Zeitschrift:	Helvetica Physica Acta
Band:	38 (1965)
Heft:	V
Artikel:	Messung der Arbeit pro Ionenpaar in verschiedenen Gasen für Stickstoff- und Sauerstoffionen im Energiegebiet von 0,14 bis 0,7 MeV
Autor:	Leimgruber, R. / Huber, P. / Baumgartner, E.
DOI:	https://doi.org/10.5169/seals-113607

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Messung der Arbeit pro Ionenpaar in verschiedenen Gasen für Stickstoff- und Sauerstoffionen im Energiegebiet von 0,14 bis 0,7 MeV

von R. Leimgruber, P. Huber und E. Baumgartner

Physikalisches Institut der Universität Basel

(29. IV. 65)

Summary. The average energy loss per ion pair (W-value) of nitrogen and oxygen ions in N_2 , A, and He has been measured in the energy range of 0.14–0.7 MeV. The W-value in this range depends upon the velocity and the mass of the incoming ions for N_2 and A. In nitrogen the W-value for nitrogen ions varies from 40.6 eV (at 608 keV) to 48.2 eV (at 141 keV) and for oxygen ions from 42.0 eV (at 535 keV) to 49.2 eV (at 148 keV). In argon the W-value for nitrogen ions varies from 26.3 eV (at 543 keV) to 29.1 eV (at 158 keV) and for oxygen ions from 27.8 eV (at 474 keV) to 31.5 eV (at 164 keV). In He the W-value was measured for both nitrogen and oxygen ions over the energy range of 0.13 to 0.36 MeV and no variation with energy was observed.

1. Einleitung

Ziel der vorliegenden Arbeit ist es, die mittlere Arbeit pro Ionenpaar (W-Wert) für Stickstoff- und Sauerstoffionen bei kleinen Geschwindigkeiten (im Energiegebiet 0,13 bis 0,6 MeV) in den Gasen Stickstoff, Argon und Helium zu bestimmen. Von verschiedenen Autoren¹) wurden in den letzten Jahren Messungen mit Rückstossatomen und Spaltfragmenten gemacht, wobei festgestellt wurde, dass der W-Wert für schwerere Ionen als Wasserstoff und Helium bei Geschwindigkeiten von der Grössenordnung von v_0 ansteigt ($v_0 = e^2/\hbar$, entspricht der Geschwindigkeit eines Elektrons auf der ersten Bohrschen Bahn des Wasserstoffatoms: 2,187 · 10⁸ cm/s). Kürzlich wurden Arbeiten veröffentlicht, welche das Energiegebiet 8 bis 100 keV für H⁺, He⁺, C⁺, N⁺, O⁺ und A⁺-Ionen in Stickstoff (BORING²)) und für dieselben Ionen in Argon (PHIPPs et al.³)) betreffen.

2. Messmethode und Apparatur

2.1. Messmethode

Für die Messungen wählten wir als Grundkonzeption die bei SCHALLER, HUBER und BAUMGARTNER⁴) beschriebene Messmethode. Diese und ihre Abänderungen sind in der Figur 1 dargestellt. Ein schnelles Teilchen mit der Energie E, das in einem Gas vollständig abgebremst wird, erzeugt längs seiner Bahn N Ionenpaare, zu deren Bildung es im Mittel die Energie W (eV/Ionenpaar) aufwenden muss:

$$W = E/N \tag{1}$$

Die Ionen werden mittels eines 1-MeV-Kaskadengenerators auf die Energie E beschleunigt. Die Anzahl N der erzeugten Ionen bestimmt sich aus dem Verhältnis

Figur 1 Messanordnung

 I_1/I_2 , wobei (Figur 1) I_1 die einfallende Stromstärke ist, während I_2 der Sättigungsstrom der im Kammergas erzeugten Ionen ist:

 $I_1 = z \ e \ \dot{N}_1,$

z e = Ladung der einfallenden Teilchen,

 $N_1 =$ Zahl der einfallenden Teilchen pro Zeiteinheit,

 $I_2 = e N \dot{N}_1.$

Daraus folgt:

$$W = E I_1 / z I_2. \tag{2}$$

2.2. Apparatur

2.2.1. Hochspannungsgenerator und Ionenquelle

Zur Erzeugung der Hochspannung wurde ein 1-MeV-Kaskadengenerator der Firma Haefely benützt⁵). Mit Hilfe eines Elektromagneten wurden die beschleunigten Ionen am Ende der Beschleunigungsstrecke unter einem Winkel von 30° abgelenkt und somit nach Energie und spezifischer Ladung aussortiert. Da dieser Ablenkmagnet bei ca. 13500 Gauss gesättigt ist, liessen sich N⁺- und O⁺-Ionen bis etwa 400 keV ablenken. Für höhere Energien wurden zweifach geladene Teilchen benützt.

