Zeitschrift:	Helvetica Physica Acta
Band:	2 (1929)
Heft:	1
Artikel:	Bandenspektren der Quecksilber-, Cadmium- und Zinkhalogenide
Autor:	Wieland, Karl
DOI:	https://doi.org/10.5169/seals-109440

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise</u>.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 14.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bandenspektren der Quecksilber-, Cadmium- und Zinkhalogenide¹) von K. Wieland.

(24. XII. 28.)

Die Spektren von HgJ₂, HgBr₂, HgCl₂, CdJ₂, CdBr₂, CdCl₂, ZnJ₂, ZnBr₂, ZnCl₂ werden im Geisslerrohr bei hohen Temperaturen erregt und zwischen $\lambda\lambda$ 7000-2200 Å photographiert. Während zwischen $\lambda\lambda$ 6600-3600 Å nur diffuse, oft völlig kontinuierlich aussehende Bandenspektren auftreten, zeigen sich im Ultraviolett scharfkantige, meist nach Violett abschattierte Bandensysteme. Letztere lassen sich in zwei Klassen unterteilen, von denen die eine (I) den Deslandre'schen Gesetzen gehorcht, die andere (II) aber nicht.

Spektren der Klasse I werden zweiatomigen Molekülen zugeschrieben. HgCl und HgBr zeigen besonders schöne, nach Violett abschattierte Bandensysteme dieser Art (zwischen $\lambda\lambda 2700-2400$). Die zahlreichen Bandkanten lassen sich formelmässig wiedergeben, und zwar je für beide Halogenisotopen (HgCl³⁵ und HgCl³⁷, HgBr⁷⁹ und HgBr⁸¹). Bei HgBr wird ausserdem der Quecksilberisotopeneffekt nachgewiesen. Das entsprechende Spektrum von HgJ ist von einem nach Rot abschattierten Bandensystem überlagert, wodurch eine Einordnung verunmöglicht wird. CdJ, CdBr und ZnJ haben weniger ausgedehnte, aber formelmässig darstellbare Bandensysteme (zwischen $\lambda\lambda 3500-3100$). Bei ZnJ wird die Zinkisotopie festgestellt. CdCl, ZnCl und ZnBr zeigen keine oder nur schlecht ausgebildete Spektren der Klasse I.

Zu Klasse II gehörende, nach Violett abschattierte Bandensysteme treten bei HgJ₂, HgBr₂ und HgCl₂ auf (zwischen $\lambda\lambda$ 3100-2700), nach Rot abschattierte bei CdJ₂ und ZnJ₂ (zwischen $\lambda\lambda$ 2550-2250). Gewisse Gesetzmässigkeiten können vor allem bei HgJ₂ und CdJ₂ festgestellt werden. Sie deuten darauf hin, dass es sich um mehr als zwei-, wahrscheinlich dreiatomige Molekülspektren handelt.

Über die diffusen, im Sichtbaren gelegenen Banden (Spektren der Klasse III) wie solche alle 9 Halogensalze aufweisen, kann nicht viel ausgesagt werden.

§ 1. Einleitung.

Die 3 mal 3-Verbindungsspektren der Quecksilber-, Cadmiumund Zinkhalogenide (in chemischen Formeln HgJ₂, HgBr₂, HgCl₂; CdJ₂, CdBr₂, CdCl₂; ZnJ₂, ZnBr₂, ZnCl₂) sind bisher wenig oder gar nicht untersucht worden. Einige ungenaue Messungen an den im Geisslerrohr erzeugten Quecksilberhalogenidspektren stammen von Jones²), sehr viel sorgfältigere, aber mit Beschränkung auf Glasoptik, von LOHNMEYER³). Neuerdings hat TERENIN⁴) einige

4) A. TERENIN, Zeitschr. f. Phys. 44, 713, 1927.

- 46

¹) Eine vorläufige Mitteilung ist in den Helv. Phys. Acta (I, 442, 428) erschienen.

²) A. C. JONES, Wied. Ann. 62, 30, 1897.

³) J. LOHNMEYER, Zeitschr. f. wiss. Phot. 4, 367, 1904.

Bandensysteme der Quecksilber-, Cadmium- und Zinkhalogenide in Fluoreszenz beobachten können. Diese Spektren einer genaueren Untersuchung zu unterwerfen, schien mir daher lohnend.

Es gibt heutzutage eine ganze Reihe umfassender Abhandlungen über Bandenspektren¹), so dass sich hier eine gedrängte Form der Darstellung wohl rechtfertigt. Auf ergänzende Spezialliteratur wird im Laufe der Arbeit verwiesen werden.

§ 2. Apparatur.

Das Entladungsrohr. Nachdem sich die wegen spektroskopischer Reinheit bevorzugte elektrodenlose Ringentladung trotz aller Bemühungen als zu lichtschwach erwiesen hatte, wurde ein

Fig. 1. Das Geisslerrohr aus Quarz.

aus Quarz gefertigtes *Geisslerrohr* konstruiert²), das allen Anforderungen genügte. Figur 1 lässt links die Elektrodenzuführungen, (Normalschliffe Glas/Quarz), rechts, für sich, eine in Glas einge-

¹) Von neueren Darstellungen seien genannt: Report of the Nation. Research Council, Molecular Spectra in Gases (Dez. 1926). – R. MECKE, Bandenspektren I, Phys. Zeitschr. XXVI, 217, 1925; derselbe und M. GUILLERV, Bandenspektren II, ebenda XXVIII, 479 und 514, 1927. – W. MÖRIKOFER, Handbuch der physikal. Optik, herausgegeben von E. Gehrke, Bd. II, 2. Hälfte, 1. Teil, p. 419 (1927) u. a. m.

²) Unter freundl. Mithilfe von Dr. M. WEHRLI.

schmolzene Elektrode erkennen. Die hochvakuumdichten Glasdurchführungen sind mit Chromnickeldrähten¹) hergestellt worden, an die sich Eisenbölzchen leicht aufschrauben lassen. Photographiert wird in Richtung der (durch die Elektroden verdeckten) Kapillare. Die beiden Säcke dienen zur Aufnahme des zu untersuchenden Salzes und werden von unten durch Bunsenbrenner erhitzt, teilweise bis auf helle Rotglut. Zur Anregung der Entladung wurde ein grosses Klingelfuss-Induktorium verwendet, welchem Sekundärströme von über 0,1 Amp. entnommen werden können. Bei noch höheren, einer Gleichstrom-Hochspannungsmaschine entstammenden Stromstärken (bis 0,5 Amp.) tritt leicht Dissoziation der Salze ein. Ausserdem machen sich dann die von den Eisenelektroden emittierten Atomlinien störend bemerkbar.

Der Spektralapparat. Sämtliche Spektralaufnahmen sind mit dem nach Angaben von Prof. A. HAGENBACH konstruierten Universalspektrograph²) photographiert worden. Dieser gestattet mit einem Glasprisma konstanter Ablenkung (HEELE), mit einem oder drei Quarzprismen und schliesslich auch mit einem kleinen Rowland'schen Plangitter (bis in die 3. Ordnung) in Reflexion zu photographieren. Lichtstärke und Auflösungsvermögen sind dank erstklassigen Achromaten hervorragend. Die wesentlichen Daten des Spektralapparates finden sich in Tabelle 1 zusammengestellt. In der letzten Kolonne wird eine mittlere Expositionszeit für die in Frage kommenden Bandenspektren angegeben.

Optik	Günstiges Gebiet	Dispersion (Å/mm)	Exposition (in Min.)
Glasprisma	7000–4000Å	bei λ 6000 Å: 125 Å/mm ,, 4000 Å: 23 ,,	40 Minuten
Plangitter (2. Ordnung)	70003500\AA	bei λ 6000 Å: 22 ,, ,, 4000 Å: 22 ,,	120 ,,
1 Quarzprisma .	$4000 - 2200 \text{\AA}$	bei λ 3500 Å: 75 ,, ,, 2500 Å: 30 ,,	3 ,,
3 Quarzprismen .	4000–2200 Å	bei λ 3500 Å: 25 ,, ,, 2500 Å: 10 ,,	10 "

Tabelle 1.Universalspektrograph.

¹) Die Chromnickelstahldrähte sind uns von der Firma W. C. Heräus, Hanau (Deutschland), zur Verfügung gestellt worden, wofür ihr an dieser Stelle bestens gedankt sei.

²) A. HAGENBACH, Zeitschr. f. Instrumentenkunde 28, 369, 1908.

Da im sichtbaren Spektralgebiet nur diffuse Bandensysteme auftreten, sind fast ausschliesslich die mit drei Quarzprismen aufgenommenen Filme vermessen worden. Die durchschnittliche Genauigkeit dieser beträgt für scharfe Kanten und Linien $\pm 0,05$ Å.

Experimentelles. Im sichtbaren Spektralgebiet wurden teils panchromatische Lumièreplatten (Chroma VR), teils mit Pinachromblau¹) (für Rot-Gelb) oder mit Pinaverdol¹) (für Gelb-Grün) selbst sensibilisierte Hauffplatten benützt. Letztere waren merklich empfindlicher. Im Ultraviolett gelangten gewöhnliche Hauffplatten und Commercial Eastmann-Filme zur Verwendung. Als Vergleichsspektrum dienten die Eisenbogenlinien.

Zur spektroskopischen Untersuchung wurden die mit purissime bezeichneten, chemisch zweiwertigen Salze²) verwendet. (Die einwertigen Merkurosalze geben aber spektroskopisch dasselbe.)

Ausser den Bogenlinien des Metalls eines Salzes treten bei richtig getroffenen Verhältnissen in der Regel keine Verunreinigungen auf. Bei zu niederer Temperatur (unterhalb 200° C) erscheinen gern die Kohlenwasserstoffbanden, bei zu starker Erwärmung dissoziieren die Salze (Halogenlinien). Beides lässt sich vermeiden.

Dass tatsächlich sämtliche Bandensysteme Verbindungsspektren der untersuchten Metallhalogenide zuzuschreiben sind, wird dadurch wahrscheinlich gemacht, dass kein Bandensystem bei zwei verschiedenen Salzen (von den 9 hier untersuchten) auftritt. Dagegen emittiert jedes der 9 Halogensalze zwei oder drei verschiedene Bandenspektren. Die Zuordnung dieser Spektren, denen dasselbe chemische Salz (nämlich das zweiwertige MeHal₂) als Ausgangsmaterial zu Grunde liegt, zu verschiedenen Molekülträgern (Klasse I, II und III) basiert lediglich auf dem spektroskopischen Befund (vgl. § 3).

