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On the Relation Between Scattering Phase and Bound States*)

by J. M. Jauch.
State University of Iowa, Department of Physics, Iowa City. Iowa, U.S.A.

(5.1.1957.)

Abstract. The relation between phase shifts and bound states proved by Levinson

for spherical symmetric potential functions satisfying certain regularity conditions

is generalized for arbitrary interactions. The regularity condition of Levinson
is replaced by a condition for the behavior of the scattering state wave functions
at infinite energy. The proof of the relation given here shows that it is a simple
consequence of the orthogonality and completeness relation for the eigenfunctions
of the total energy operator.

1. Introduction.

It was shown by Levinson1) that the scattering phase ô(k) for
S-states in a spherically symmetrical potential V(r) is connected to
the number n of bound S-states by the relation

o{0)~o(oo)=nn (1.1)

provided the potential satisfies the conditions
CO

/ r\ V(r) \dr < oo
b

__

lr2\V(r)\dr <oo

(1.2)

For many applications it would be desirable to have a generalization

of this theorem for cases in which the interaction V is not
necessarily a diagonal operator in configuration space. For such
cases (1-2) will have to be replaced by another condition. It is the
purpose of this note to supply such a condition which takes the place
of (1.2) and to show that theorem (1.1) still holds under the new
restriction imposed on the interaction operator.

*) Supported by the National Science Foundation.
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The method of proof will be more elementary than the function
theoretical method used by Levinson and others in connection with
problems of this kind. In fact in the approach used here we shall
show that the relation (1.1) is a simple consequence of the
orthogonality and completeness relation for the set of eigenfunctions of
the total energy operator H H0 + V. This is a property which
must be assumed to hold for any reasonable quantum mechanical
system. It leads us to believe that a theorem analogous to (1.1) must
hold even in the case of field theoretical interactions. However, in
this case the situation is complicated by the fact that inelastic
scattering processes can occur which are accompanied by the production

of new particles. The phase shifts for the elastic scattering
furnish then no longer a complete description of scattering but they
must be supplemented with additional information concerning the
probability for the occurrence of various additional particles in the
scattering process. This complication has so far prevented us from
formulating a correspondingly simple relation for the interactions
in field theory.

We shall find it convenient to use the operator formalism of the
scattering theory. The simplicity and elegance of this procedure
allows the derivation of the basic relations with great ease. Since this
formalism has not been generally in use we shall give a brief review2)
of the main points in Sections 2 and 3.

In Section 4 we shall derive the relation between the wave operator

and the phase shift which furnishes the needed link between
the /S-operator and the wave-operator. With all these preparations
out of the way we give the proof of relation (1.1) in Section 5.

2. The Wave-operator.

In scattering theory one usually assumes that the total energy
operator H of the system can be separated into two parts

H H0 + V (2.1)

such that H0 represents the total kinetic energy of the free particles
and V their interaction energy. We shall not be concerned here with
the complications which occur in multichannel reaction theory
where this separation is not possible and shall assume such a
decomposition exists.

We shall further assume that the eigenvalues of H0 as well as H
belong to the same continuum starting with a minimum value E 0.
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This can always be achieved by a suitable choice of additive
constants in H and H0. The spectrum or H differs from that of H0 in
that H may have in addition a finite of countably infinite number
of bound states. In order to avoid certain irrelevant complications
we shall consider only the case that all the bound states eigenvalues
Er, are below the continuum.

E«<0. (2.2)

The state vectors coq of the free particles are eigenstates of the
operator H0

H0a>s E(g)«V (2.3)

Here q stands for the eigenvalues of a complete set of commuting
observables, all of which commute with H0. They may be a mixture
of discrete and continuous variables. The state vectors mq are
assumed to be normalized in accordance with

K,CV) %>3'). (2-4)

The scattering states are represented by state vectors of the form

Û, -». + *. (2-5)

where %q is the scattered wave, which vanishes for those portions in
configuration space corresponding to large separations of the
particles. The scattering states are solutions of the stationary state
Schròdinger equation

HQg E(q)Qa. (2.6)

The bound states Ea satisfy

HQa EaQa. (2.7)

They are normalized and orthogonal to the scattering states,
because of (2.2)

(£«>£,) 0. (2.8)

The "wave-matrix", defined by

(q\Q\q') (coq,QQ,) (2.9)
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can be looked upon as the matrix representation of the "wave
operator" Q, in the complete orthonormal system of the a)Q.

