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Temperature Dependence of Magnetic Susceptibility
by C. P. Enz

Physikalisches Institut der ETH, Zürich

(15. Vili. 1959)

Zusammenfassung. Der in der vorangehenden Arbeit1) abgeleitete Ausdruck
für die Suszeptibilität genügt nicht zur Erklärung einer bei einigen Halbleitern
im Bereich massig tiefer Temperaturen gemessenen Temperaturabhängigkeit.
Hier wird der Rahmen der Theorie erweitert durch Heranziehung der Elektron-
Phonon Wechselwirkung. Diese gibt zu einer zusätzlichen Suszeptibilität An-
lass, welche zwar hier nicht explizit berechnet wird, von der jedoch plausibel
gemacht wird, dass sie den Effekt erklärt.

1. Introduction
The temperature dependence of the formulae (4.9-13) derived in

the previous paper1) (all quotations of the type (4.9) refer to this paper)
is governed by the Fermi distribution/(F) and by the function G(En,En,).
Although the result (4.14) is likely to account for the % — T dependence

of many crystals, anomalous behaviour is empirically found for
some semiconductors. These substances sfyow a diamagnetic susceptibility
of the form

Xe,p=i-a + bT; b>0 (1)

at moderately low temperatures where the density of conduction carriers
is practicaUy zero2). Since in the region of validity of (1) the minimum
| Eg — f | of the energy difference | En(k) — £ j is of the order of about
20-kT the total susceptibility (4.14) there is of the form

X Xo + Xi(T) e' -(Eg- Oß T

where Xo is independent of T. Because of the factor exp (— (Eg — OJkT)
the second term in the latter formula is practically zero simultanously
with the density of conduction carriers. Therefore our formula for % does

not account for the behaviour (1).
Some time ago an explanation for such an anomalous temperature

dependence was proposed by Krumhansl and Brooks3). According to
these authors a van Vleck magnetism of the form (4.22) should be of
importance, the leading term being one which connects valence and
conduction band states. In their proposal the behaviour (1) is due to a
temperature variation of the energy denominator which for the states in
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question is well known empirically. It was pointed out earlier4), however,
that from the point of view of a more general theory the justification for
picking out this special term (4.22) is not convincing. Moreover, the
temperature dependence assumed by Krumhansl and Brooks is of a
rather special nature. In fact, the variation of the energy gap between
valence and conduction band as function of temperature has long
previously been explained by Fan and others5) as a second order effect of
the electron-phonon interaction. Therefore a more rigorous theory of the
anamlous behaviour (1) would have to develop from this interaction. In
what follows we shall develop the general lines of such a theory without,
however, entering into a detailed calculation. It will become clear, at
least in tight binding approximation, that a new type of function of T,
different from those occuring in eqs. (4.9-13) comes into play, which
qualitatively may well account for (1).

2. Statistics of the electron-phonon system
Since we are interested only in statistical effects of the electron-

phonon interaction a second quantisation point of view is appropriate for
the whole system.

The basic electronic states without electron-phonon interaction are
the eigenstates | k) of the Hamiltonian § with a magnetic field present,
eq-(2-3)' m-wk\k) (2)

Then the second quantized electron Hamiltonian is

§EL EN*W* (3)
k

where Nk ak ak (4)

1s the occupation number of electrons in state | k), Nh 0 or 1, and a\,
ak are emission and absorption operators obeying the anticomutation rule

K, %} <V (5)

The phonon amplitude at the lattice site Rx we write as (the lattice
is supposed here to be of Bravais type)

ujt) (2 G M)-h£cog-i eq bq eiil>R« ~ V> 4- herm. conj. (6)

where G is the number of atoms in the crystal (which is assumed here to
be finite) and M their mass, q stands for the phonon wave vector q and
the polarisation index s 1, 2, 3, q (s, q). e is a polarization vector
satisfyingy *

Kqes,q) òss,; all q (7)

bq is an absorption operator which obeys the commutation rule

K K>] òqq. (8)
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Then the free phonon Hamiltonian is

®PH
M T-» /-2 - u««J Enimt

where

nq K K

117

(9)

(10)

is the number of phonons in state q. In $Ph the zero point energy has
been eliminated by an appropriate ordering of operators.

For the electron-phonon interaction we take (see e.g. Peierls6),
p. 125)

sin( 27w'(*--R«)u«(o) (")
a

which in second quantization leads to

§i EE "Kb I &int\ k') ak'
* A'

(12)

E E E (k\c«\k')al ak' hq +herm- conJ-
k k' q

with
Cq(x) (2 G Mcoq)-hjr eqW(x~ RA e'"R« (12')

a

Our task is now to analyse the canonical ensemble defined by the total
Hamiltonian

&« &/+&« (13)

where

§/=€>« + £p, (13')

is the free Hamiltonian, by treating the electron-phonon interaction £>£

and later also the magnetic field as perturbations. As usual we circumvent

the subsidiary condition that

N EN« <14)
A

should be constant by going to the grand canonical ensemble where this
condition is relaxed by introducing a Lagrange multiplier J, the Fermi
energy. Then

e - * "toM Trace e ~ a ^totai - f 0 ; a _L (15)
fi J.

defines the total thermodynamic potential ßtoW <pMai — N-Ç and the
total free energy <ptoM, N being the average number of electrons.