§ 3. Messungen und Resultate.

Eine Übersicht über die Spektren der 3 mal 3-Quecksilber-Cadmium und Zinkhalogenide zwischen $\lambda\lambda$ 7000–2300 Å ist in Tabelle 2 zusammengestellt.

Die Einteilung der Banden in drei Klassen I, II und III ist nach folgenden Gesichtspunkten vorgenommen worden. Bandensysteme der Klasse I genügen den Bandkantengesetzen³) zweiatomiger Moleküle (im folgenden dem MeHal zuerkannt), Ban-

¹) Von den Höchster Farbwerken (Frankfurt a/M.) bezogen.

²) Von der Firma E. Merck (Darmstadt) bezogen.

³) Auflösung in Bandenlinien wird nirgends beobachtet.

Salz	Bandensystem	Auss.1)	Absch.	Klasse	Bemerkung	Photogr. mit
HgJ_{2}	λ 4500~3400 3100-2800 2800-2650(?) 2700(?)2530	diff. s s	R? V V R	III II (I) ?	Lohnmeyer ²) zeigt Gesetzm. j überlagern sich gegenseitig	Gitter (3. Ord.) 1 und 3 Quarzpr.
HgBr_{2}	$5000 \sim 3200$ 2900-2650 2700-2450	$\operatorname{diff}_{s}_{s}$	R? V V	III II I	Lohnmeyer zeigt Gesetzm. analysiert	1 und 3 Quarzpr.
HgCl_{2}	$6000 \sim 3100$ 2800 - 2700 2650 - 2400	$_{s}^{\text{diff.}}$	$egin{array}{c} R \\ V \\ V \end{array}$	III II I	Lohnmeyer zeigt Gesetzm. analysiert	1 und 3 Quarzpr.
CdJ_2	$6600 \sim 3600$ 3500 - 3250 2550 - 2350	$\begin{array}{c} \text{diff.} \\ s \\ ms \end{array}$	$R \\ V \\ R$	III I II	analysiert zeigt Gesetzm.	Gitter (2 Ordn.)Glasprisma 1 und 3 Quarzpr.
CdBr ₂	ca. 6400~3300 3250—3100	diff.	R ? V	III I	analysiert	Hilger ³) 1 u. 3 Quarzpr.
CdCl ₂	ca. 6400~3300 (3400—3300)	diff. (s)	$R \\ V$	III (I)	von III überschattet	Hilger 1 u. 3 Quarzpr.
ZnJ_2	ca. 6400~3500 3350—3250 2450—2250	diff. s ms	$\begin{vmatrix} R \\ V \\ R \end{vmatrix}$	III I II	analysiert zeigt Gesetzm.	Hilger 1 und 3 Quarzpr.
ZnBr ₂	ca. 6400~3300 3100—2900	$\frac{\text{diff.}}{s}$	$R \\ V$	III (I)	(z. T. aufgelöst) linienartige Kanten	Hilger 1 u. 3 Quarzpr.
${ m ZnCl}_2$	ca. 6400~3200 (3100—2900)	diff. us	R V	III (I)	z. T. aufgelöst zweifelhaft	Hilger 1 u. 3 Quarzpr.

Tabelle 2.Übersicht über das Beobachtungsmaterial.

densysteme der Klasse II tun dies nicht, befolgen aber gewisse Gesetzmässigkeiten (im folgenden kurzweg dem dreiatomigen MeHal₂ zugeschrieben). Bandensysteme der Klasse III schliesslich lassen wegen allgemeiner Verwaschenheit keine quantitativen Gesetzmässigkeiten feststellen. Die drei Klassen von Spektren sind bei Quecksilberchlorid (Tafel I, Fig. 1) besonders schön ausgebildet, ohne gegenseitiges Übereinandergreifen.

Vorliegende Arbeit beschäftigt sich wesentlich mit den Spektren der Klasse I. Ergänzungsweise werden in einem weiteren Abschnitt II einige Gesetzmässigkeiten, die bei Banden der Klasse II aufgedeckt werden konnten, mitgeteilt. Über die dritte Klasse von Spektren lassen sich nur Bemerkungen allgemeiner Natur machen.

¹) Das Aussehen der Bandensysteme wird durch *s* (scharf), *ms* (mittelscharf), *us* (unscharf) und diff. (diffus) charakterisiert.

²) Verweist auf die Messungen von Lohnmeyer, loc. cit.

³) Im Hilger (D_2) beobachtet.

I. Bandensysteme der Klasse I (zweiatomige Spektren).

1. Quecksilberchlorid (HgCl). HgCl zeigt zwischen $\lambda\lambda$ 2650 bis 2380 Å ein nach Violett abschattiertes Bandensystem (Tafel I, Fig. 2), dessen sämtliche Bandkanten in Tabelle 3 zusammengestellt sind.

An über 40 Kanten kann die *Chlorisotopenaufspaltung* nachgewiesen werden. Für die stärkeren Kanten (HgCl³⁵) gilt folgende, empirisch aufgestellte Kantenformel:

$$\begin{split} v_{n',\ n''} = & 39700, 5 + 341, 4(n' + \frac{1}{2}) - 292, 5(n'' + \frac{1}{2}) - 1, 71(n' + \frac{1}{2})^2 \\ & + 1, 69(n'' + \frac{1}{2})^2 - 0, 0096(n' + \frac{1}{2})^3 + 0, 0092(n'' + \frac{1}{2})^3 \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split}$$

Dabei bedeuten ν die Frequenzwerte in Schwingungszahlen, n'und n'' die positiven, ganzen Oszillationsquantenzahlen der Anfangs- und Endterme.

Unter Benützung der Atomgewichte $M_1 = 35$, $M_2 = 37$ für Chlor und M' = 200,6 für Quecksilber wird der Isotopenkoeffizient¹)

$$arrho = rac{1}{2} \, rac{M' \, (M_{1} - M_{2})}{M_{2} \, (M' + M_{1})} - 1 = 0,9770 \; .$$

Die damit berechnete Kantenformel für HgCl³⁷ lautet:

$$v_{n', n''} = \frac{39700, 5 + 333, 5(n' + \frac{1}{2}) - 285, 8(n'' + \frac{1}{2}) - 1, 63(n'\frac{1}{2}) + {}^{2}}{+1, 61(n'' + \frac{1}{2})^{2} - 0,0090(n' + \frac{1}{2})^{3} + 0,0086(n'' + \frac{1}{2})^{3}}$$
 Hg Cl³⁷

Zur halbzahligen Quantennumerierung ist folgendes zu bemerken. Notwendig wird diese nur, wenn die (n' = 0, n'' = 0)Kante (im folgenden einfach (0,0) geschrieben) eine Isotopenaufspaltung zeigt, wie dies MULLIKEN an BO hat nachweisen können²). Seitdem WOLDERING auch bei SiN³), das anfänglich als Gegenbeispiel gegolten hat⁴), bessere Übereinstimmung mit halben Quantenzahlen, nirgends aber das Gegenteil gefunden hat, wird man diesen den Vorzug geben.

Bei HgCl zeigt die (0,0) Kante eine deutliche Aufspaltung von -3ν (39724,0-39727,0). Die berechnete Isotopendifferenz dürfte aber nur $\Delta \nu_{0,0} = \nu^{37} - \nu^{35} = -0,6$ betragen, eine mit der verwendeten Apparatur nicht mehr auflösbare Grösse. Die beobachtete Aufspaltung der (0,0) Kante kann also nicht durch halb-

¹) R. S. MULLIKEN, Phys. Rev. (2) **25**, 119, 1925.

²) R. S. MULLIKEN, Phys. Rev. (2) 25, 137, 1925.

³⁾ E. Woldering, Naturw. 15, 265, 1927.

⁴) R. S. MULLIKEN, Phys. Rev. (2) 26, 319, 1926.

Tabelle 3. HgCl.

n', n" bedeuten die Oszillationsquantenzahlen, J die Intensität (okular geschätzt), S die Schärfe einer Kante (s = scharf, ms = mittelscharf, us = unscharf), λ die Wellenlänge in I. A., v die Schwingungszahl (nach Kaysers Tabelle), Max. die Differenz zwischen Bandenmaximum und Kante (in v), beob.—ber. die Differenz zwischen den beobachteten und den berechneten v, $v^{37}-v^{35}$ die Chlorisotopenaufspaltung. Alle Werte beziehen sich auf die Kanten. Kann bei einigen HgCl(37) Banden nur das Maximum ermittelt werden (durch \wedge markiert), so sind die betr. v und λ um die Differenz Maximum—Kante der entspr. HgCl(35) Bande korrigiert worden. In [x, y] bedeutet x = n', y = n''.

n'	n''	J	S	λ(I. Å.)	ν HgCl(35)	Max.	beob. – be r .	J	S	λ.	v HgCl(37)	Max.	beob. – ber.	<i>v</i> ³⁷ - beob.	- v ³⁵ ber.	Bemerkung
$\frac{5}{6}$	13 14	0 00	us us	$2637,35\31,65$	37 905,5 987,5	(+3)	-1 + 2									
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{array}$	us us ms ms s ms	$26 \ 36,1 \\ 30,95 \\ 25,8 \\ 20,4 \\ 15,2 \\ 09,9$	$\begin{array}{r} 37\ 923,5\\998,0\\38\ 072,5\\150,5\\226,5\\304.0\end{array}$	(+5)	$ \begin{array}{r} -1 \\ -1 \\ -2 \\ 0 \\ +1 \\ +2 \end{array} $	00 00 00	uss us uss	$26\ 33,5\ 28,5\ 23,4$	37 961,0 38 033,0 38 107,0			37,5 35,0 34,5	37,4 34,8 32,3	$ u^{37}$ undeutl. $ u^{37}$ sehr undeutl.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	ms us ms s ms ms us ms	$\begin{array}{c} 26\ 27,9\\ 23,0\\ 18,15\\ 13,3\\ 08,45\\ 03,55\\ 25\ 98,5\\ 93,8\\ 88,85 \end{array}$	$\begin{array}{c} 38042.0\\ 113.0\\ 183.5\\ 254.5\\ 325.5\\ 398.0\\ 472.0\\ 542.0\\ 615.5\end{array}$	+3 +4 +6 +3	$ \begin{array}{r} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \\ +2 \\ 0 \\ +1 \\ \end{array} $	0 0 0	u3 u8 u8	2615,9 11,2 01,7	38 216,5 38 285,5 38 425,0		$0 \\ 0 \\ + 2$	33,0 30,5 25,0	32,1 29,8 25,1	p^{37} undeutl. p^{37} ,, p^{37} sehr undeutl. oder $[0,4]^{37}$

