Helvetica Physica Acta
37 (1964)
VII-VIII
Caractéristiques de la composante luminescente à 4300 Å de CsI pur
Aegerter, M. / Hoffmann, A. / Rossel, J.
https://doi.org/10.5169/seals-113509

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 19.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Caractéristiques de la composante luminescente à 4300 Å de CsI pur

par M. Aegerter, A. Hoffmann et J. Rossel

Institut de Physique, Université de Neuchâtel

(16 V 64)

1. Introduction

Les études de la luminescence de cristaux de CsI purifiés par fonte zonale ont montré que la composante chaude (γ_1) est liée à la présence d'ions positifs divalents, tandis que la composante froide (γ_2) est une propriété du cristal chimiquement pur¹). Le parallélisme entre l'intensité de γ_1 et la conductivité ionique a suggéré que les lacunes cationiques libres en équilibre thermique avec les ions divalents forment les centres responsables de γ_1 . L'observation d'une intensification de γ_1 par déformation plastique²)³) ou par traitement thermique⁴)⁵) du cristal sont en accord avec cette hypothèse.

Nous étudions dans ce travail le comportement de γ_1 en fonction de la température et présentons des résultats permettant de clarifier le rôle que jouent les ions divalents. Nous donnons aussi quelques résultats concernant le profil des bandes d'émission susceptibles de caractériser le centre luminescent.

2. Intensité de γ_1 en fonction de la température

Les cristaux qui ont été étudiés par excitation β (40 mC Sr⁹⁰) sont ceux déjà utilisés dans un travail précédent¹), à une exception près. Le dispositif de mesure est celui déjà décrit¹)²) et amélioré par l'aménagement d'une lentille de quartz entre la fente de sortie du spectrographe (HILGER F/4 E517) et la photocathode du photomultiplicateur 1P28. Avec une largeur de fente d'entrée de 0,75 mm et de sortie de 0,25 mm, on obtient un signal d'émission de 10×10^{-8} Å au maximum. Les cristaux sont placés dans un cryostat que l'on évacue à 10^{-5} mmHg environ. On refroidit alors à la température de l'azote liquide et on irradie par les β du Sr⁹⁰ pendant que le système se réchauffe à la vitesse de 0,6 à $1,2^{\circ}/min$. Tous les spectres sont enregistrés en prenant la raie 2537 Å du Hg comme référence de longueur d'onde.

La figure 1 donne, pour 5 cristaux déjà étudiés¹), le rapport R(T) de l'intensité de γ_1 à l'intensité maximum, trouvée sensiblement constante, de la composante froide γ_2 voisine de 3500 Å. Cette norme ramène les différents cristaux aux mêmes conditions de mesure et permet leur comparaison. La concentration en ions divalents varie de 30 ppm à 300 ppm environ entre le cristal N° 1 et le N° 5 (d'après estimation et analyse par spectrographie d'arc). On constate que l'intensité de γ_1 augmente alors que le degré de purification diminue et que la position T_m du maximum de R(T) se déplace vers les basses températures.

Valeur du rendement luminescent R(T) pour 5 cristaux de pureté décroissante (N° 1 à N° 5) (Les températures indiquées pour les maxima sont comprises entre les deux traits verticaux)

Dans ces mêmes cristaux, on observe une composante fixe à 3490 ± 30 Å entre 77°K et 140°K et une autre voisine de 3080 Å à 140°K et de 3120 Å à 250°K. Elles constituent ensemble la composante froide située vers 3470 Å observée jusqu'ici. La position spectrale de la composante chaude varie d'une façon caractéristique. Elle part de 4350 Å à 77°K, passe par 4250 Å à 140°K et revient à la première valeur à la température normale.

3. Influence des ions divalents (Ca⁺⁺ et Sr⁺⁺) et des paires de Schottky

Nous avons pu doter le cristal N° 2 en Ca⁺⁺ par diffusion à partir de la phase solide du CaI₂ déposé préalablement sur 2 faces du cristal. La diffusion a eu lieu en atmosphère d'azote à 530°C pendant 140 h. La concentration ainsi obtenue est de 104 \pm 15 ppm. L'intensité est augmentée d'un facteur 3 environ, tandis que T_m se déplace de 169°K à 108°K (figure 2a).