(œt,Qœ,) (q\Q\f). (2.10)

It is therefore the linear operator which transforms the a)Q into the
Qq according to

QQ=QoJq. (2.11)

It is now easily recognized that Eq. (2.6) is the projection of the
operator relation

HQ=QH0 (2.12)

on the state vector coq. The relation (2.12) is the basic property of
the wave operator. It is important to note that it does not define
the operator Q uniquely. Indeed if X is any operator which
commutes with H0 then

Q1=QX (2.13)

is also a solution of (2.12). If the system of state vectors (2.5)
represents a complete system of scattering states then the converse
is also true. We shall refer to the corresponding wave operators as

complete.
If Q is a complete wave operator which moreover satisfies the

orthonormal condition
Q*Q I (2.14)

then the operators QQ* and

A I-QQ* (2.15)

are projection operators. If A is the zero operator then the system
of scattering states is already a complete system and Q is unitary.
We shall refer to A as the unitary deficiency. In terms of the state
vectors Ea it may be written as a sum over all bound states

n

A-ZQ&. (2.16)
ce-l

From the orthogonality relation (2.8) follows that every wave operator

satisfies

AQ=Q*A 0. (2.17)
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If the state vectors Qa are normalized according to (2.8) then the
trace of Qa fi* is

Tr(QaQt)S(Qa,Qa) l. (2.18)

Hence according to (2.16)
TrA n (2.19)

where n is the total number of bound states. If (2.14) holds we may
write this last equation as

Tr[Q*,Q] n. (2.20)

In this relation we have succeeded in expressing the total number
of bound states entirely in terms of the wave-operator. It is therefore

the source of the relation (1.1) which we wish to derive.
This result can be extended if the system has integrals, that is

operators which commute with the energy operators. In the most
important cases a total angular momentum operator J is an integral.
Hence we shall assume that there exists such an operator with the
usual commutation rules and such that

[H,J] 0 and [Ho,J} 0. (2-2:t)

The operators J2 and J3 are then commuting and can be
simultaneously diagonalized with eigenvalues j(j + l) and to (—7<to<i')
respectively. The projection operator P,- which projects an arbitrary
state vector into the subspace of total angular momentum j
commutes then also with H and H0 and hence with Q. Thus we define

QJ P,Q QPf
which satisfies

Hß,= ß,i?0
and

Tr [fi*, £,] «, (2.22)

where nt is the number of all the bound states with total angular
momentum j.

Since the sum of all projection operators

ZPt=l
Ì

is equal to the unit operator, we obtain (2.20) from (2.22) by
summing over all values of j.



148 J. M. Jauch. H.P.A.

We shall now also formulate the condition which is needed for the
validity of Eq. (1.1). In order to do this, we rewrite the equation

[Q,Q*] A

in terms of the scattering wave-operator T defined by

T=Q-1

[T,T*] A (2.24)

We take the diagonal matrix clement of this equation in an arbitrary
representation

f{(q\T\q')(q\T\q')*^(q'\T\q)*(q'\T\q)}=(q\A\q). (2.25)
q'

We have indicated the possibly mixed summation and integration
over the intermediate variables q' by a symbolic integration sign.
For the variables q we choose now the total energy E and a set of
additional variables a to complete the system. The integration
which occurs in (2.25) can then be written as the integral over E'
of the expression

F(EE')=f{(Ea\T\E'a')(Ea\T\Ea)*~(E'a'\T\E'a')*(E'a'\T\Ea)}.
a'

We shall require that the integral
oo

fF(EE')dE'<oo (2.26)
E'>B

be absolutely and uniformly convergent with respect to the
parameter E.

The significance of this requirement is the following. The Eq. (2.25)
shows that in general a second integration over the variable q cannot
be interchanged with the first integration over q'. If it could, then
the antisymmetry of the integral would ensure that

f(q\A\q) TrA n,
Q

is always zero.
As we shall see below there are two reasons for this non-commutative

property, one is a singularity of the integral at E E', and
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the other is a possibly too weak convergence of the integral at
E -> oo. The first reason is always present and is therefore a characteristic

property of the scattering operator. The second reason is
considered a more or less unusual behaviour of the wave function
for very large values of E. For instance it does not hold for
interaction potentials which satisfy Levinson's condition (1.2). The
condition (2.26) ensures that the contribution of the region E -+¦ oo to
the integral (2.25) vanishes. This will be shown explicitly below.

3. The Scattering Operator.

For convenience of reference we shall mention here four equivalent
definitions of the <S-operator.