Als Ionenquelle diente eine Hochfrequenzionenquelle⁶), die für den Betrieb mit schweren Ionen folgendermassen geändert werden musste:

Der Austrittskanal aus Magnesium, der eine Bohrung von 1,2 mm aufweist, erodiert beim Betrieb mit N- und O-Ionen in kurzer Zeit sehr stark. Die durch die Erosion frei werdenden Metallpartikel schlagen sich am Quarzkanal nieder. Dadurch werden die fokussierenden Eigenschaften desselben so sehr herabgesetzt, dass die Ionenquelle bereits nach einer Betriebsdauer von ca. 1 Stunde unbrauchbar wird. Ein Vol. 38, 1965 Messung der Arbeit pro Ionenpaar in verschiedenen Gasen

Ausbohren des Magnesiumkanals von 1,2 auf 2,5 mm erhöht die Lebensdauer der Quelle von ca. einer Stunde auf etwa zwanzig Stunden. Ein Austrittskanal aus Aluminium weist die gleichen Eigenschaften auf. Kanäle aus Fe, Chromstahl, Ag, Ni, Mo und W zeigen ein schlechteres Verhalten als Mg und Al. Die Quelle wurde mit folgenden Daten betrieben: Hochfrequenzleistung des Senders ~ 120 Watt, Absaugspannung ~ 3 kV und Gasdruck ~ 3 bis $8 \cdot 10^{-3}$ Torr.

2.2.2. Ionisationskammer und Pumpsystem

Figur 2

Blendensystem und Faradaykäfig. *a* einfallender Strahl; *b* Quarz; *c*, *d* Molybdänblenden; *e* Gegenspannungselektrode zum Faradaykäfig; *f* ausschwenkbarer Faradaykäfig; *g* Trennblende.

In den Figuren 2 und 3 ist das Blendensystem und die Kammer im Schnitt abgebildet. Um eine möglichst kleine Energiestreuung der einfallenden Ionen zu erhalten, wurde die Ionisationskammer mit Hilfe eines differentiellen Pumpsystems vom Hochvakuum getrennt. Wir können drei Hauptteile unterscheiden:

A. Den Hochvakuumanteil (Figur 2, P) (ca. $2 \cdot 10^{-5}$ Torr), der direkt mit dem Beschleunigungsrohr in Verbindung steht und der einen ein- und ausschwenkbaren Faradaykäfig enthält.

B. Das Zwischenvakuum (Figur 3, Q) (ca. $5 \cdot 10^{-2}$ Torr), das vom Hochvakuum und der Kammer durch je eine Blende g und h von 0,3 mm Durchmesser getrennt ist. Am Absaugstutzen m ist ein Pumpensystem angeschlossen, das aus einer Rootspumpe und einer zweistufigen Drehschieberpumpe mit einer Saugleistung von 120 m³/h bei $5 \cdot 10^{-2}$ Torr besteht.

C. Die Ionisationskammer (Figur 3, R) mit der Sammelelektrode.

Der einfallende Strahl a (Figur 2) wird ein erstes Mal durch eine gekühlte Quarzblende b auf einen Durchmesser von 2 mm ausgeblendet. Zwei Molybdänblenden c

g und h Trennblenden; i Gegenspannungselektrode zum Auffänger k, m Absaugstutzen.

und d, welche einen Abstand von 30 mm und einen Lochdurchmesser von 0,1 mm aufweisen, kollimieren den Strahl weiterhin. Diese Daten sind so gewählt, damit der Strahl ohne Verlust durch die beiden folgenden Blenden g und h von 0,3 mm Durchmesser in die Kammer gelangt. Mit einem ein- und ausschwenkbaren Faradaykäfig f wird die Stromstärke I_1 gemessen. Um ein kleines Sättigungsdefizit zu erhalten, wurde das Kammerfeld gegen den Strahl um einen Winkel von 5° geneigt.

3. Messungen

3.1. Messung der Energie E der in die Ionisationskammer einfallenden Teilchen

Die Ionen wurden mit Hilfe eines Kaskadengenerators⁵) beschleunigt. Für die Messung der Hochspannung verwendeten wir die in ⁸) beschriebene Kompensationsschaltung, wobei ein hochstabiler Sekundärspannungsstandard von 10,999 V zur Speisung benutzt wurde.

Die Hochspannung wurde vor Beginn und nach Beendigung der Messungen mit den zwei Resonanzstellen der F¹⁹($p, \alpha \gamma$) O¹⁶-Reaktion bei 340,5 und 872,5 keV geeicht⁹). Die Welligkeit der Hochspannung liegt zwischen 1,4 und 2,8%.

3.2. Bestimmung des Energieverlustes der Ionen in der Eintrittsöffnung zur Kammer

Der Plattenabstand der Ionisationskammer beträgt 6 cm. Der Kammerdruck wurde so eingestellt, dass die mittlere Reichweite der Teilchen 4,7 bis 5 cm betrug. Für Stickstoff- und Argongas war dieser Druck zwischen 35 und 100 Torr, für Helium Vol. 38, 1965

zwischen 100 und 240 Torr. Je nach Kammerdruck änderte sich der Energieverlust in der Eintrittsöffnung. Der Hauptanteil der Energieabnahme geschieht in der Bohrung der Blende, welche die Kammer vom Zwischenvakuum trennt. Da diese Blende nur eine Dicke von 2 mm aufweist, wurde der Verlauf des Druckgradienten im Blendenloch linear angenommen. Die Gasmenge in der Blendenöffnung beträgt 2 bis $12 \,\mu g/cm^2$. Für die Bestimmung der Energieabnahme in der Öffnung stützten wir uns auf die Messungen von WEYL¹⁰).