52

(Fortsetzung).
HgCl
3
Tabelle

				N		
Bemerkung	<i>p</i> ³⁷ undeutl			auch [0,2] ³	verdeckt	verdeckt
p^{35} ber.	30,6	22,6	22,8 21,0 19,3 17,5	18,6 17,0 15,2 13,6 11,9	$ \begin{array}{c} 10.8 \\ 9.4 \\ 7.8 \end{array} $	
p^{37} -beob.	32,0	22.5	$\begin{array}{c} 22.5\\ 22.0\\ 18.0\\ 18.5\end{array}$	18,5 14,5 12,0 12,5	$10.5 \\ 10.5 \\ 8.0 \\ 8.0$	
beob. – ber.	+	-	+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	+ + + + 0 0 13 1 1 1 0	0 77 0	
Max.			+3	<<<<<	<<	
v HgCl(37)	38 347,0	38 604,5	38 676,0 38 737,0 797,5 860,5	$\begin{array}{c} 38887.5\\ 945.5\\ 39001.5\\ 058.5\\ 118.0\end{array}$	$\begin{bmatrix} 39\ 162,5 \\ 39\ 217,0 \\ 273,0 \\ 326,0 \end{bmatrix}$	$[39\ 441, 8]$
х	26 07,0	25 89,6	$\begin{array}{c} 2584,8\\ 80,7\\ 76,7\\ 72,55\end{array}$	2570,75 66,9 63,2 59,45 55,6	2549,15 45,5 42,1	
S	ns	ms	ms ms ms ms	ms ms ms ms us	us us ms	
ſ	0		0 - 10 10	∞ ∞ ⊢ ol ⊢	- 10 10	
beob. – ber.	+ 0 0	0 0	+++++++++	000000	$\left \begin{array}{c}+\\+\\0\\1\end{array}\right.$	0 + 0
Max.	+ 51	+	+ + + + + + + + + + + + + + + + + + +	++++++ 22 21 21 21 21 21	+ + + +	(+1)
v HgCl(35)	38 315,0 381,5 381,5	515,0 515,0 582,0 650,5	38 590.5 653,5 715,0 779,5 842,0 907,0	$\begin{array}{c} 38868.5\\ 927.5\\ 927.5\\ 987.0\\ 39046.0\\ 106.0\\ 166.5\end{array}$	$\begin{array}{c} 39 \ 151,0\\ 206,5\\ 262,5\\ 318,0\\ 318,0 \end{array}$	39436,0 489,0 541,0
r	$\begin{array}{c} 2609,15\\ 04,65\\ 00,15\end{array}$	2595,6 91,1 83,5	$\begin{array}{c} 2590.5\\ 86,3\\ 82,2\\ 77.9\\ 73,75\\ 69,45\end{array}$	2572,0 $68,1$ $64,2$ $60,3$ $56,4$ $52,45$	$\begin{array}{c} 2553,45\\ 49,85\\ 46,2\\ 42,6\\ 42,6\end{array}$	35,0 31,6 28,25
8	8 8 8	~ ~ ~ ~ ~	s ms s s s us	s s s ms ms	s s ms ms	s s ms
ſ	c1 a	ro ro co c	∞ 4 4 ∞ 01 01	4 4 30 30 61 61	0 v 4 0	6 9 67
<i>""</i>	16.57	- 2 6 0	41091-86	x 4 x 9 L 8	01 00 44 70	co ⊂o −
'n	0:	1 22 4 12	0	0	0 - 0 70 0	10 H CI

53 -

Tabelle 3 HgCl (Fortsetzung).

n'	<i>n''</i>	J	s	λ	ν HgCl(35)	Max.	beob. - ber.	J	S	λ	$\nu \mathrm{HgCl}(37)$	Max.	beob. – ber.	$\underbrace{\frac{v^{37}}{\text{beob.}}}^{$	$\underbrace{\begin{array}{c} v^{35} \\ ber. \end{array}}^{$	Bemerkung
$3 \\ 4 \\ 5$	$\begin{array}{c} 4\\5\\6\end{array}$	$2 \\ 3 \\ 2$	ms s ms	$2524,8\ 21,6\ 18,35$	$39594,5\645,5\696,5$	+2	$\begin{vmatrix} +1\\0\\-1 \end{vmatrix}$		2							
0	0	6 7	8 8	$2516,55\16,45$	39 724,5 727,0	+3	0								- 0,6	Max. von [0,0] [1,1] fehlt
$\frac{2}{2}$	2	5	8	2510,4	822,5	+2	0				Ţ.					oder:
.)	0	0	8	07,4	870,0	+3	-2			28111.8						$Max. = [n, n]^{3}$
$\frac{4}{5}$	$\frac{4}{5}$	$\frac{3}{2}$	$\frac{ms}{s}$	$04,4 \\ 01,15$	917,5 969,5	+4	-2 + 1									$\int \mathbf{K} \mathbf{ante} = [n, n]^{\circ}$
1	0	7	us	24 95,4	40 062,0	+4	-1	5	8	24 95,8	40 055,0	(+2)	0	- 6,5	- 8,3	
2	1	5	ms	92,6	106,5	+4	-2	3		93,15	40 098,0		- 1	- 8,5	- 9,4	v^{37} undeutl.
$\frac{3}{4}$	$\frac{2}{3}$	2		89,9 fehlt	150,0	+4	-3				27.3					Störungsgebiet
5	4			verdeckt	[243,6]			2	us	2484,7	40,231,0		0		-12,3	1 3 starker Hg
6	5	3	8	2481,3	289,0*		0									Linien ?)
7	6	3	8	78,75	330,5*	(+6)	- 3									, , , , , , , , , , , , , , , , , , , ,
2	0	5	ms	2474,65	40 397,5	+4	0	3	ms	2475,75	40 379,5	+5	- 2	-18,0	-15,9	
3	1	5	ms	72,1	439,0	+4	0	3	us	72,8	423,0	+4	+1	-16,0	-16,8	
4	2	4	ms	69,6	480,0	+4	-1	2	us	70,7	462,0	\wedge	- 1	-18,0	-17,5	
5	3	3	us	67,1	521,0	+4	-1	2	us	68,15	504,0	\wedge	0	-17,0	-18,5	
6	4	1	us	64, 5	564,0		+1									

54

	Bemerkung	auch [4,0] ³⁷ sehr undeutl.	$\begin{cases} n', n'' \end{bmatrix}^{37} durch \\ \begin{bmatrix} n'.1, n''.1 \end{bmatrix}^{35} \\ verdeckt \end{cases}$ sehr undeutl.
	$\underbrace{\int_{-p^{35}}^{-p^{35}}$	-23,3 -24,0 -24,6 -25,4 -26,0 -26,8 -28,3 -28,3	-30.5 - 31,1 - 31,6 - 31,6
	v^{37} - beob.	-21.5 -24.5 -24.5 -24.5 -24.5 -24.5 -294.5	- 30,5
	beob. – ber.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Max.	+ <<< + <<	
./0	v HgCl(37)	$\begin{array}{c} 40706,0\\ 40741,0\\ 778,5\\ 40815,0\\ 40815,0\\ 40892,5\\ 928,0\\ 962,0\\ 962,0\end{array}$	[41 025,0] 41 025,0] 41 059,5 11 126,0 192,0 225,0 289,5 usw.
	Y	24 55,9 53,8 51,55 49,3 verdeckt 24 44,7 42,6 40,55	verdeckt 2434,7 32,7
0	8	us ms us us us us	us as
	r		0.01
1 40	beob. – ber.	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	010110011004
	Max.	++++++++	+++++++++++ + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
	v HgCl(35)	$\begin{array}{c} 40\ 727,5\\ 765,5\\ 803,0\\ 840,5\\ 840,5\\ 877,5\\ 917,5\\ 952,5\\ 952,5\\ 952,5\\ 101,0\\ 101,0\end{array}$	$\begin{array}{c} 41 \ 055,0 \\ 124,5 \\ 157,5 \\ 1157,5 \\ 123,0 \\ 225,5 \\ 322,5 \\ 388,5 \\ 419,5 \\ 455,5 \\ \end{array}$
	Y	$\begin{array}{c} 2454,6\\ 52,3\\ 50,05\\ 47,8\\ 41,1\\ 38,7\\ 38,8\\ 38,4\\ 38,4\\ 38,4\\ 32,3\\ 3$	$\begin{array}{c} 2435,1\\ 2435,0\\ 330,9\\ 28,95\\ 28,95\\ 28,95\\ 28,95\\ 28,95\\ 28,95\\ 28,95\\ 11,$
	S	ms ms ms ms ms ms ms ms us us	us us ms ms ms ms ms ms ms us us us
	~	x 4 4 4 x 0 0 0 0 0 0 0 0	0 - 5 4 5 4 4 4 5 6 6 - 0
	<i>n</i> ′′	0 - 0 x + 2 0 - 0 0 1	0-0:2400-00110
	'n	24709840112 1110984051 1112	422400010024209

Tabelle 3 HgCl (Fortsetzung).

n'	n''	J	8	λ.	$v \mathrm{HgCl}(35)$	Max.	beob. – ber.	J	S	λ.	v HgCl(37)	Max.	beob. – ber.	$\frac{r^{37}}{\text{beob.}}$	$\underbrace{\frac{\nu^{35}}{\text{ber.}}}_{\text{ber.}}$	Bemerkung
8 9 10 11 12 13 14 15 16 17 18 19 19	$egin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11^{-12} \\ 12 \\ 13 \\ 14 \end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{array} $	us us us us us us us us us us us us	$\begin{array}{c} 24\ 10,55\\ 08,8\\ 07,1\\ 05,6\\ 03,75\\ 02,1\\ \text{verdeckt}\\ 23\ 98,9\\ 97,4\\ 95,8\\ 94,1\\ 92,65\\ \end{array}$	$\begin{array}{c} 41\ 471.5\\ 502.0\\ 531.0\\ 557.0\\ 617.5\\ [644.0]\\ 41\ 673.0\\ 699.0\\ 727.0\\ 756.5\\ 782.0\\ \end{array}$	+2+3+2+2+2+4+4+4+2+4	+1 +2 +1 -2 +1 +2 +1 +2 +1 +3 +3	0	us us	24 11,05 09,5	41 463,0 490,0		+2-2	- 39,0 - 41,0	- 39,1 -39, 5	v ³⁷ undeutl. dito.
12 13 14 15 16 17 18 19 Un	6 7 8 9 10 11 12 13 identi	00 00 1 1 0 00 00	us us ms us us us us	$\begin{array}{c} 2388,5\\ 86,95\\ 85,6\\ 84,2\\ 83,0\\ 81,8\\ 80,45\\ 78,9\\ \end{array}$	41 854,5 881,5 905,5 930,0 950,0 972,0 996,0 42 023,0 λλ 2629,6 (0), 26	$ \begin{array}{r} -1 \\ +2 \\ +2 \\ -1 \\ -2 \\ -1 \\ +4 \end{array} $ 14,5 (0)	2540	,4 (2),	2483,4 (2).	Ferner erso	heine	n sämt	liche G)uecksi	lberbogenlinien.