We define for any complete wave-operator Q, which is a solution
of (2.12), a one-parameter family of operators

Q(r) eiB'rQe~iB'z (3.1)

then the S-operator is defined by the relation

Q(+oo)=--SQ(-oo). (I)

A second definition is obtained in terms of the special operators Q+
and Q_ which represent outgoing and ingoing scattered waves and
which are given by the integrals3)

o

taQ+ lime / eer + iBTe-iB'rdr (3.2)+
«-*.+ o J

— OO

oo

fi_ lim.e fe-er+iHTe~iH'rdr. (3.2)_
£-»+0 J

o

These two operators satisfy the initial and final conditions

I=Q+(-oo) Q_(+oo) (3.3)

and the orthonormal conditions

Q*+Q+=Q*_Q_=I. (3.4)
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According to (I) they define the S-operator by either one of the
relations

S=fi+(+oo) S-1 fi_(-oo). (3.5)

A second definition of S is now given by

S-=Q*_Q+. (II)

Two more definitions can be given with the help of the operator

V(r) eiH°rVe-iH"T

+00

S=I-i [V{r)Q+{r)dz (III)
—00

+ 00

S-1 l + i fv{r)Q_(T)dr. (IV)
—00

The unitary property and the equivalence of these definitions can
be easily proved4). It will be convenient for the following to define
an operator

G± VQ± (3.6)

4. Relation Between the Phase Shift and the Wave Operator.

In this section we shall restrict ourselves to a relativistic scalar
particle and an interaction operator which does not permit any
inelastic scattering (that is there shall bo no creation of new particles
in the scattering process). The latter condition is rather essential
while the former is not. It would be easy to carry through the steps
given below with only slight modifications to include the case of
particles with spin. For the sake of clarity we shall refrain from
doing so.

Under these assumptions the momentum vector k represents a

complete system of eigenvalues. We can use them for labelling the
energy values and the matrix elements. Because of the rotational
symmetry a more convenient system is the set of three variables
fe, j, to, where the first refers to fe j/ fex2 + fe22 + fe32 the magnitude
of the momentum, and j, and to are the total angular momentum
and its projection in a fixed space direction. Because of the first of
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our simplifying assumptions these three variables suffice for the
complete identification of the states but it would be easy to include
other internal degrees of freedom in the description, such as spin
and isotopie spin.

All the operators which commute with J are diagonal in the
indices j and to and depend only on j. Hence we can write for the
general matrix element of Q for instance

(fe j to | Q | fe' i" to') (fe | Q} | fe') ò,f ômm, (4.1)

and similar expressions for all the other matrices which commute
with J. In all subsequent discussions we shall refer only to the sub-
matrices such as (fe| Q, | fe') and omit the index j from all equations.
It will be understood that the relations obtained will be valid for
all j.

The transformation from the variables fe to kjm will involve a
Jacobian which we shall keep distinct from the matrix elements.
Thus we write for the matrix product of two matrices

(fe \AB\ fe') j{k\A\ fe"fe) {k"\B\ fe') k"*dk". (4.2)

The unit matrix is then represented by

(k\l\k') ^d(k-k'). (4.3)

The energy is a function E(k) which in the relativistic case would be

given by _
E(fe)=]/fe2 + TO2. (4.4)

In any case it will be a monotonically increasing function of fe.

We shall need the Jacobian for the transformation from fe to E
which we denote by

J=^>0. (4.5)

All operators which commute with H0 are diagonal in fe and fe'.

For instance for the S-matrix we have

(k\S\k') ±,ò(k-k')S(k). (4.6)
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The unitary property implies

S(k) S*(k) 1 (4.7)
or

S{k) e2iòm. (4.8)

The real quantity ô(k) is the phase shift.
We shall now relate the phase shift to the wave matrix or rather

to the matrix representation of the operators G+ (Eq. (3.6)). According

to definitions III and IV we have

{k\S±1\k')-=~ô(k-k')±2niÔ(E ~E') (fc|GJfc') (4.9)

Since

Ò{E-E') (fe \G±\ fe') =ò(k- k')~G±(k). (4.10)

We obtain

S{k)±1 e±2i*k)=l±~27iiG±{k). (4.11)

It will be convenient in the following to define the new functions

"\~n~G (fe) (4.12)

and to express the phase shift in terms of these functions

g±(k) ~e±iôsmô. (4.13)

5. Derivation of Relation (1.1).

We are now prepared for the derivation of Eq. (LI). We start
with Eq. (2.24) for any of the submatrices (fe | T3-1 fe'). (In the following

we shall work only with the Q+ wave operator and omit the +.)
oo

fk"2dk'{(k"\T\ fe) (fe"|T|fe') - {k\T\ fe") (fe' \Tj fe")*}
0

=(k\A\k'). (5.1)