3.3. Messung der in der Ionisationskammer einfallenden Teilchen

Da wegen des differentiellen Pumpens die Blenden zwischen Hochvakuum, Zwischenvakuum und Kammer nur einen Durchmesser von 0,3 mm aufweisen dürfen, muss der Ionenstrahl auf 0,1 mm kollimiert werden, damit er ohne Verlust durch die beiden Blenden g und h (Figur 3) in die Kammer gelangen kann. Die Stromstärke I_1 betrug einige 10^{-12} A. Alle 10–15 s wurde ein Faradaykäfig f (Figur 2) in den Strahl eingeschwenkt und so die Stromstärke I_1 periodisch gemessen. Am Rande der zweiten Kollimatorblende d werden jeweils Sekundärelektronen ausgelöst. Damit diese nicht im Faradaykäfig f gemessen werden, wird dieser gegen Erde mit 27 V negativ vorgespannt. Die im Faradaykäfig ausgelösten Elektronen werden durch die Gegenspannung der Elektrode e (Figur 2) am Verlassen des Käfigs verhindert. Da N_1 aus I_1 bestimmt wird, muss der Ladungszustand der einfallenden Teilchen bekannt sein. Aus diesem Grund muss man den Umladungsanteil im Ionenstrom, der durch die zwischen Ablenkmagnet und Faradaykäfig verbleibenden Restatome bewirkt wird, kennen. Der durch Elektroneneinfang erzeugte Anteil ist aus den Messungen von NIKOLAEV, DIMITRIEV et al.¹¹) bestimmbar. Mit dem bei SCHALLER⁴) beschriebenen elektrostatischen Ablenksystem konnte der Umladungsanteil durch Elektronenabgabe ermittelt werden. Bei einem N+-Strahl von 350 keV Energie, einem Druck von 2 · 10⁻⁵ Torr und einer Distanz von 125 cm laden sich durch Elektroneneinfang (in N) ca. 0,4% und durch Elektronenabgabe (in N++) ca. 0,7% um. Bei einem O+-Strahl ist der Umladungsanteil pro Komponente 0,1 bis 0,2% grösser als bei einem Stickstoffstrahl. Es konnten weder N- noch O-Ionen festgestellt werden, die durch Umladung höher als zweifach ionisiert waren. Negative Sauerstoffkomponenten konnten ebenfalls nicht gemessen werden. Wurde jeweils der Druck im Rohr verdoppelt bzw. verdreifacht, so hat sich auch der Umladungsanteil verdoppelt bzw. verdreifacht. Damit die Zählrate der in die Ionisationskammer einfallenden Teilchen auch mit dem im Faradaykäfig gemessenen Strom übereinstimmt, darf der Ionenstrahl an den beiden Blenden g und h (Figur 3) nicht geschwächt werden. Zur Feststellung dieser Situation wurde über der Auffängerelektrode i (Figur 3) eine Gegenspannungselektrode k montiert und bei ausgepumpter Kammer eine Vergleichsmessung des auf den Faradaykäfig auffallenden Stromes I_1 mit dem Strom I'_1 , der in die Kammer einfällt, gemacht. Der Kollimator c, d ist am Gehäuse der Kammer so montiert, dass der Strom ohne Verlust durch die Blende g hindurchtritt. Die ganze Kammer mit der Blende h konnte gegenüber g so lange verschoben werden, bis die beiden Stromstärken I_1 und I'_1 übereinstimmten.

Der in die Ionisationskammer einfallende Teilchenfluss betrug im Mittel ca. 10⁷ Teilchen pro Sekunde.

3.4. Messung des Kammerstromes I_2

Um die totale Anzahl Ionenpaare, die von einem Teilchen mit der Energie E erzeugt werden, bestimmen zu können, muss die Reichweite der Teilchen noch innerhalb des Kammervolumens liegen.

In der Arbeit von WEYL¹⁰) wurde das Bremsvermögen von Stickstoffionen in Luft, Argon und Helium gemessen. Wir bestimmten die Reichweite von N-Ionen in N₂, A und He, ferner von O-Ionen in denselben Gasen. Integriert man über die Werte von WEYL, so erhält man ebenfalls die Reichweite.

Unsere Kammer hat den konstanten Plattenabstand von 6 cm. Bei ausgepumpter Kammer wird auf dem Auffänger der Teilchenstrom einer bekannten Energie Egemessen. Nun kann die Reichweite der Teilchen bestimmt werden, indem der Kammerdruck so lange erhöht wird, bis kein Teilchen mehr die Auffängerelektrode erreichen kann.