Tabelle 3 HgCl (Fortsetzung).

zahlige Numerierung erklärt werden, möglicherweise aber durch das Vorhandensein eines *P*- und eines *Q*-Zweiges¹), entsprechend den in Fig. 2 skizzierten Verhältnissen. Dann müssen sämtliche Kanten des Systems eine Aufspaltung von dieser Grössenordnung aufweisen. Eine deutliche Trennung in zwei scharfe Kanten kann allerdings nur bei der (0,0) Kante festgestellt werden²). Hingegen zeigen die stärkeren Banden fast durchwegs eine Differenz zwischen Bandenmaximum und Kante³) (Tabelle 3, 6. Kolonne), was im

Sinne von Figur 2 ausgelegt werden mag. Nach dieser Deutung wäre es korrekter, statt der Kanten (Scheitel der P-Zweige) die

Fig. 2. Zur Aufspaltung der (0,0) Kante.

Maxima (Scheitel der *Q*-Zweige, die mit den Nullinien der Banden zusammenfallen) zur Berechnung heranzuziehen⁴). Abgesehen aber von der Unsicherheit dieser Nullinienkorrektur haben auch praktische Gründe für die Bevorzugung der scharf definierten Kanten gesprochen.

In Zusammenhang mit der Aufspaltung der (0,0) Kante stehen gewisse Schwierigkeiten bei der Einordnung der Kanten, speziell in der Nullgruppe, wo (mit Ausnahme der (0,0) Kante

¹) Diese Annahme wird bekräftigt durch eine soeben erschienene Arbeit von W. F. C. FERGUSON (Phys. Rev. [2] **32**, 607, 1928), der an den Bandkanten von SnCl eine deutliche Aufspaltung dieser Art festgestellt hat.

²) Eine ganz ähnliche Beobachtung macht R. RITSCHL (Zeitschr. f. Phys. 42, 172, 1927) an den Spektren von CuF, CuCl und CuBr, die ebenfalls gerade in der 0,0-Gruppe solcher Aufspaltungen zeigen. Auch RITSCHL schliesst daraus auf das wahrscheinliche Vorhandensein zweier Zweige der Rotationslinien.

³) Vgl. R. RITSCHL, loc. cit., p. 176 (CuJ-Banden).

4) Die Anbringung der Nullinienkorrektur, sowie die Berücksichtigung der Quecksilberisotopie (vgl. den Abschnitt über HgBr) würden vielleicht die in *n*-kubischen Glieder der Kantenformel von HgCl vermeiden lassen. selbst) die Differenz zwischen Bandenmaximum und Kante gerade von der Grössenordnung der Chlorisotopenaufspaltung ist. Darauf sind die relativ grossen Abweichungen (beob. – ber., Tabelle 13) in dieser Gruppe zurückzuführen.

Figur 3 gibt eine graphische Darstellung der Chlorisotopenaufspaltung Δv in Abhängigkeit von den Quantenzahlen n' und

n''. Die berechneten Δv -Werte, die einer gemeinsamen Bandengruppe (n' - n'' = konstant) angehören, sind durch Kurvenzüge verbunden. Die Abweichungen der beobachteten, durch Punktemarkierten Werte zeigen zwar keinen systematischen Gang. Sie sind aber doch zu gross, um die Richtigkeit der halbzahligen Numerierung beweisen zu können. Denn die mit ganzen Quantenzahlen errechneten Werte liegen nur wenig (0 bis 1 r) höher. (In der Nullgruppe als dünne Kurve eingezeichnet.) Der Quecksilberisotopeneffekt konnte bei HgCl nicht mehr nachgewiesen werden. Quecksilber hat die 6 Atomgewichte¹): 198_d, 199_c, 200_b, 201_e, 202_a und 204_f. Hg²⁰⁴ ist aber so schwach, dass jedenfalls nur die Isotopendifferenz (202—198) in Frage kommt. Der damit errechnete Wert $\varrho - 1 = 0,0015$ ist rund 15 mal kleiner als derjenige von HgCl^{35,37} ($\varrho - 1 = 0,023$). Bei den äussersten Banden macht sich die Isotopenaufspaltung des

-	- 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	\rightarrow	n''
1	7	7	6	4	3	1	0								1	9	-
2	7		6	5	4	4	2	1							i		
3	5	5	5	2	4	3	4	3	1	0					î		
4	3	5	2	5	2	2	3	3	3	2	0						
5	0	4	4		3	3		2	2	2	2	1					
6		1	4	3	[Hg]	2	2		2	2	2	1	1	0			
7			3	4	1	(3)							2	1	0		
8				4	3		(3)							2	0		
9				1	3	2									2		
10					1	4	2										
11						2	4	2									
12							2	4	0					2			
13							0	2	3	0							
14								0	2	2	0						
15									0	[]	2						
16										1	2	1					
17											1	2	0				
18												0	2				
19													Û	2			
20														0	Į		
¥						-			1320	•							
ní	1			Figu	r 4.	Inte	ensitä	tska	nten	scher	na, v	on 1	HgCl				

Figur 4. Intensitätskantenschema von HgCl [] bedeutet, dass die betr. Kante verdeckt ist.

Quecksilbers lediglich durch eine Verbreiterung der Kanten bemerkbar²).

Der Aufbau des Bandensystems spiegelt sich in dem in Figur 4 dargestellten *Intensitätskantenschema* wieder, in welchem die Zahlenwerte den okular geschätzten Intensitäten der HgCl³⁵-Kanten entsprechen. Ein Versuch, auf photometrischem Wege³) genauere Werte für die Intensitäten zu erhalten, scheiterte an

²) Ganz analoge Verhältnisse treten bei SnCl infolge der Isotopie von Sn⁺ auf. (W. JEVONS, Proc. Roy. Soc. Lond. **110** A, 365, 1926.)

³) Herrn Dr. E. FREY, der mir die Aufnahme besorgt hat, sei auch an dieser Stelle bestens gedankt.

¹) F. W. ASTON, Proc. Roy. Soc. Lond. 115 A, 487, 1927.

der Überbelichtung der Filme. Aber auch die okular geschätzten Werte lassen die parabelförmige Anordnung der Kanten, die theoretisch von Condon gefordert wird¹), deutlich erkennen.

In Tabelle 4 werden noch die spektroskopischen Daten von $AuCl^2$) und HgCl miteinander verglichen. Die Molekelkerne

Spektr.	v_e	a'	a''
AuCl	19114	312	383
	19238	316	
HgCl	39700	341	293

Tabelle 4.Vergleich zwischen AuCl und HgCl.

dieser zwei Salze stimmen nahezu, für Au¹⁹⁹ und Hg¹⁹⁹ völlig, miteinander überein. Wenn die Bandensysteme trotzdem nach Lage (v_e), Abschattierung ($a' \ge a''$) und Struktur (dublett—einfach) sehr verschiedenartig angeordnet sind, so kann das nur vom Unterschied in der Elektronenkonfiguration herrühren. Die Differenz in den Kernschwingungskonstanten a gibt ein Mass für die Wechselwirkung zwischen Elektronen- und Kernschwingungsterm. Bei reinen Rotationsschwingungsbanden müsste offenbar $a'_{AuCl} = a''_{HgCl}$ und $a''_{AuCl} = a'_{HgCl}$ sein.

2. Quecksilberbromid (HgBr). Das ebenfalls nach Violett abschattierte Spektrum von HgBr liegt zwischen $\lambda \lambda 2700-2450$ Å (Tafel I, Fig. 3) und hat durchaus den gleichen Aufbau wie dasjenige von HgCl. Die Identifizierung der langwelligen, oberhalb $\lambda 2650$ gelegenen Kanten wird sehr erschwert und schliesslich ganz verunmöglicht durch das Übergreifen eines zweiten Bandensystems (Spektrum der Klasse II). Tabelle 5 enthält die Werte der Bandkanten.

Die *Isotopenaufspaltung* von HgBr^{79,81} ist mehr als 3 mal kleiner als diejenige von HgCl^{35,37}. Da aber die Bromisotopen gleiche Stärke besitzen³), lassen sie sich auch bei den schwachen, am Ende des Systems gelegenen Kanten nachweisen. Über die

³) Für Brom (79,9) gilt 79:81 = 1:1, für Chlor (35,5) gilt 35:37 = 3:1.

¹) E. CONDON, Phys. Rev. (2) 28, 1182, 1926.

²) Das Bandensystem von AuCl ist von FERGUSON gefunden und analysiert worden. (F. W. C. FERGUSON, Phys. Rev. (2 **31**, 969, 1928.)