From (2.19) follows then
oo

fk2dk(k\A\k) n. (5.2)
o"
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We now express the left-hand side in terms of the phase shift via
the expression2

(k\T\k') -^§^l- ~2niô+(E-E')(k\G\k'). (5.3)

For the t5+-function we substitute the expression

*+(«) tW+-5^-5-. ^
In the following all denominators are understood as principal values.
We now separate the left-hand side of (5.1) into three parts

(fe M| fe') (fe \A | fe') + (fe \B\k') + (k\C\ fe'). (5.5)

The first part arises from products of two ^.-functions when (5.4) is
substituted into (5.3). This term has the form

(fe \A\ fe') 2n2-jJLr{[G*(k) {k\G\ fe') + {k'\G\k)*G(k)]

- [(fe |ö| k')G*{k') + G(k) (fe' \G\ k)*]}o(k-k') 0. (5.6)

It vanishes because only diagonal terms contribute and they vanish
identically.

The second term in (5.5) originates in the mixed products of ô(co)
and I/o» in the products of the <5+-functions. They have the form

(fe|B|fc')=-£^-|[^G(fe)-^G(fc')](fe'|G|fe)*

+ [Ç G* (fe') - Jt G*(k)] (fe | G | fe')}. (5.7)

The contribution of these terms to the trace will be evaluated
below.

The third term is
CO

(MG|fe') |^_^^T[(fe''|G|fe)*(fe''|G|fc'
-(fe|G]fe")(fe'|G|fe")*]. (5.8)

The trace of this term vanishes
00

fk\k\C\k)dk 0 (5.9)
o

provided the two integrations over fc and fe" are interchangeable
because the integrand is antisymmetrical. We shall now show that



154 J. M. Jauch. H. P. A.

this interchange is permissible provided condition (2.26) is satisfied.

In order to see this we write for the integral in (5.8)
CO

i-Q^^E^W)nV"-,E,E') {k\C\k') (5.10)
È,

thereby defining the function F(E"; EE'). The minimum energy
is E0 E(0). In the trace calculation (5.9) only the diagonal terms
are involved, hence we define a function

0(E",E)=F{E";E,E) -0(E,E"). (5.11)

We now decompose the denominators in (5.8) according to

(E"-E)~(E"-Ë/) E~^W \~Wr^¥ ~ E"-E'J (5.12)

and develop the expression

u,(E,E')=fF(E"; E,E') (-E,1--lï±w)dE>' (5.13)

in powers of (E — E'). Only the first order term

w{E,E')=-{E-E')j^^dE" +

needs to be considered in view of Eq. (5.9). Using this expression
we now obtain for the left-hand side of (5.9)

OO CO oo

/'fe2(fe IC1 fe) dk - fdE fy'fi dE' (5.10)
0 E„ È,

with
0(E',E) -~0(E,E').

The explicit expression for 0{E'E) is

0{E', E) E'E fc'fc {j (fe' |Gj fe)]2- |(fe|G| fe)|2}. (5.11)

On account of the antisymmetry of 0{E'E) the expression (5.10)
vanishes provided the two integrations can be interchanged. This
is the case if the inner integral is uniformly and absolutely
convergent. In view of (5.3) this is equivalent to the uniform and
absolute convergence of (2.26) which we have explicitly assumed.
Hence (5.9) is established.
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We now turn our attention to the expression (5.7) which may be

expressed in terms of the function

g(k) ^G(k) (5.10)

(k\B\k') lf*-È7{[g(k)-g(k')}(k'\G\k)*

+ [g*(k') _ g*(fe)] (fe | (J | fe')*} (5.11)

In the limit fe' -> fe we have

SZ^r [9{k) - g(fc')] T 3'(fc) • (5-12)

In view of (5.2) and (5.10) we obtain finally
oo

» i/ (j.'(fc) ö*(fc) - »W »'*(*)) <** • (5.13)
o

By expressing this in terms of the phase shift ô(k) and ó'(fe) s d!(5/dfc

with (4.13) we find
OO

n -~ fa' sin2 d dk (5.14)
o

This integral can be evaluated explicitly since

ó'sin2 ò -TT~rra2 dk

where a ò — 1/2 sin 2 ò. We obtain finally

n.= i(fl(0)-a(oo)). (5.15)

This relation is equivalent to the relation (1.1) which we wished
to prove. In order to show this we put

(5(0) oc

ô (oo) — n tc + a!, a — a' çj
and obtain

1
n — (nxc-

or
99 sin <p.

The only solution of the last equation is 95 0. Thus (1.1) is
established.
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