Unsere Ergebnisse sind in den Tabellen 1 bis 3 angeführt und mit den Messungen von WEYL¹⁰) und BLACKETT¹²) für N-Ionen in Luft, Argon und Helium verglichen. Der mittlere Fehler für unsere Reichweitenbestimmung beträgt 6%. Alle Werte sind für Normal-Druck und -Temperatur angegeben (NTP: 760 Torr, 0°C).

Der Kammerdruck wurde jeweils so gewählt, dass die Reichweite der Ionen rund 5/6 der Kammerlänge ausmachte.

Zur Bestimmung des Kammerstromes I_2 muss der Sättigungswert bekannt sein. Er wurde durch Aufnahme der Sättigungskurve I_1/I_2 in Funktion von 1/F (F = Feldstärke des Kammerfeldes) bestimmt. Vergleiche dazu die Jaffé-Formel für Kolonnenionisation⁷).

Ionenenergie	R von N-Ionen in Luft (WEYL)	R von N-Ionen in Luft (BLACKETT)	R von N-Ionen in N $_2$	R von O-Ionen in N ₂
200 keV	1,42 mm	1,05 mm	1,50 mm	1,07 mm
250 keV	1,58 mm	1,25 mm	1,75 mm	1,45 mm
300 keV	1,75 mm	1,37 mm	1,89 mm	1,55 mm
350 keV	1,87 mm	1,50 mm	2,05 mm	1,75 mm
400 keV	2,00 mm	1,65 mm	2,20 mm	1,87 mm
500 keV	×	1,85 mm	2,40 mm	2,10 mm

Tabelle 1 Reichweite für Stickstoffionen in Luft und Stickstoff, und für Sauerstoffionen in Stickstoff

Tabelle 2								
Reichweite fü	ir	Stickstoff- und	l	Sauerstoffionen	in	Argon		

E, Ionenenergie	R von N-Ionen in A (WEYL)	R von N-Ionen in Argon	R von O-Ionen in Argon
200 keV	2,02 mm	2,08 mm	1,81 mm
250 keV	2,21 mm	2,29 mm	2,06 mm
300 keV	2,39 mm	2,31 mm	2,10 mm
350 keV	2,54 mm	2,60 mm	2,41 mm
400 keV	2,69 mm	2,70 mm	2,50 mm
500 keV		3,09 mm	2,88 mm

E, Ionenenergie	R von N-Ionen in He (WEYL)	R von N-Ionen in Helium	R von O-Ionen in Helium
200 keV	6,71 mm	6,55 mm	5,91 mm
250 keV	7,66 mm	7,41 mm	6,93 mm
300 keV	8,54 mm	8,43 mm	7,86 mm
350 keV	9,35 mm	9,30 mm	8,71 mm
400 keV	10,12 mm	9,98 mm	9,44 mm

Tabelle 3 Reichweite für Stickstoff- und Sauerstoffionen in Helium

Die Figur 4 zeigt zwei Sättigungsgeraden bei verschiedenem Druck p und gleichem Strom I_1 . Soll eine sinnvolle Extrapolation auf die Feldstärke «unendlich» möglich sein, so müssen sich die Geraden auf der I_1/I_2 -Achse in einem Punkte b (Figur 5) schneiden. In der früheren Arbeit von SCHALLER⁴) genügte die Jaffé-Theorie zur Erklärung des Sättigungsdefizites nicht. Dieses verschiedene Ergebnis ist auf die Schrägstellung des elektrischen Feldes gegenüber der Ionisationsspur in der jetzigen

Sättigungskurve bei konstantem Strom I_1 und verschiedenem Druck p für Stickstoffionen der Energie 274 keV in N₂. + : p = 36 Torr; \bigcirc : p = 47 Torr

Anordnung zurückzuführen. Übrigens ergibt sich derselbe Wert für *b*, wenn der Druck konstant gehalten und der Strom variiert wird.

Bei positivem Potential des Kollektors gibt es ein kleineres Sättigungsdefizit als bei einem negativen. Dieser Sachverhalt wurde schon von SCHALLER⁴) beobachtet und erklärt. Der Kammerstrom I_2 kann noch einen Anteil an negativen Ladungen aufweisen, welche von Ionenpaaren stammen, die in der Blendenöffnung erzeugt werden. Haben wir zum Beispiel ein Stickstoffion von der Energie 320 keV, so werden im Mittel 7,44 · 10³ Ionenpaare gebildet. Davon entstehen 6,95 · 10³ Ionenpaare innerhalb der Ionisationskammer. In der Blendenöffnung werden also 4,9 · 10² negative Ladungsträger erzeugt. Durch Ausmessen des Feldlinienverlaufes in der Blendenöffnung konnten wir zeigen, dass maximal 25% dieser 4,9 · 10² negativen Ladungsträger ins Zählvolumen gelangen können, was etwa 1,7% des totalen Kammerstromes ausmacht.