Bemerkung	sehr diffus			zweifelhaft	p ⁸¹ undeutlich Störung, oder [6,9] ? durch [0,1] verdeckt
$\frac{-p^{79}}{\text{ber.}}$	+ 9,2 7,8	7,7 7,2 6,6 6,0	5,8 5,2	4,7	3,2
ν^{81} beob.	+ 9,0 9,5	7,0 6,5 8,0	6,5 6,5	4,0, 6,0	3.5
beob. – ber.	+ +	++ 0	+ 0	00	0
v HgBr(81)	37 518,5* 626,5*	$[37\ 691, 2]*$ 741, 5* 796, 5* 851, 0*	37 918,5* 970,5*	38 047,5* 095,5*	38 228,0*
y	26 64,55 56,9	verdeckt 2648,8 44,95 41,2	verdeckt 26 36,45 32,85	26 27,5 24,2	2615,1
S					
5					5 2
beob. – ber.	+ + 61 + C		0	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{c c} & 0 \\ & + \\ & + \\ & + \\ & 1 \\ & + \\ & 1 \\ \end{array}$
<i>v</i> HgBr(79)	37 509,5* 37 566,0* 617,0* [671,6]*	37 782,5* 734,5* 790,0* 843,0*	$\begin{array}{c} 37\ 862.0*\\ 912.0*\\ 964.5*\\ 38\ 012.0* \end{array}$	38 043,5* 089,5* 139,0* 288,0*	$\begin{array}{c} 38\ 224,5\\ 270,5*\\ 338,0*\\ 366,0*\\ [412,3]*\\ 460,5* \end{array}$
7	26 65,2 61,2 57,6 verdeckt	$\begin{array}{c} 2652.95\\ 49,3\\ 45,4\\ 41,7\end{array}$	$\begin{array}{c} 2640,4\\ 36,9\\ 33,25\\ 29,95\end{array}$	2627,8 $24,6$ $21,2$ $11,0$	$\begin{array}{c} 2615,35\\ 12,2\\ 07,5\\ 05,7\\ 2599,3 \end{array}$
S	us us ms	ms ms ms ms	us s us us	s s us uss	s ms ms ms us
~ ·		00 4 4 00	α 4 4 α	410000	F-4400 01
<i>"</i> "	0 C - X 6	201-2	4292		ରା ଝ 4 ୬୦ ୦ ୮-
'n,	∞ 13 H O	∞ 1 3 1 7 C	3 5 1 0	0 H 0 I 10	0 0 0 4 20

Tabelle 5 HgBr.

61

* Bedeutet Hg(198)Br

n'	n"	J	S	λ	v HgBr(79)	beob. – ber.	J	S_{\perp}	λ	v HgBr(81)	beob. – ber.	$\frac{\nu^{81}}{\text{beob.}}$	- v ⁷⁹ ber.	Bemerkung
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	8 4 4 2	8 8 8 8	$26\ 02,7\\25\ 96,75\\93,75\\90,7$	$\begin{array}{c} 38410,0*\\ [38451,1]*\\ 38498,0*\\ 542,5*\\ 588,0* \end{array}$	$ +1 \\ -1 \\ -1 \\ -1 \\ -1$								fehlt
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$				38 896,5	+1	$ \begin{array}{c} 6 \\ 4 \\ 5 \\ 4 \\ 3 \\ 2 \end{array} $	s s ms ms ms ms	$\begin{array}{r} 2590,2\\ 87,4\\ 84,45\\ 81,7\\ 78,6\\ \mathrm{verdeckt}\\ 2573,25\\ 70,15\end{array}$	$\begin{array}{c} 38595,5\\ 637,5\\ 680,0\\ 722,5\\ 770,5\\ 38807,5\\ 38849,5\\ 896,5\end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ +5 \\ -1 \\ (+4) \end{array} $			Störung oder [7,7] ⁷⁹
$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \end{array}$	7 5 4		25 75,0 25 66 85 verdeckt	38 823,5 38 946,5		$ \begin{array}{c} 7 \\ 3 \\ 3 \\ 4 \\ 2 \\ 0 \end{array} $	8 108 8 8 8 8 9 8 9 8 108	2575,15 72,3 69,65 67,1 64,4 61,55	38 821,0 864,5 904,0 943,0 984,0 39 027,0	$ \begin{array}{r} -1 \\ +2 \\ +1 \\ -1 \\ 0 \\ +2 \end{array} $	- 2,5 - 3,5	- 4,2 - 3,3	sehr undeutl.
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5$		us	$25\ 60,0\\57,4$ $26\ 49,9\\25\ 47,2$	39 051,0 39 090,5 39 205,5 39 247,0	$\begin{array}{c} 0 \\ +1 \\ -1 \\ +1 \end{array}$		8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 25\ 60, 25\\ 57, 65\\ 55, 35\\ 52, 6\\ 50, 15\\ 47, 6\end{array}$	$\begin{array}{c} 39047,0\\ 086,5\\ 122,0\\ 164,0\\ 201,5\\ 241,0 \end{array}$	+1 -2 +2 0 +1	-4,0 -4,0 -6,2	-4,2 -4,5 -5,3 -5,8	sehr undeutlich undeutl.

Tabelle 5 HgBr (Fortsetzung).

- 62

	·
	20
	Ξ
	EZ.
	Se
	Ľ
	0
	-
	5
f	ŋ
	00
•	4
1	S
	e
1	
1	θ
9	Q
3	B
-3	

				and the second
Bemerkung			zweifelhaft	
$\frac{1}{100}$ ber.	$\begin{array}{rrr} - 6,1 \\ - 6,4 \\ - 6,6 \\ - 6,6 \end{array}$	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	-10,0 -10,3 -10,5 -10,6 -10,6 -11,1	-12,0 -12,2 -12,3 -12,5 -12,7 -12,7 -12,7 -13,0 -13,0
$\underbrace{\overset{\mu^{\mathrm{gl}}-}{\mathrm{beob.}}}_{\mathrm{beob.}}$	$\begin{array}{c} - & 6,0 \\ - & 6,5 \\ - & 7,5 \end{array}$	$\begin{array}{c} - & 8.0 \\ - & 10.0 \\ - & 8.0 \\ - & 8.5 \\ - & 9.0 \\ - & 11.0 \end{array}$	$\begin{array}{c} -8.5\\ -11.0\\ -13.0\\ -13.0\\ -11.0\\ -8.0\\ -13.0\end{array}$	$\begin{array}{c} -13.5\\ -13.0\\ -10.5\\ -113.0\\ -113.5\\ -1$
beob. – ber.	$\substack{++\\0\\0}$	0 1 1 1 1 0 0	$\begin{array}{ccc} + & 1 \\ + & 1 \\ 2 \\ 2 \\ - \\ 2 \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	аннонна ++ +++
v HgBr(81)	$\begin{array}{c} 39\ 272,5\\ 39\ 307,0\\ 343,0\\ [416,5]\end{array}$	39 490,5 524,0 560,5 628,0 664,5	$\begin{array}{c} 39742,5\\775,0\\807,0\\841,5\\874,5\\906,5\\40008,5\end{array}$	$\begin{array}{c} 39\ 988,0\\ 40\ 020,0\\ 052,0\\ 081,5\\ 111,5\\ 145,5\\ 40\ 176,0\\ 40\ 104,0 \end{array}$
y	45,55 43,3 41,0 verdeckt	2531,5 29,35 27,0 24,9 22,7 20,4	$\begin{array}{c} 2515,45\\ 13,4\\ 11,35\\ 09,2\\ 07,1\\ 05,1\\ 2498,7\\ \end{array}$	$egin{array}{c} 2500,0\\ 2498,0\\ 94,15\\ 92,3\\ 90,2\\ 2488,3\\ 86,5\\ 86,5 \end{array}$
S	ms s s	s s ms ms us us	ms s ms ms ms us uss	uss us ms us us us uss uss
ſ	443	0 1 3 3 3 5		988
beob. – ber.	++++3	+ + + +	1 + + + + + + + + + + + + + + + + + + +	++ $++$ $++$ 0.1200
v HgBr(79)	$\begin{array}{c} 39\ 278,5\\ 313,5\\ 350,5\\ 426,0 \end{array}$	39 498,5 534,0 568,5 602,0 637,0 675,5	$\begin{array}{c} 39\ 751,0\\ 786,0\\ 820,0\\ 852,5\\ 882,5\\ 919,5\end{array}$	$\begin{array}{c} 40 \ 001, \tilde{5} \\ 033, 0 \\ 033, 0 \\ 062, \tilde{5} \\ 094, \tilde{5} \\ 126, \tilde{5} \\ 159, 0 \\ 40 \ 187, \tilde{5} \\ 40 \ 219, \tilde{5} \end{array}$
ÿ	$\begin{array}{c} 2545,15\\ 42,9\\ 40,5\\ 35,65\end{array}$	$egin{array}{c} 25\ 31,0\ 28,7\ 26,5\ 24,35\ 22,15\ 19,7\ . \end{array}$	$\begin{array}{c} 2514,9\\ 12,7\\ 10,55\\ 08,5\\ 06,6\\ 04,3\\ 04,3\\ \end{array}$	$\begin{array}{c} 24 \ 99,15\\ 97,2\\ 95,35\\ 93,35\\ 93,35\\ 91,35\\ 89,35\\ 89,35\\ 24 \ 87,6\\ 85,6\end{array}$
S	ms ms ms	ms ms us us us us	ms ms ms ms us	uss us ms us us uss uss uss
J	ю ю 4 н	x 4 4 x 7 0		
<i>n"</i>	0 0 4	0 07 00 0		c1 cn 4 vc co F− ∞ cn
'n'	co 4 νο Γ-	4291-86	$ \begin{array}{c} 6 \\ 8 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	$\begin{array}{c} 10 \\ 15 \\ 15 \\ 15 \\ 15 \\ 16 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$

Tabelle 5 HgBr (Fortsetzung).

<u> </u>					IL D (7 0)	beob.	7	G		$= \mathbf{H}_{\alpha}\mathbf{P}_{\alpha}(01)$	beob.	v ⁸¹ -v ⁷⁹		v	$202 - v^{19}$	8
n'	$n^{\prime\prime}$	J	S	Λ.	v HgBr(79)	– ber.	J	0	λ	<i>v</i> пды(81)	ber.	beob.	ber.	beob.	beob.	ber.
10	~	-		24 20 65	40,200,0	1	1		94 91 55	40.985.0	+1	-15.0	_14.0	1		
$12 \\ 12$	5	1	us	24 80,65 80 25	40 500,0	-1 +1	1	us	81.2	291.0*	-1	-15.5	-14.1	-6,5	-6,0	4,4
13	6	1	us	78.7	40331.5	+1	1	us	79,85	40 313,0	- 4	-18,5	-14,2	0 65	7.0	1.1
13	6	1	us	78,3	338,0*	+3	1	us	79,4	320,0*	- 1	-18,0	-14,2	1-05	- 1,0	-4,4
14	7	1	us	77,0	40359,0	-1	1	us	77,8	40 346,0	0	-13,0	-14,2]-5.0	-5.0	-4.5
14	7	.1	us	76,7	364,0*	-1	1	us	77,5	351,0*	+1	-13,0	-14,3		-,-	-, -
15	8	1	us	$75,\!15$	40389,5	0	1	us	75,8	40 375,5	0	-14,0	-14,3	-4.5	-4.5	-4.5
15	8	1	us	74,85	394,0*	0	1	us	76,0	379,0*	-1	-15,0	-14,3	1		
16	9	1	us	73,5	40416,5	-2	1	us	74,45	40 401,0	-4	-15,5	-14,3	-7.0	-8.0	-4,6
16	9	1	us	73,05	423,5*	-1	1	us	73,95	409,0*	0	-14,5	-14,4	Į,		
17	10	1	us	71,85	40443,5	-5	1	us	72,75	40428,5	- 6	-15,0	-14,5	-5.5	-6.0	-4.6
17	10	1	us	71,5	449,0*	-5	1	us	72,4	434,5*	-4	-14,5	-14,7) ,	,	,
						1										
				Folgen no	ch einige sehr	schwa	che.	zu ein	em Kontin	um verschme	olzene	Banden	grupper	n.		
				r ongen no	en eninge sem	Sentra	ene,	ou em					0 11			

Unidentifizierte Kanten: $\lambda\lambda$ 26 22,2 (1) [5,9 ?], 26 18,7 (2) [6,10 ?], 26 04,1 (2), 25 86,0 (1). Ferner erscheinen sämtliche Quecksilberbogenlinien.