The perturbation expansion in §; can be performed exactly in the same

way as in section 2 of ref. 1, writing

¦'total ±, jdz e— Trace (z - §Mal + N C)~' (16)
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(* - §totai + NÇyi=(z-$f+N C)-1 +

+ (z - §f+ N f)-1 #,(*-$,+ # C)-1 4- (If)')

+ (z~$f+Nl;)-i§i(z-$f+NÇ)-i$i(z-§f+NO-
By going into the representation where the occupation numbers Nk and

nq are diagonal the trace of the first order term in (16') is seen to vanish
since §/is diagonal and §£has no diagonal elements. Therefore we can
write

where

and

SÌMal Sìf+SÌ'A----
e-«üt0tai e-«°f (l-aß'-f---)

e~aal Trace e"«»/-*«

5/ Si' -^—r <£ dz e~az Trace [(z -§f+N Ç)~i -

¦ &,(* -§,+ N C)"1£,- (z-$f+N C)"1]

(17)

(17')

(17")

Calling | A > a general state in the representation by the occupation
numbers Nk, nq, NA the value of (14) and F^the eigenvalue of ^in this
state, •Qf\A>=EA\A> (18)

eqs. (17') and (17") read

E*-« (EA-NAi) (19)

and
1

2 71',
<£dze-«*ZZ(z~EA+NA0-
•> AB

¦iA\pi\B}(z-EB + NBC)-1<B\^i\Ay

Making use of (3.18) and of the identity

e-aa—e-xb e~ab / dXe-X{a-b)

0
a— b

we obtain

- a e~anl Q' 27 27 \<A |£>,-1 By \2 e'a ^-"^> •

A B

XdXe-'-VEA-NAi'(EB-NBi)i
(20)
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We first want to calculate the expressions

B

Tkk.q^Z<A\§t\B><B\a;,akbq\Aye-^B-»BO
B

for k 4= ft'. Let

\A>=\...,Nkt...,Nk,,...,nqr..> (21)

Then there is just one state | B > which contributes to 5 and T. Since

ak\Nk>=^Nk\l-Nk>; a*k\Nk > |/l - Nk\l - Nk>

&«K> i%\na-1>; K\ni> )'% + 1\nq +1>
it follows from (12) and (3), (9) that

Skk,q (ft |Cf | ft')* (1 - A,) Ai. », <rA (^-v^ '+**-»V-,)

î^, (ft IC, I ft') A, (1 - A,,) (n, + 1) e~* (ea~»a c-*»+**•+-,)

The case ft ft' need not be considered since from gauge invariance it
follows that (ft | Cq | ft) o for q 4= 0. Indeed, a shift of the coordinate
system through Rx induces a gauge transformation

A(x- RA A(x) A-~; f(x- Ra) é>A^ W(x)

with
A(x) ±H(xxRA

A(x) being given by (2.8). Therefore

y,* (x - RA W(x- RA y> (x - RA f*(x) W (x - ÄJ W(x)

Integrating over the crystal volume (which here again is assumed to
be infinite) it follows that

f d3 x f*(x) 27 W(x - RA e1**« y>(x) =27 <?"** f d3 x ip*(x) W(x) y>(x)

which for q #= 0 is zero on account of (A. 4). Thus

27K^iC>i[-B>[2^A(£ß-'YBf) £;-A(^-^f)2727Z,l(ÄlcJ^)l
B h k' q (22)

{(1-Afe) Nk.nqe-x(w>>-w*'-'0i) +Nk(l-Nk.) (nq+l) e**1"*-™*'-^}
Since according to (21)

Ea=EN*W* + E%<»« t23)
A q

we have from (19), (14)

3f IJ E e-'Wu-Qitih JJ [ jr6-*»t*,
(24)

j7(i + e-a^A-c)) rj(i
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or ß/ -1E los (i + e~* lWh~a) + iE los (i - e~a aq) (24')
k q

Here the electron part (note that spin is neglected in (2)) is identical with
VJ2-Ü as defined in (2.2, 4). With the help of eqs. (22), (23), (24), (19),

eq. (20) can be written as

-*ß' 27I727l(*lQI*')!2 E E îU-W-
k k' q -¥£ 0,1 Nk'~0,1 % 0 I

a

• A, nq f XdX e-^w»-wv-m<> + A, (1 - A,,) (nq + 1) •

f XdXe+^w» Wk-°>A

o j
OO

27 e-a(WA'-«-V 27 e~a(

y e-*(wk-()Nk
vÄ-o,i

Introducing average occupation numbers

ivi 27 Nke-a^k-()Nk r £ e-«(w*-0**l-i =.(«»("'*-« +l)-i /(Wy
vA-o,i Lv*-o,i J

(25)