Un cristal tiré de la solution aqueuse (N° 33) a été coupé en deux parties. L'une a été dotée en Sr⁺⁺ (N° 33 doté Sr) par diffusion à partir de la phase solide de SrI₂ à 390°C pendant 170 h. L'autre a subi le même traitement thermique, mais sans dotage (N° 33 référence). La concentration en ions Sr⁺⁺ de l'ordre de 0,01 ppm a passé à 280 ± 10 ppm*). On constate deux effets: le traitement thermique seul fait apparaître la composante chaude alors qu'elle était absente pour le cristal tiré de la solution; le dotage en Sr⁺⁺ l'augmente d'un facteur 10 environ (figure 2b).

^{*)} Nous tenons à remercier vivement le Prof. GEISS et le D^r HIRTH de l'Université de Berne, d'avoir effectué pour nous ces analyses par spectroscopie de masse (méthode de dilution isotopique).

Figure 2 b Valeurs du rendement de γ_1 pour les cristaux N° 33, doté Sr⁺⁺ et N° 33 référence. (Pour le cristal initial N° 33, γ_1 est absent; la courbe indiqueé se rapporte à une faible composante d'origine inconnue à 5500 Å)

Après dissolution dans l'eau suivie d'une recristallisation, les deux cristaux dotés se comportent différemment; pour le dotage en Ca⁺⁺, γ_1 disparaît et il y a apparition d'une composante vers 5000 Å; pour le Sr⁺⁺, il y a apparition d'une composante vers 5200 Å d'intensité comparable à celle de γ_1 .

Un essai de «temperature quenching» effectué sur le cristal N° 5, chauffé pendant deux heures à 500° C puis refroidi en quelques secondes dans CCl_4 à 20° C, montre que l'augmentation de la concentration des paires de SCHOTTKY accroît l'intensité de γ_1 et déplace T_m de 156° K à 125° K (figure 3).

Ces observations montrent clairement l'intensification de γ_1 par augmentation du nombre de lacunes cationiques indépendamment de leur origine. Les nouvelles bandes luminescentes qui apparaissent vers 5000 Å sont très probablement dues à l'introduction d'autres impuretés (O, OH) produisant de nouveaux centres luminescents qui demanderaient une étude spéciale.

Dans l'hypothèse où l'émission luminescente γ_1 serait liée aux lacunes cationiques libres, une expression pour le rendement de γ_1 proposée dans ¹) serait:

$$\eta(T) = \frac{k_1}{k_1 + k_2} \, y(T) = \text{Const.} \, \frac{\exp\left(-\frac{E/2 \, k \, T\right)}{1 + s_2/s_1 \, \exp\left(-\frac{E/2 \, k \, T\right)}{1 + s_2/s_1 \, \exp\left(-\frac{E/2 \, k \, T}{1 + s_2/s_1 \, \exp\left(-\frac{E/2 \,$$

Le premier facteur donne le rendement d'un centre luminescent du type RANDALL et WILKINS (énergie d'activation radiative E_1 et non radiative E_2), tandis que y(T)

H. P. A.

représente la concentration de la cunes cationiques libres (où E est l'énergie caractérisant l'équilibre d'association avec les ions divalents⁶)).

 $\eta(T)$ présente un maximum pour

si

Une équation de la forme (1) peut rendre compte des points expérimentaux (figure 4).

Cependant la valeur de E déduite de l'adaptation à la courbe expérimentale n'est pas conforme à son interprétation physique; on trouve $E \simeq 0.03$ eV au lieu de 0.5 eV pour KBr et KCl⁶), ou 0.3 eV pour KI doté en Ca⁺⁺ *).

Valeur de R(T) pour le cristal N° 5 avant et après «temperature quenching» (Remarquer le changement d'échelle au-dessus de R = 1,0)

Il apparaît donc clairement qu'un effet direct de la charge des ions positifs divalents sur la transition radiative intervient.

La variation de T_m avec la concentration peut aussi s'interpréter par une interaction entre les centres luminescents (lacune cationique) et les ions divalents à grande distance.

4. Profil des bandes d'émission

L'effet ci-dessus est confirmé par l'observation des largeurs à mi-hauteur de la bande γ_1 . Les bandes d'émission observées sont de forme essentiellement gaussienne;

^{*)} Valeur mesurée dans notre Institut par D. ECKLIN et C. NADLER. Des mesures analogues pour CsI n'ont pas permis de déterminer E (Helv. Phys. Acta 37, 692, 1964).