4. Ergebnisse

Die mittlere Arbeit pro Ionenpaar W = E/N wurde nach Gleichung 2

$$W = \frac{E I_1}{z I_2} = E b$$

berechnet. Dabei ist:

- E Energie der in die Kammer einfallenden Teilchen (Beschleunigungsenergie E_B weniger den Energieverlust der Ionen in der Kammeröffnung).
- $b \ I_1/I_{2s}$, wobe
i I_{2s} der Sättigungsstrom für 1/Egleich Null ist.
- z Ladung des einfallenden Teilchens. Für Beschleunigungsenergien E > 370 keV wurden zweifach geladene Teilchen benutzt.

In den Tabellen 4 – 6 und den Figuren 5 – 7 sind die so gemessenen W-Werte für Stickstoff- und Sauerstoffionen in den Gasen A, N₂ und He aufgezeichnet. Hierbei sind E_B die Beschleunigungsenergie, p der Kammerdruck und v_0/v das Verhältnis der Bohrschen Elektronengeschwindigkeit e^2/\hbar zur Geschwindigkeit des einfallenden Teilchens.

Die angegebenen Fehler sind die statistischen.

Stickstoffionen in Stickstoffgas **) E_{B} E $10^{5} b$ W $v_0 | v$ Þ keV Torr keV eV 0,77 650 *)60 $608 \pm 6,5$ $6,66 \pm 0,12$ $40,6 \pm 0,9$ *)50 $532 \pm 6,0$ 7,67 ± 0,14 $40,9 \pm 0,9$ 0,82 565 9,06 \pm 0,16 490 *)48 $462 \pm 5,0$ 41,8 \pm 1,0 0,90 $301 \pm 4,5$ $14,64 \pm 0,27$ 320 $43,8 \pm 1,0$ 1,10 38 290 36 $274 \pm 4,0$ $16,\!45\,\pm\,0,\!30$ $44,6 \pm 1,3$ 1,16 $170 \pm 3,5$ 27,57 ± 0,52 $46,6 \pm 1,3$ 1,45 180 30 160 30 $150\pm3,5$ $\textbf{31,33} \pm \textbf{0,56}$ 47,0 \pm 1,4 1,55 150 28 $141 \pm 3,5$ 43,42 ± 0,65 $48,2 \pm 1,5$ 1,58

Tabelle 4 Arbeit pro Ionenpaar für Stickstoff- und Sauerstoffionen in Stickstoff

*) Messungen mit doppelt geladenen Ionen.

**) Vom Lieferanten wurden folgende Reinheiten des Stickstoffgases angegeben: 99,995% N₂; 0,002% O₂; geringe Anteile von H₂ und A.

506

Sauerstof	fionen in Sticksto	offgas**)			
E _B keV	∲ Torr	EkeV	10 ⁵ b	W eV	v ₀ /v
575	*)60	535 + 6,0	7,85 + 0,16	$42,0 \pm 0,9$	0,90
500	*)50	$470 \pm 5,5$	$9,05 \pm 0,17$	$42,9 \pm 1,0$	0,95
420	*)45	394 + 5,0	$10,98 \pm 0,22$	$43,6 \pm 1,0$	1,05
360	40	$336 \pm 4,6$	$13,21 \pm 0,25$	$44,0 \pm 1,0$	1,12
315	38	$295 \pm 4,5$	$14,84 \pm 0,28$	$43,8 \pm 1,1$	1,20
265	38	248 + 4.0	18,27 + 0,33	$46,6 \pm 1,1$	1,30
220	36	205 + 4.0	22.97 ± 0.43	46,4 + 1,3	1,40
200	34	186 + 3.5	26,17 + 0,49	47.9 ± 1.3	1,47
1 60	34	$148 \pm 3,5$	$31,74~\pm~0,58$	$49,2 \pm 1,4$	1,52

Tabelle 4 (Fortsetzung)

*) Messungen mit doppelt geladenen Ionen.

**) Vom Lieferanten wurden folgende Reinheiten des Stickstoffgases angegeben: 99,995% N₂; 0,002% O₂; geringe Anteile von H₂ und A.

Tabelle 5							
Arbeit pro	Ionenpaar	für	Stickstoff-	und	Sauerstoffionen	in	Argon

