markov's theorem 367

and if the sequence is bnancn, let Tn+\ be the triangulation with

(<2/1 + 1 > ^/i+ l > C/i + l) {bn,cn,cin),

where a'n and b'n are the ideal arcs obtained by flipping the edges an or hn in

Tn, respectively. By induction on n, one sees that (1), (2), (3) are satisfied for
all n > 0.

"(a) A (b) => (e)": The Markov triples (a,b,c) verifying (b) are precisely the

triples of edge weights of ideal triangulations containing the ideal arc c not

intersecting n(g). The triangulations containing the ideal arc c form a doubly
infinite sequence in which neighbors are related by a single edge flip fixing c. In
this sequence, there is a unique triangulation for which the weight c is largest.

Proposition 15.2. Let g be a complete geodesic in the hyperbolic plane, and let
X C IR \ Q be the set of ends of lifts of simple closed geodesies in the modular
torus. Then the following two statements are equivalent:

(i) The ends of g are contained in <Q> U {oo} U X.

(ii) For some M > — log | there are only finitely many (possibly zero) Ford
circles h with signed distance d(g,h) < M.

Proof. "(i) => (ii)Consider the ends Xk of g, k {1,2}.
If Xk e Q U {oo}, then g contains a ray pk that is contained inside the Ford

circle at x^. In this case, let Mk 0.

If Xk e X, then Xk is also the end of a geodesic g that projects to a simple
closed geodesic in the modular torus. By Proposition 15.1, infd(h,g) > —log|,
where the infimum is taken over all Ford circles h. Since g and g converge
at Xk, there is a constant Mk > — log | and a ray pk contained in g and ending
in Xk such that d(h,pk) > Mk for all Ford circles h.

The part of g not contained in px or p2 is empty or of finite length, so it
can intersect the interiors of at most finitely many Ford circles. This implies (ii)
with M mm(M\, M2).

"(ii) =$ (i)": To show the contrapositive, assume (i) is false: At least one end

of g is irrational but not the end of a lift of a simple closed geodesic in the

modular torus. This implies that the projection jt(g) intersects every ideal arc in
the modular torus infinitely many times. Adapt the argument for the implication
"(c) => (a)" in the proof of Proposition 15.1 to show that there is a sequence of
horocycles (hn) and an increasing sequence of Markov numbers (cn) such that

d(g,hn) < — \ log (I —^). This implies that (ii) is false.
cn
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16. Dictionary: Point - definite form.
Spectrum, classification of definite forms,

and the Farey tessellation revisited

This section is about the hyperbolic geometry of definite binary quadratic forms.
Its purpose is to complete the dictionary and provide a broader perspective. This

section is not needed for the proof of Markov's theorem.

If the binary quadratic form (11) with real coefficients is positive or negative
definite, then the polynomial fix, 1) has two complex conjugate roots. Let z(/)
denote the root in the upper half-plane, i.e.,

^ -B + i Vdet /*(/) -A

This defines a map / i-> z(f) from the space of definite forms to the hyperbolic
plane H2. It is surjective and many-to-one (any non-zero multiple of a form is

mapped to the same point) and equivariant with respect to the left GL2(R) -actions.
The signed distance of a horocycle and a point in the hyperbolic plane is

defined in the obvious way (positive for points outside, negative for points inside

the horocycle). One obtains the following proposition in the same way as the

corresponding statement about geodesies (Proposition 10.1):

Proposition 16.1. The signed distance of the horocycle hip, q) and the point
z{f) e H2 is

(46) d (h(p, q), z(/)) log
ydet f

This provides a geometric explanation for the different behavior of definite

binary quadratic forms with respect to their minima on Z2:
For all definite forms /, the infimum (15) is attained for some ip,q) e Z2

and satisfies A/(/) - V3
All forms equivalent to p2 — pq + q2, and only those,

satisfy M(f) But for every positive number m < -^=, there are infinitely
many equivalence classes of definite forms with M(f m.

Algorithms to determine the minimum M( f) of a definite quadratic form /
are based on the reduction theory for quadratic forms. (The theory of equivalence
and reduction of binary quadratic forms is usually developed for integer forms, but

much of it carries over to forms with real coefficients.) The reduction algorithm
described by Conway 115] has a particularly nice geometric interpretation based

on the following observation:

For a point in the hyperbolic plane, the three nearest Ford circles (in the

sense of signed distance) are the Ford circles at the vertices of the Farey triangle
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containing the point. (If the point lies on an edge of the Farey tessellation, the

third nearest Ford circle is not unique.)
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