* Bedeutet Hg(198)Br, im andern Fall Hg(202)Br.

64

Isotopenverhältnisse von HgBr, verglichen mit denjenigen von HgCl, gibt Tabelle 6 Aufschluss.

Spektr.	M'	M_1	$\boldsymbol{M_2}$	$\varrho - 1$
HgCl	200,6 35.5	$\frac{35}{202}$	$\frac{37}{198}$	$-0,0230 \\ +0.0015$
HgBr	200,6	79	81	-0,0089

Tabelle 6.Isotopenfaktor bei HgCl und HgBr.

Mann erkennt, dass sich für HgBr die Halogenisotopie ungünstiger, die *Quecksilberisotopie* aber günstiger als für HgCl gestaltet. Der Isotopeneffekt des Quecksilbers äussert sich bei den HgBr-Banden zunächst in einer merklichen Verbreiterung

Fig. 5. Zur Quecksilberisotopie von HgBr.

der Kanten. An den Banden der äussersten Gruppe (n' - n'' = +7)schliesslich lassen sich zwei Maxima¹) feststellen, die den Quecksilberisotopen 202 und 198 zuerkannt werden (vgl. Tabelle 4). Für eine Berücksichtigung der Quecksilberisotopie spricht auch der Umstand, dass sich dann die in *n* kubische Kantenformel auf eine quadratische vereinfachen lässt. Figur 5 soll dies erläutern. In stark übertriebenen Verhältnissen ist für je eine Kante links und rechts der (0,0) Kante die Isotopenaufspaltung dargestellt worden. Diesem Schema entsprechend müssen alle rechts von $v_{0,0}$ liegenden Kanten ($\nu > v_{0,0}$) mit Hg²⁰²Br, die links von $v_{0,0}$ liegenden ($\nu < v_{0,0}$) aber mit Hg¹⁹⁸Br (in Tab. 4 durch * mar-

¹) Scharfe Enden einer breiten Kante.

kiert) identifiziert werden¹). Die Berechtigung dieser Annahme bestätigt sich in den Kantenformeln. Sämtliche Kanten, deren $v > v_{0,0}$ sind, lassen sich befriedigend durch quadratische Gleichungen (eine für Hg²⁰²Br⁷⁹ und eine für Hg²⁰²Br⁸¹) wiedergeben. Wollte man diese Formeln auch auf die übrigen Kanten ($v < v_{0,0}$) ausdehnen, so würde man durchwegs zu grosse Werte errechnen. Die Abweichungen lassen sich zwar durch Einführung von kubischen Gliedern (n^3) beheben, viel einfacher aber durch Umrechnung von Hg²⁰²Br auf Hg¹⁹⁸Br.

Aus der empirisch ermittelten Kantenformel:

$$\begin{array}{l} r_{n',\ n''} = 38574,4 + 228,5\ (n'+\frac{1}{2}) - 186,25\ (n''+\frac{1}{2}) \\ - 0,950\ (n'+\frac{1}{2})^2 - 0,975\ (n''+\frac{1}{2})^2 \end{array} \right\} \ \mathrm{Hg}^{202} \mathrm{Br}^{81} \\ \end{array}$$

berechnen sich für die übrigen Isotopenwerte die in Tabelle 7 zusammengestellten Daten.

Hg	Br	Berechnet mit	a'	<i>a''</i>	<i>b′</i>	<i>b''</i>	v_{c}
202	81	empirisch	228,5	186,25	0,950	0,975	
*198	81	$q_{1} = 1,0029$	$229,\!15$	186,78	0,955	0,981	38574.4
202	79	$\varrho_{II} = 1,0089$	230,53	187,91	0,967	0,993	1
*198	79	ϱ_{f} . $\varrho_{\mathrm{ff}} = 1,0117$	231,18	188,43	0,973	0,998)

Tabelle 7.Kantenformeln für HgBr.

Nur in der Gruppe (n' - n'' = 7) können alle 4 Isotopenkanten nebeneinander festgestellt werden (vgl. Tabelle 5).

Das in Figur 6 dargestellte Intensitätsschema zeigt den gleichen Aufbau wie dasjenige von HgCl. Ein kleiner Unterschied wird durch die Stellung der (0,0) Kante bedingt, die von (1,0)und (0,1) an Intensität übertroffen wird. Ferner sei auf das Fehlen der (1,2) Kante aufmerksam gemacht. Das Analogon dazu bildet das Ausfallen von (1,1) bei HgCl.

3. Quecksilberjodid (HgJ) hat zwischen $\lambda\lambda$ 2800 und 2500 Å ein unentwirrbares System von Banden, die am langwelligen Ende nach Violett, am kurzwelligen aber nach Rot abschattiert sind. In der Mitte bilden sich Gruppen von starken, linienartigen Kanten, die keine ersichtliche Abschattierung zeigen. Das Ganze macht einen durchaus regellosen Eindruck, der wahrscheinlich durch Überlagerung zweier entgegengesetzt abschattierter Bandensysteme zustande kommt. Die langwelligen Kanten, die gewisse

¹) Die sehr schwache Isotope Hg²⁰⁴ dürfte ausser Betracht fallen.

Regelmässigkeiten aufweisen, verlieren sich in den Ausläufern eines bei λ 3100 Å beginnenden, nach Violett abschattierten Spektrums der Klasse II (vgl. unter Abschnitt II). Von einer Wiedergabe der gemessenen Werte wird abgesehen.

4. *Cadmiumjodid* (CdJ). Von den Cadmium- und Zinkhalogeniden zeigt CdJ dasjenige Bandensystem, das am meisten den Spektren von HgCl und HgBr gleicht. Wie diese, besteht es

	0	1	2	3	4	5	6	7	8	9	10 -→ n	<i>''</i>
0	6	8	7	4	3	3	3	•				
1	7	4	-	4	5	4	4	3				
2	6	3	5	4	4	2	4	4	3	•		
3	5	5	3	4	4	3		2	3	•		
4	3	5	2	4	3	2	[]	distantial literature				
5		4	4	1	2	[]		2	2			
6		1	4	-	1	0	3					
7			2	3	1	3		2				
8			1	3	2							
9				1	3	0						
10	^{be}				2	2						
11						2	1					
12						1	2	1000				
13							1	1				
14								1	1	0		
15									1	1		
16										1		
17											I	
\downarrow												
n′										-	20	
	Fi	g. 6.	Int	tensi	tätsl	cante	nsche	ema	von	Hgl	Br.	

Die mit [] bezeichneten Kanten sind verdeckt.

aus zahlreichen, nach Violett abschattierten Banden, die aber bei längeren Wellen, zwischen $\lambda\lambda$ 3500—3300 Å, liegen (Taf. I, Fig. 4). Die Werte der Bandkanten sind in Tabelle 8 zusammengestellt.

Die Bandkanten genügen der Gleichung:

$$r_{n', n''} = 29530, 0 + 196, 6 (n' + \frac{1}{2}) - 178, 5 (n'' + \frac{1}{2}) \\ - 0,70 (n' + \frac{1}{2})^2 + 0,625 (n'' + \frac{1}{2})^2$$
 CdJ.

Die starken Abweichungen der langwelligen Kanten (in Tabelle 8 als unsicher bezeichnet) weisen auf die Notwendigkeit einer in n kubischen Formel hin. Eine solche wäre aber zwecklos, solange die *Isotopie von Cadmium* nicht berücksichtigt werden

Tabelle 8. CdJ.

n'	n''	J	${f S}$	λ	γ.	beob. – ber.	Bemerkung
10	18	1	ms	3516,85	28426,5	-2)
11	19	1	ms	12,95	458,0	+3	
12	20	2	ms	09,3	487,5	+6	
13	21	1	us	06,4	28511,0	+4	
14	22	1	ms	02,7	541,5	+8	
10	17	1	us	3497,8	28581,5	- 3	
11	18	2	ms	93,95	612,5	+3	
12	19	2	ms	90,95	637,5	+3	ansicher
13	20	3	ms	87,7	664,0	+4	oder [7,13]
14	21	3	ms	84,55	690,0	+5	oder [8,14]
9	15	3	ms	3481.2	28717.5	0	
10	16	3	ms	78.2	742.5	+ 1	
11	17	2	us	74.95	769.0	+3	
12	18	2	uss	72,0	793,5	+4	J
9	14	1		3461.9	28 877 5	0	
10	15	1	us	59,1	901,0	+1	e.
1	8	-9	me	94.56.95	28 024 0	- 1	
5	q		me	53.6	947.0	- 4	
6	10	3	me	50.6	972.0	-1	
7	11	3	ms	48.0	994.0	-1	
8	12	9	ms	45.3	29 017 0	0	
9	13	1	ms	42.95	036.5	-2	
				12,00		-	-
2	5	2	us	3440,85	29 054,0	0	
3	6	2	ms	38,5	074,0	- 1	
4	7	3	us	3435,85	29096,5	0	
5	8	2	ms	33,55	116,0	- 2	
6	9	2	ms	30,95	138,0	-1	
7	10	1	ms	28,5	159,0	-1	
8	11	1	us	26,0	180,0	0	
1	3	2	ms	34 23,1	29205,0	-1	
2	4	3	ms	20,75	225,0	- 2	
3	5	3	ms	18,5	244,0	- 3	
4	6	2	ms	16,0	265,5	- 1	
5	7	2	ms	13,5	287,0	+1	N.
6	8	1	ms	11,5	304,0	-2	
7	9	0	us	08,9	326,5	+1	