Sticksto	ffionen in Argon	gas **)			
E_B keV	∲ Torr	EkeV	$10^5 b$	W eV	v_0/v
580	*)60	541 \pm 6,0	4,86 ± 0,09	$26,3\pm0,6$	0,82
475	*)60	$442 \pm 5,5$	$6,01\pm0,09$	26,7 \pm 0,6	0,90
400	*)56	$375 \pm 4,7$	$7,27 \pm 0,14$	$27,0\pm0,7$	0,96
350	54	$327 \pm 4,5$	$8,42\pm0,16$	$27,2 \pm 0,7$	1,07
320	50	$299 \pm 4,2$	$9,06 \pm 0,17$	$27,2 \pm 0,7$	1,10
270	50	$252 \pm 4,0$	$11,15 \pm 0,21$	$28,0\pm0,7$	1,22
215	45	$200 \pm 3,5$	$14,59 \pm 0,28$	$28,6 \pm 0,8$	1,36
200	40	$187 \pm 3,5$	15,40 + 0,29	$28,2 \pm 0,8$	1,40
170	40	$158 \pm 3,5$	$18,30 \pm 0,35$	$29,1 \pm 0,9$	1,52
Sauersto	offionen in Argor	ngas**)		v. <u>8</u>	
510	*)60	474 ± 5,5	$5,77\pm0,11$	$27,8 \pm 0,6$	0,92
480	*)55	$445 \pm 5,5$	$6,24 \pm 0,12$	$28,0 \pm 0,6$	0,95
450	*)55	$417 \pm 5,0$	$6,27 \pm 0,13$	$28,5 \pm 0,7$	0,99
410	*)55	$383 \pm 5,0$	7,43 + 0,14	$28,5 \pm 0,7$	1,05
360	50	$336 \pm 4,7$	8,35 + 0,16	$28,9 \pm 0,7$	1,10
320	50	298 + 4,3	9,87 + 0,19	29,4 + 0,7	1,20
270	50	251 + 4.0	$11,58 \pm 0,22$	29,9 + 0,8	1,27
240	50	222 + 3.8	13.53 ± 0.26	30.6 ± 0.8	1,35
210	48	194 + 3.5	15.56 ± 0.29	30.5 + 0.8	1,40
200	43	185 + 3.5	17.19 ± 0.32	31,1 + 0,9	1,45
180	43	$166 \pm 3,5$	$18,87 \pm 0,36$	$31,5 \pm 0,9$	1,53
			o for a second		52.5 đ

*) Messungen mit doppelt geladenen Ionen.

**) Vom Lieferanten wurden folgende Reinheiten des Argongases angegeben: 99,990% A; 0,001% H₂; 0,001% O₂; 0,001% N₂; geringe Anteile von He.

Stickstof	fionen in Heliu	m **)			
E_B keV	∲ Torr	EkeV	10 ⁵ b	W eV	v_0/v
380	200	$362 \pm 4,2$	$8,34\pm0,16$	$30,1 \pm 0,7$	0,91
350	200	$33 \pm 4,0$	$8,93 \pm 0,16$	$30,0 \pm 0,7$	1,02
290	160	$278 \pm 3,7$	$10,65 \pm 0,20$	$30,0 \pm 0,7$	1,17
260	160	$249 \pm 3,4$	$12,26 \pm 0,23$	$30,2 \pm 0,8$	1,22
220	160	$210\pm3,1$	$14,05 \pm 0,27$	$30,5 \pm 0,8$	1,32
200	160	$191 \pm 3,0$	$15,53 \pm 0,29$	$30,6\pm0,8$	1,37
180	140	$172\pm3,0$	$16,91 \pm 0,32$	$30,1 \pm 0,8$	1,45
160	140	$152 \pm 2,8$	$19,24 \pm 0,36$	$30,4 \pm 0,9$	1,54
140	140	133 \pm 2,8	21,95 \pm 0,42	30,3 \pm 0,9	1,62
Sauersto	ffionen in Heliu	ım **)			
380	200	$361 \pm 4,1$	8,50 \pm 0,16	30,6 ± 0,7	0,99
350	200	$332 \pm 4,0$	9,31 \pm 0,18	$30,7\pm0,7$	1,12
300	180	$286 \pm 3,7$	10,76 \pm 0,20	$30,8 \pm 0,7$	1,20
250	140	$240 \pm 3,5$	$12,59 \pm 0,24$	$31,1 \pm 0,8$	1,30
230	140	$220 \pm 3,5$	13,34 \pm 0,25	$30,3 \pm 0,8$	1,36
190	140	$181\pm3,0$	$16,15 \pm 0,31$	30,3 \pm 0,8	1,47
185	140	$176 \pm 3,0$	$17,09 \pm 0,32$	31,1 \pm 0,8	1,49
160	120	$154\pm2,8$	$19,75\pm0,37$	$31,2 \pm 0,9$	1,70
150	120	143 \pm 2,8	21,01 \pm 0,40	31,1 \pm 0,9	1,72

Tabelle 6								
Arbeit pro	Ionenpaar	für	Stickstoff-	und	Sauerstoffionen	in	He	

*) Messungen mit doppelt geladenen Ionen.

**) Vom Lieferanten wurden folgende Reinheiten des Heliumgases angegeben: 99,980% He; 0,001% H₂; 0,002% Ne; 0,0015% N₂; 0,002% O₂; 0,0015% Kohlendioxid; geringe Anteile von A.

Aus Figur 5 ist ersichtlich, dass die mittlere Arbeit pro Ionenpaar für N- und O-Ionen in Stickstoff im Energiegebiet E < 1 MeV ansteigt. Kurz nach Abschluss unserer Messungen erhielten wir die Messresultate von I. W. BORING³), welche dieses Verhalten für noch kleinere Energien bestätigen.

Dasselbe Verhalten zeigen die W-Werte von Stickstoff- und Sauerstoffionen im untersuchten Energiegebiet für Argon (Figur 6).