Vol. 37, 1964

c'est une indication pour un centre luminescent représentable par des courbes de configuration (figure 5).

Dans ce cas, la largeur à mi-hauteur varie en fonction de la température suivant la relation $L_{\nu}(T) = L_{\nu}(0) \left(\coth \frac{h v_{e}}{2 k T} \right)^{\frac{1}{2}}.$

Figure 4

La courbe $\eta(T)$ a été adaptée aux points expériment aux du cristal Nº 1

Figure 5

Formes des bandes d'émission de CsI à 3 températures différentes. En échelle logarithmique le profil gaussien se transforme en profil parabolique

Les pics situés vers 3000 et 3500 Å constituent la composante froide γ_2 .

Cristal			$L_{\nu}(0)$ $h v_e$ T_m		Concentrations ppm		
		sec ⁻¹		eV		Ca++	Sr++
purifié par fonte zonale		No 1	$7,5 imes 10^{12}$	$0,60 imes 10^{-2}$	170° K	30 env.	impuretés divalentes
		No 2	9,0	1,03	169° K	I	
		No 3	10,9	1,22	168° K		
		No 4	12,5	2,15	162° K	↓	
		No 5	12,0	2,06	156° K	300 env.	
No 5 «quenched» No 2 doté Ca ⁺⁺ No 33 référence No 33 doté Sr ⁺⁺		nched»	12,0	2,06	105° K		
		C a ++	12,5	2,59	$105^{\circ} \mathrm{K}$	104 ± 15	$\leqslant 1$
		16,3	2,37	138° K	≤ 5,5	≤ 0,01	
		Sr++	16,7	3,93	102° K	≼ 40	280 ± 10

Les grandeurs qu'on en tire sont données dans le tableau ci-dessous. On constate que la fréquence de vibration de l'état excité v_e augmente avec la concentration en ions divalents mais pas avec celles des paires de SCHOTTKY.

Tableau

Conclusions

Les observations présentées montrent clairement que γ_1 est dû à un centre luminescent étroitement lié aux lacunes cationiques et non directement à la présence d'ions divalents. Ce résultat confirme l'interprétation¹) antérieure et est analogue aux constatations de J. Ewles et J. C. STEAD⁷) sur les cristaux de KCl et NaCl dotés en ions Ba⁺⁺, Sr⁺⁺ et Ca⁺⁺.

La formule (1) proposée pour l'intensité de γ_1 ne peut rendre compte des observations que qualitativement; en particulier elle explique mal la chute marquée du rendement au-delà du maximum. Sous irradiation par protons, l'intensité décroît encore plus rapidement aux basses températures⁸) que lors de l'excitation par les β .

Ces constatations démontrent que les propriétés radiatives des lacunes cationiques libres sont affaiblies graduellement par la présence des ions divalents et d'une charge d'espace environnante avant d'être éliminées par association. La variation caractéristique avec la température de la longueur d'onde d'émission de γ_1 , avec passage par un minimum, ne s'explique pas facilement par un modèle à courbes de configuration. Cela montre que l'explication de γ_1 par les lacunes libres ne rend pas compte de tous les détails du phénomène et que le mécanisme de l'interaction lacune-ion devra encore être précisé.

Ce travail a bénéficié de l'appui du Fonds National de la Recherche Scientifique

Bibliographie

- ¹) H. BESSON, D. CHAUVY et J. ROSSEL, Helv. Phys. Acta 35, 211 (1962).
- ²) D. CHAUVY et J. ROSSEL, Helv. Phys. Acta 32, 481 (1959).
- ³) Z. L. Morgenshtern, Optics and Spectroscopy VIII, 355 (1960).
- 4) H. ENZ et J. ROSSEL, Helv. Phys. Acta 31, 25 (1958).
- ⁵) Z. L. MORGENSHTERN, Optics and Spectroscopy VII, 146 (1959).
- ⁶) H. Gründig, Z. Phys. 158, 577 (1960).
- ⁷) J. Ewles et J. C. STEAD, Proc. Roy. Soc. [B] 69, 396 (1956).
- 8) M. AEGERTER et J. ROSSEL, Helv. Phys. Acta 1964 37, 206 (1964).