n'	n'' J *S		λ	ν	beob. – ber.	Bemerkung	
0	1	5		94.04.9	20.262.0	0	
	1	9 2	8	09 A	29 302,0		
9	3	4	me	02, 4 00.35	29 400 5	+1	
3	4	2	118	33 98 2	419.0	0	
4	5	1	us	96.05	437.5	0	
5	6	0	uss	93.5	459.5	+ 3	
6		0	us	91.15	480.0	+5	
7	8	0	us	89.2	497.0	+ 3	
8	9	1	ms	87.35	513.0	+2	
9	10	1	ms	85,6	528,5	-1	
0	0	7	8	33 84,4	29 539,0	0	
1	1			82,6	554,5	-2	stark überschattet
2	2				[575,0]		fehlt
3	3	1	us	33 79,25	29 584,0	- 8	
4	4	2	8	76,25	610,0	0	
5	5	2	8	74,35	627,0	0	
6	6	3	ms	72,25	645,0	+1	
7	7	3	ms	70,35	662,0	+1	
8	8	2	ms	68,4	679,0	+1	
9	9	2	ms	66,55	695, 5	0	
10	10	1	ms	64,6	712,5	+1	
1	0	5	ms	3362,2	29734,0	0	
2	1	6	ms	60,35	750,5	0	
3	2	5	ms	58,3	768,5	+1	-
4	3	4	ms	56,5	784,5	+1	
5	4	2	us	54,8	799,5	0	
6	5	1	uss	53,0	815,5	0	6
10	9	1	us	46,05	877,5	0	
11	10	2	ms	44,25	893,5	+1	
12	11	3	ms	42,45	909,5	+2	
2	0	2	ms	33 40,85	29 924,0	-4	
3	1	3	us	39,0	940,0	- 3	
4	2	3	ms	37,0	958,5	0	
5	3	4	ms	35,45	972,5	-1	.**)
6	4	4	us	33,8	987,0	0	
7	5	3	uss	32,25	30 001,0	-1	
8	6	2	uss	30,65	015,0	-1	
1							

n'	n''	J .	S	Э.	v	beob. – ber.	Bemerkung
9	7	2	uss	3329.05	30.030.0	-1	
10	8	1	1188	27.5	044.0	- 1	
11	9	0	uss	25,75	060,0	+1	
4	1	1	ms	3317,4	30135,5	+ 1	
5	2	2	ms	16,0	148,0	0	
6	3	2	ms	14,35	163,0	+ 2	
7	4	3	ms	12,9	176,5	+2	
8	5	3	us	11,65	187,5	0	
9	6	3	us	10,4	199,0	-2	
10	7	2	us	08,7	30 214,5	+ 1	
11	8	2	us	07,35	227,0	+ 1	
12	9	2	us	06,2	237,5	- 1	
13	10	1	uss	04,8	250,5	- 1	
14	11	1	uss	03,6	261,5	-2	
15	12	0	uss	02,25	273,5	-2	
16	13	0	uss	00,85	286,5	- 1	
11	7	1	us	32 89,3	30 393,0	-2	
12	8	1	us	88,2	30 403,0	- 3	

Tabelle 8 CdJ (Fortsetzung).

Unidentifizierte Kanten: am langwelligen Ende liegen 3 scharfkantige, nach Violett abschattierte Kanten 3586,3 (0) 3563,2 (3) und 3541,1 (4), die ersichtlich nicht mehr in obiges Kantensystem passen.

Ferner erscheinen alle Cadmiumbogenlinien.

kann. Die Cadmiumisotopen¹) haben, was Zahl und Stärkeverteilung anbelangt, fast den gleichen Aufbau wie die Quecksilberisotopen. Obwohl die Aufspaltung für Cd^{110,114}J diejenige für Hg^{198, 202}Br etwa dreimal übertrifft (vgl. Fig. 10), äussert sie sich nur qualitativ in einer Unschärfe der Bandkanten. Zum Teil ist dies auf die merklich kleinere Dispersion der Quarzprismen zurückzuführen, zum Teil aber auch auf das Bandensystem selbst, dessen äussere Kanten im Vergleich zu den entsprechenden Partien von HgBr und HgCl nur undeutlich erscheinen.

Das in Figur 7 dargestellte Kantenschema zeigt die übliche Intensitätsverteilung. Kleine Abnormitäten treten in den Gruppen (n' - n'' = 0) und (n' - n'' = 1) auf, die beide ein deutliches Wiederansteigen der Intensitätswerte aufweisen.

¹) 110_c , 111_d , 112_a , 113_e , 114_b , 116_f .

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	$22 \rightarrow r$	۳,
0	7	5																						_
1	5	2	3	2																				
2	2	6		4	4	2																		
3		3	5	I	2	3	2																	
4		1	3	4	2	1	2	3	3															
5			2	4	2	3	0	2	2	4														
6				2	4	1	3	0	1	2	3													
7					3	3	-	3	0	0	1	3	[Cd] ()									
8						3	3		2	1		1	2	[Cd	1()								
9							3	2		2	1			1	1	3	[Cd]						
10								2	1	1	1					2	3	1	1					
11								I	2	0	2							2	2	1				
12									1	2		3							1	2	2			
13											1										(3)		
14												1									(3) 1		
15													0									/		
16														0										
\downarrow																								
'n						Fie		7	I	nt	onai	+3+	alra	nto	aak	am	0 V	on	C4	г				

Figur 7. Intensitätskantenschema von CdJ. [Cd] bedeutet, dass die betr. Kante durch eine Cd-Linie verdeckt ist. Die (Zahlen) gehören möglicherweise an die mit () bezeichneten Stellen.

5. *Cadmiumbromid* (CdBr). Das nach Violett abschattierte Bandensystem besteht aus wenigen starken Gruppen, deren Einzelbanden sich nur undeutlich erkennen lassen. Tabelle 9 enthält die Werte der Bandkanten.

n'	n''	J	S	2	ν	beob. – ber.	Bemerkung
· 0	3	1	us	32 47,2	30787,0	+1	
1	4	3	ms	44,2	815,5	+2	
2	5	2	us	41,7	839,0	-1	
3	6	1	uss	39,15	863,5	- 3	
4	7	1	uss	36,55	888,0	- 3	
0	2	4	ms	32 23,45	31 013,5	0	
1	3	5	3	20,8	039,5	0	
2	4	3	us	18,2	064,5	-1	
3	5	3	ms	15,4	091,5	+2	
0	1	8	8	31 99,95	31 241,5	0	
1	$\overline{2}$	6	s	97,4	266,5	0	stark überschattet
2	3	4	ms	94,9	291,0	0	dito.
3	4	2	us	$92,\!25$	317,0	+2	undeutlich

Tabelle 9. CdBr.

n'	n''	J	S	2	ν	beob. — be r .	Bemerkung
0	0	9	8	31 76,65	31 470,5	0	
1	1	(5)		74,3	494,0	-1	sehr undeutL
2	2	(3)		71,9	518,0	0	dito.
1	0	7		31 51,35	31 723,5	0	
2	1	5	8	48,95	747,5	+2	
3	2	3		46,65	770,5	+2	sehr undeutl.
4	3	0		44,6	791,5	+2	dito.
2	0	2	us	31 26,5	31 975,5	+1	
3	1	3	us	24,45	996,5	+ 1	
4	2	1	uss	22,7	32014,5	-2	

Tabelle 9 CdBr (Fortsetzung).

Einige weitere schwache, aber scharfe Kanten bei $\lambda\lambda$ 3095,1 (3) 3092,5 (1) 3075,4 (0) scheinen anderen Ursprungs zu sein.

Ferner erscheinen alle Cadmiumbogenlinien.

Die Kantenformel lautet:

Dass weder die Cadmium- noch die Bromisotopie beobachtet werden konnte, ist nach dem über CdJ Gesagten nicht verwunderlich. Beide Isotopeneffekte sind von der Grössenordnung desjenigen von CdJ (vgl. Fig. 10). Ausserdem fehlen die Banden hoher Laufzahl, bei denen sich die Isotopie am grössten auswirkt.

6. Zinkjodid (ZnJ). Nach Lage und Aussehen ähnelt das Bandensystem von ZnJ ausserordentlich demjenigen von CdBr. Die in Tabelle 10 zusammengestellten Kanten genügen folgender Gleichung:

$$\begin{array}{c} r_{n',\ n''} = 30117,6 + 248,2 \ (n' + \frac{1}{2}) - 223,4 \ (n'' + \frac{1}{2}) \\ - 0,70 \ (n' + \frac{1}{2})^2 + 0,75 \ (n'' + \frac{1}{2})^2 \end{array} \right| \text{Zn}^{64} \text{J}$$

In der (n' - n'' = -3) Gruppe lässt sich der Zinkisotopeneffekt nachweisen. Zink hat die Atomgewichte 64, 66, 68 und 70, von denen 64 und 66 stark überwiegen (chemisches Atomgewicht = 65,35). Dementsprechend dürfen wir in der Isotopenformel $M_1 =$ 64, $M_2 = 66$ und M' = 127 (Jod) setzen und erhalten für $\varrho - 1 =$ 0,01. Schreiben wir obige Kantenformel der stärkeren Isotope (Zn⁶⁴J) zu, so berechnet sich daraus für die in Tabelle 10 mit * bezeichneten Kanten (Zn⁶⁶J) folgende Formel:

$$r_{n', n''} = \frac{30117,6 + 245,7 (n' + \frac{1}{2}) - 221,2 (n'' + \frac{1}{2})}{-0,69 (n' + \frac{1}{2})^2 + 0,73 (n'' + \frac{1}{2})^2} \right\} Zn^{66} J$$

79	
 10	

Tabelle 10. ZnJ.

m'	$n^{\prime\prime}$	J	S	λ	ν	beob. – ber.	Bemerkung
0	3	0	us	33 92 6	29 467 5	_1	
0	3	1	uss	91.7	475.5*		undeutlich
1	4	1	118	89.2	29 497.0	-1	undeution
1	4	2	us	88.2	506.0*	+2	undeutlich
2	5	2	us	85,75	29527.0	-1	
2	5	2	us	85,0	533,5*	0	
3	6	2	us	82,35	29 557,0	0	π
3	6	3	us	81,6	563,5*	+1	
4	7	1	ms	79,2	29 584, 5	- 3	
4	7	1	us	78,5	90,5*	- 1	
5	8	1	ms	75,15	29620,0	+3	
5	8	0	uss	74,4	26,5*	+5	undeutlich
6	9	00	ms	72,1	29646,5	0	
0	2	4	ms	33 67,35	29 688,5	+1	
1	3	6	ms	54,3	29716,0	0	
2	4	5	ms	61,2	743,5	0	
3	5	5	ms	57,95	771, 5	0	
4	6	3	mr	54,85	799,0	-1	
5	7	1	ms	51,35	830,0	+2	
6	8	0	us	48,3	857,5	+1	undeutlich
6	8	0	us	47,8	862,0*	+3	dito.
0	1	8	8	33 42,65	29 908,0	0	
1	2	6	s	39,5	936,0	+2	
2	3	5	ms	36,5	963,0	+2	
3	4	4	ms	33 33,6	29 989,0	+2	
4	5	1	us	30,8	30 014,0	0	
5	6	2	ms	27,8	041,5	0	
0	· 0	10	S	33 18,05	129,5	0	
1	1	7		15,0	157,0	+2	stark überschattet
1	0	7	s	32 91,1	376,5	0	
2	1	6	us	.88,6	399,5	-1	
3	2	5	us	86,0	423,5	0	
2	0	0	us	32 64,7	622,0	0	
3	1	1	us	62,7	640,5	-4	
4	2	1	ms	59,9	667,0	+1	8
5	- 3	1	us	57,8	686,5	-2	
				125			4

* bedeutet Zn(66)J, im andern Fall Zn(64)J.