Die Diskussion des Einflusses der Gasverunreinigungen, wie sie als Fussnoten der Tabellen 3 bis 5 angegeben sind, ist recht schwierig. Immerhin liegen durch die Messungen der Arbeit pro Ionenpaar mit α -Teilchen teilweise entsprechende Unterlagen vor. BERTOLINI et al.¹⁴) zeigten, dass sich der W-Wert für α -Teilchen in Argon bei kleinen Beimischungen von Wasserstoff und Sauerstoff nicht ändert. Die bei uns in Frage kommenden Verunreinigungen sind aber von dieser Art. Wir erwarten deshalb keinen grossen Einfluss auf die Absolutwerte, was auch für N₂ der Fall sein dürfte. Andererseits stellen JESSE und SADAUSKIS¹⁵)¹⁶) fest, dass der W-Wert von Helium sehr kritisch von verschiedenen Unreinheiten abhängt. Wird beispielsweise reinstem Helium nur 0,13% Argon beigemengt, so fällt der W-Wert für α -Teilchen von 42,7 eV

Figur 5

Mittlere Arbeit pro Ionenpaar für Stickstoff- und Sauerstoffionen in Stickstoff, aufgetragen in Funktion der reziproken Geschwindigkeit des einfallenden Teilchens. Zum Vergleich sind die Messwerte von Boring²) aufgezeichnet. Die durchbrochene Linie bei 36,36 eV stellt den *W*-Wert für α-Teilchen in Stickstoff dar. Unterhalb der Abszisse sind die jeweiligen Energiewerte der betreffenden Ionen beigefügt.

auf 31 eV hinunter. Dies ist auch der Befund von BORTNER und HURST¹⁷), dass nämlich kleinste Zusätze von anderen Fremdgasen (zum Beispiel: H_2 , N_2 , CH_4 , CO_2) den absoluten Betrag des *W*-Wertes stark vermindern. Dies sind aber Verunreinigungen, wie sie in dem von uns benutzten Helium auftreten, so dass der tiefe Absolutwert der Arbeit pro Ionenpaar in unsern Messungen sicherlich durch diese Gaszusätze bestimmt wird.

Der W-Wert für Stickstoff- und Sauerstoffionen in Helium zeigt in dem von uns untersuchten Energieintervall keine Änderung (Figur 7).

Mittlere Arbeit pro Ionenpaar für Stickstoff- und Sauerstoffionen in Argon (vergleiche Figur 5 für die übrige Beschreibung)

Mittlere Arbeit pro Ionenpaar für Stickstoff- und Sauerstoffionen in Helium in Funktion der Energie des einfallenden Teilchens

Aus den vorliegenden Messungen erkennt man, dass die mittlere Arbeit pro Ionenpaar im Energiegebiet, wo die Geschwindigkeit des einfallenden Teilchens vergleichbar wird mit der Bohrschen Elektronengeschwindigkeit v_0 , für N₂- und A-Gas stark von der Geschwindigkeit abhängt. Für Geschwindigkeiten von der Grössenordnung von v_0 werden Prozesse wie elastische Streuung und Umladung des einfallenden Ions verstärkt hervortreten, während für Geschwindigkeiten $\gg v_0$ Ionisationsprozesse und Anregungsvorgänge überwiegen.

Wir möchten in diesem Kapitel noch einmal auf die von uns durchgeführten Reichweitenbestimmungen von Stickstoff- und Sauerstoffionen in N_2 , A und He hinweisen, welche bereits in Abschnitt 3.2. aufgeführt sind.

5. Anwendung der Ergebnisse für die Korrektur eines Neutronen-Rückstossspektrums in einem Gas

Als praktische Anwendung unserer Messungen sei der Einfluss der Abhängigkeit des W-Wertes von der Geschwindigkeit des ionisierenden Teilchens auf ein Rückstossspektrum angeführt.

Zur Bestimmung des differentiellen Neutronen-Streuquerschnittes kann man einerseits für einen Streukörper die gestreuten Neutronen mit einem Detektor unter verschiedenen Winkeln messen oder für einen gasförmigen Streukörper mit Hilfe einer Ionisationskammer das Ladungsrückstoßspektrum aufnehmen¹⁸)¹⁹)²⁰).

Differentieller Querschnitt der elastischen Neutronenstreuung für 1,40 MeV nach Fowler und Johnson²¹)

a) ⊙ gemessene Rückstösse (Proportionalzählrohr; Ordinate in relativen Einheiten). b) – Winkelverteilung mit festem Streukörper. c) + mit variablem W-Wert aus b) berechnetes Rückstossspektrum. R. Leimgruber, P. Huber und E. Baumgartner

Als Beispiel betrachten wir die elastische Streuung von 1,40 MeV Neutronen an Stickstoff, wie sie von FOWLER und JOHNSON²¹) gemessen wurde. Die Ergebnisse sind in Figur 8 dargestellt, wobei die mit Kreisen versehenen Punkte die mit einem Proportionalzählrohr (Stickstoffüllung) mit Hilfe des Rückstoßspektrums gemessene Winkelverteilung unter der Annahme eines konstanten W-Wertes angibt, während die ausgezogene Linie die Winkelverteilung von Neutronen darstellt, welche an einem festen LiN₃-Streukörper gestreut wurden. Wegen der Abhängigkeit des W-Wertes von der Energie bedarf das Rückstoßspektrum einer Korrektur.