«„ Y n„e~'xm<in<i
<1 £u 1 27<ra<u?n* l)-1 g(û).) (26)

(note that in (25) / is the Fermi function introduced in (4.1)) the last
expression for — ocß' becomes

-«ß' 27ZTIWI*')l2
k k' q

i - - a

¦ (1 - A„) Nk,nq f XdX e-"~w"-w"'-ai) +

a

4- Nk(l - Nk,) («„ + 1) /" X dX *+*<*a-*V—j)

(27)

This formula may be simplified further by exploiting the symmetry of
Cq which in view of the relations

mi °V eq eq> 1 - (s< 9); Ì (s> - 9)

and of its definition (12') is

Thus
C — C~

(ft|CJft')|3=|(ft'|C>|ft)P
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and after relabelling the summation indices in the second term of the
curled bracket of (27) according to ft -> ft', ft' -> ft, q -> q this formula
simplifies to

- aß' 272727 \(kK\k') |2 (1 - Nk)Nk. -

¦ f XdXe~X{Wk-wk') {nqe+Xm4+ (nq + 1) e~Xa9}

(28)

For the evaluation of ß' as a perturbation expansion in the magnetic
field it is important that eq. (28) may be rewritten in a form which is
independent of the representation (2). In fact, with use of (25), (26) we
can write

a ß' 27 j XdX Trace [(1 - /($)) e -/§
(28')

• Cq /(S) e + x « c'] gK) (e+A«, + ,<«-*)»,)

where now the trace goes over one-electron states as in (2.2). The
modification of the electronic thermodynamic potential Q, eqs. (2.1, 2), due
to the interaction with the phonons is

ß' ß!°! //int H2 (29)

where Xint is the additional susceptibility due to this interaction. The
calculation of ß' as a power series in the magnetic field H can, in
principle, be carried through with the method used in ref. 1, writing the
functions (1 — /(§)). exp (— X §) and /(§) -exp (4- X §) in (28') as Cauchy
integrals and making use of the expansion (2.6). The evaluation may
again be carried out in the field free representation (2.7).

The matrix element of Cq in this representation is obtained by means
of a reduction of the domain of integration to the cell Q0 using (A. 1, 2),

(2 GMmq)i (nk\Cq\n' ft') 27 elqR« eq (n ft | W (x - RA\n' ft')

fi.

With

this may be written as

(2GMo)Ai (nk\Cq\n' ft')

__ y YeiqRaei(k--k)Rß
a /3

un.k.(x')el(k'-k)x' eqW(x'

Ra~R„ R,

d3x' unk (x'[

R, R,

E> ,i[q k'-k)Ra

27 / d3x' e»(*'-*) <*'+*r>. "nk "¦n'k eq W (x' + RA

a.



122 C. P. Enz H.P.A.

Making use of (A.4) and goingback to the full domain of integration weobtain

(n ft | Cq\ ri ft') ~^~ ò(q + k' -k) (2 G M ojq)~i eq(n k\W(x)\ri ft')

(30)
3. Temperatur dependence of ß'

It is evident from eq. (28') that, due to the phonon variables but also
to the A-integration, a new type of temperature variation is present in
Si'. With the use of (30) we may write eq. (28') as

ß' --i [ XdXY f d3q «"'*+"-'"''« .jMLhLTjr(0L,-X.q)
a. J _, J earn -1 m jj \ > •-±)

0 s_1

where eqj is the /-component of the polarisation vector eq. To simplify
the discussion we assume that

ms, a
C

s
| 1 |

cs being the velocity of phonons of mode s 1, 2, 3. With the new
variables ^

x=amq; !=—; xm «.œmg^^r
where com is the maximum frequency and 0 the Debye temperature, we
obtain

^

ß' - LJi di (27 's") f* dx ^J^* j düq eqj eqj, Tjj,

In the temperature region of interest, 0 > T holds, so that we can
replace the limit of integration xm by infinity. Now in tight binding approximation

Tjj, does not depend on q as is seen from (30), (28) and Appendix C

of ref. 1, so that, recalling (7),

o 1 „ OO

n' -^-^Ecs~Z / ?d$2jTjj(*,S*) / xdx
s"! 0 '-1 0

Thus Si' contains an overall factor 1/a ftT in addition to the dependence
of Tjj on a. According to (29) the same is true for %int, so that

Xtotal X < Xint \^ I

is likely to account for the behaviour (1).
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