Eine schwache Gruppe mit scharfer Kante bei λ 3236,0 (2) und scharfem Maximum bei λ 3234,4 scheint andern Ursprungs zu sein.

Ferner erscheinen alle Zinkbogenlinien.

In Figur 8 und 9 sind die *Intensitätskantenschemen* von ZnJ und CdBr dargestellt, die keiner weiteren Bemerkung bedürfen.

7. Zinkbromid (ZnBr), Zinkchlorid (ZnCl) und Cadmiumchlorid (CdCl) zeigen keine oder nur zweifelhafte Banden der Klasse I (zwischen $\lambda\lambda$ 3400–2900) (vgl. Tab. 2). Eine Gesetzmässigkeit kann nicht erkannt werden.

Bandenträger. Da sowohl Kanten- wie Isotopenformel auf der Annahme zweiatomiger Moleküle beruhen, kommt als Träger dieser Banden der Klasse I das zweiatomige Metallhalogenid in Frage. In Anlehnung an Untersuchungen von MULLIKEN¹) und von TERENIN²) wird man sich den Zerfall der chemisch dreiatomigen Salze folgendermassen vorstellen:

 $2 \text{ MeHal}_2 = \text{MeHal} + \text{ angeregtes Metall} + \text{ unangeregtes Halogen} (3).$

Dass die Bandensysteme der Quecksilber-Cadmium- und Zinkhalogenide, so weit sie hier analysiert werden konnten, nach Violett abschattiert sind, bestätigt sehr schön eine von LUD-LOFF aufgefundene Regel³). Nach dieser müssen nämlich die Spektren von Molekülen mit ungerader Elektronenzahl Violettabschattierung zeigen und vice-versa.

Isotopeneffekt. Als Abschluss dieses Kapitels möge eine Übersicht über die Isotopenaufspaltungen Platz finden, wie diese sich in den Oszillationsbanden der Quecksilber-Cadmium- und Zinkhalogenide widerspiegeln. Da es dabei wesentlich auf eine Abschätzung der Grössenordnung ankommt, so kann man unter Vernachlässigung der in n quadratischen Glieder (b' und b'' = 0)

¹) R. S. MULLIKEN, Phys. Rev. (2) 26, 1, 1925.

²) A. TERENIN, Zeitschr. f. Phys. 49, 865, 1928, und ebenda 44, 713, 1928.

²) H. LUDLOFF, Naturw. 14, 981, 1926, und 15, 409, 1927.

und bei Benützung ganzer Quantenzahlen von folgender Näherungsformel für die Isotopenaufspaltung Δv ausgehen.

$$\varDelta \ \mathbf{v} = \mathbf{v_2} - \mathbf{v_1} = (\varrho - 1) \ (a'_0 \ n' - a_0'' \ n'')^1).$$

Die Indizes 1 und 2 beziehen sich auf die Isotopengewichte M_1 und M_2 . Beschränken wir uns auf Nullkanten, indem wir z. B. n'' = 0 setzen, so erhalten wir einfach:

$$\varDelta \ \mathbf{v} = \mathbf{v_2} - \mathbf{v_1} = (\varrho - 1) \cdot a'n'$$

Der Isotopenfaktor ϱ berechnet sich aus den Aston'schen Massenspektrogrammen, die Konstanten a' aus den Kantenformeln. Für 5 von 9 Salzen, nämlich für HgCl, HgBr, CdJ, CdBr und ZnJ kennen wir diese Formeln und damit auch die zugehörigen a'. Um aber auch die Werte der übrigen 4 Salze wenigstens ungefähr zu erhalten, kann man folgendermassen vorgehen. Nach KRATZER²) ist die Kernschwingungskonstante $a = \frac{a}{\sqrt{\mu}}$, wo a ein Proportionalitätsfaktor und $\mu = \frac{1}{M} + \frac{1}{M'}$ (M und M' sind die Gewichte der Molekülkomponenten) bedeutet. Unter der Annahme, dass der Faktor a für ähnliche Salze angenähert konstant bleibt, gilt dann:

$$a_1: a_2 = \frac{1}{\sqrt{\mu_1'}}: \frac{1}{\sqrt{\mu_2'}} \cdot \frac{1}{\sqrt{\mu_2'}}$$

Nach dieser Proportion können wir z. B. *a* für HgJ (im folgenden kurz mit a_{HgJ} bezeichnet) aus a_{CdJ} oder a_{HgBr} berechnen. CdJ und HgBr stehen HgJ offenbar am nächsten. Die so errechneten Werte sind in Tabelle 11 angeführt.

Tabelle 11.					
Salz	a '	$\frac{1}{\sqrt{\mu}}$	a_x		
HgBr HgI	340 920	0,182	200		
CdJ	$\frac{250}{x}$	0,132	180		

Als Mittelwert erhält man aus Tabelle 11 für $a_{\text{HgJ}} = 190$. Auf analoge Weise findet man $a_{\text{CdCl}} = 330$, $a_{\text{ZnCl}} = 360$, $a_{\text{ZnBr}} = 290$.

¹) Zwischen den mit $(n + \frac{1}{2})$ berechneten a und den mit (n + 0) berechneten a_0 -Werten besteht die einfache Beziehung $a_0 = a - b$. Da wir die b vernachlässigen, dürfen wir $a_0 = a$ setzen. Der dadurch begangene Fehler ist durchwegs kleiner als $1^{0}_{/0}$.

²) A. KRATZER, Zeitschr. f. Phys. 3, 289, 1920, und Ann. d. Phys. 67, 127, 1923.

Der Fehler wird maximal 10% betragen, bei a_{ZnCl} sicher erheblich weniger¹).

Unter Benützung dieser Zahlenwerte sind in Figur 10 die Isotopenaufspaltungen für gleiche Kanten (n' = 5, n'' = 0) dargestellt worden. Die Stärke einer Linie entspricht der ungefähren Häufigkeit der betreffenden Isotope. Die durch Pfeile hervorgehobenen Isotopenaufspaltungen konnten quantitativ festgestellt werden.

Fig. 10. Isotopenaufspaltungen bei den Hg-, Cd- und Zn-Halogeniden.

Da für die Auflösung nicht $\Delta \nu$, sondern $\Delta \lambda = \frac{\Delta \nu}{\nu^2} \cdot 10^8$ Å massgebend ist, so liegen die Verhältnisse für die langwelligen Spektren der Cadmium- und Zinkhalogenide wesentlich günstiger. Bei λ 3300 Å entsprechen 10 ν rund 1,1 Å, bei λ 2500 Å, also im Gebiete der Quecksilberhalogenidbanden, nur 0,6 Å. Wenn trotzdem gerade an den Kanten von HgCl und HgBr der Isotopeneffekt am deutlichsten nachgewiesen werden konnte, so liegt das vor allem an der Quarzdispersion (vgl. Tabelle 1), zum Teil aber auch an den Bandensystemen selbst, die bei den Quecksilberhalogeniden besonders weit ausgedehnt sind. Bei den Cadmiumund Zinkhalogeniden müssen Gitteraufnahmen das noch Fehlende nachholen. (Schluss folgt.)

¹) Nach einer von B. ROSEN empirisch gefundenen Regel (Naturw. 14, 978, 1926), die von R. MECKE erfolgreich auf Halogensalze angewandt worden ist (Zeitschr. f. Phys. 42, 390, 1927), gilt $a \cdot \sqrt{Z_1 \cdot Z_2} = \text{konstant}$, wo Z_1 und Z_2 die Ordnungszahlen der Molekülkomponenten bedeuten. Die so errechneten *a*-Werte stimmen aber eher schlechter als die obigen.

Erläuterung zu Tafel I. (Spektren der Klasse I.)

Als Ergänzung zum Text sind einige drei- bis viermal vergrösserte Spektren reproduziert worden, die aber erheblich hinter den Originalaufnahmen zurückstehen. Die angeschriebenen Wellenlängen (in Å) beziehen sich jeweils auf die Metallinien des betreffenden Salzes. Die meisten Aufnahmen lassen ausserdem das Vergleichsspektrum (Eisenbogenlinien) erkennen.

Fig. 1.

Quecksilberchlorid im Violett und Ultraviolett (Gesamtspektrum), Aufnahme mit 1 Quarzprisma. Die Zahlen I, II und III der zusammengeklammerten Bandensysteme verweisen auf die betreffende Klasse. Für System I (HgCl) sind die Quantenzahlen (n', n'') der stärksten Kanten, für System II (HgCl₂) die Obergruppen angeschrieben.

Fig. 2.

Quecksilberchlorid im kurzwelligen Ultraviolett (Teil von Fig. 1), Aufnahme mit 3 Quarzprismen. Die Chlorisotopenaufspaltung beim Bandensystem von HgCl ist durch Striche hervorgehoben. (Lange Striche = Kanten von HgCl³⁵, kurze Striche = Kanten von HgCl³⁷.)

Fig. 3.

Quecksilberbromid im kurzwelligen Ultraviolett, Aufnahme mit 3 Quarzprismen. Hier entsprechen die längeren Striche den Kanten von HgBr⁷⁹, die kürzeren denjenigen von HgBr⁸¹.

Fig. 4.

Cadmiumjodid im langwelligen Ultraviolett, Aufnahme mit 3 Quarzprismen. Spektrum von CdJ.