Bezeichnet g dQ die Anzahl Rückstossimpulse im Ladungsintervall Q bis Q + dQund f dE die Anzahl der Rückstossimpulse im Energieintervall E bis E + dE, so gilt:

$$g \, dQ = f \, dE \, , \tag{4}$$

wobei Q und E die Beziehung

1

$$Q = e \, \frac{E}{W(E)} \tag{5}$$

erfüllen. Dabei bedeutet Q die Ladung eines Vorzeichens, die von einem Rückstosskern der Energie E erzeugt wird. W(E) ist die mittlere Arbeit pro Ionenpaar. Aus Gleichung 5 folgt:

$$\frac{dQ}{dE} = e\left(\frac{1}{W(E)} - \frac{E}{W^2(E)} \frac{dW(E)}{d(E)}\right).$$
(6)

In Gleichung 4 eingesetzt, ergibt sich die Beziehung zwischen Energie- und Ladungsverteilung der Rückstösse:

$$f = g \ e \left(\frac{1}{W} - \frac{E}{W^2} \frac{dW}{dE}\right). \tag{7}$$

Der differentielle Querschnitt für elastische Streuung wird bestimmt durch (vgl. 20)):

$$\sigma(\vartheta) = f \frac{E_{max}}{4 \pi N n} \tag{8}$$

mit

$$\cos\vartheta = 1 - 2 \, \frac{E}{E_{max}} \, .$$

Es bedeuten: E_{max} = maximale Rückstossenergie im Laborsystem.

n =Zahl der Kerne im Zählvolumen.

N =Zahl der einfallenden Neutronen.

Geht man vom gegebenen Rückstoßspektrum aus (Figur 8a), so erhält man aus Gleichung 7 die Energieverteilung (Figur 8c), die bei $\cos \vartheta = 0$ an den gemessenen differentiellen Querschnitt angeglichen wurde.

Vergleicht man in Figur 8 die gemessene Winkelverteilung (b) und das mit variablem W-Wert berechnete Rückstoßspektrum (c), so ergibt sich eine befriedigende Übereinstimmung.

Diese Arbeit wurde durch den Schweiz. Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

S

512

Vol. 38, 1965

Literatur

- ¹) J. M. VALENTINE und S. C. CURRAN, Reports on progress in physics 21, 1 (1958).
- ²) JOHN W. BORING, Progress report No. EE-3930-101-64U, 1964, Univers. of Virginia, Charlottesville, USA.
- ³) J. A. PHIPPS, J. W. BORING und R. A. LOWRY, Phys. Rev. July 6, 1964.
- ⁴) L. SCHALLER, P. HUBER, und E. BAUMGARTNER, Helv. Phys. Acta 25, 459 (1952).
- ⁵) H. BICHSEL, W. HÄLG und P. HUBER, Helv. Phys. Acta 25, 119 (1952).
- ⁶) R. BUDDE und P. HUBER, Helv. Phys. Acta 25, 459 (1952).
- 7) G. JAFFÉ, Ann. Phys. 42, 303 (1913).
- ⁸) L. SCHELLENBERG, E. BAUMGARTNER, P. HUBER und F. SEILER, Helv. Phys. Acta 32, 357 (1959).
- ⁹) J. B. MARION, Rev. Mod. Phys. 33, 139 (1961).
- ¹⁰) P. K. WEYL, Phys. Rev. 91, 289 (1953).
- ¹¹) V. S. NIKOLAEV, I. S. DIMITRIEV, L. N. FATEEVA und YA. TEPLOVA, Jetp. 13, 695 (1961).
- ¹²) P. M. S. BLACKETT, Proc. Roy. Soc. London 134A, 668 (1932).
- ¹³) W. GERBES, Ann. Phys. 23, 648 (1935).
- ¹⁴) BERTOLINI, BETTONI und BISI, Nuovo Cim. 9, 1004 (1952); Nuovo Cim. 11, 458 (1954).
- ¹⁵) W. JESSE und J. SADAUSKIS, Phys. Rev. 90, 1120 (1953).
- ¹⁶) W. JESSE und J. SADAUSKIS, Phys. Rev. 88, 417 (1952).
- ¹⁷) T. BORTNER und G. HURST, Phys. Rev. 93, 1236 (1954).
- ¹⁸) E. BALDINGER, P. HUBER und H. STAUB, Helv. Phys. Acta 11, 245 (1938).
- ¹⁹) H. H. BARSCHALL und M. H. KANNER, Phys. Rev. 58, 590 (1940).
- ²⁰) L. C. BIEDENHARN, H. B. WILLARD, P. HUBER und E. BAUMGARTNER in: Fast Neutron Physics, Part II, Interscience Publishers (1963).
- ²¹) J. L. FOWLER und C. H. JOHNSON, Phys. Rev. 98, 728 (1955).