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Multiple Excitation of Collective Nuclear States by Inelastic Scattering

by Willy Bierter *)

Institute of Theoretical Physics, University of Basel, Basel

(8. VII. 65)

An explicit WKB-solution of a system of coupled differential equations is presented where
the adiabatic approximation has been assumed to be valid. The optical model is extended to
include nonspherical potentials so that inelastic scattering to low-lying collective nuclear states
are induced which are strongly coupled to the nuclear ground state. Calculations are given for
the multiple excitation of collective quadrupole vibrational states by inelastic scattering of alpha-
particles. In all calculations the effects of Coulomb excitation have been taken into account.

I. Introduction

The inelastic scattering of medium-energy protons or alpha-particles is a valuable
tool to investigate direct nuclear reactions. Very often the inelastic scattering can be
looked on as a nuclear surface phenomenon. Therefore a rapidly varying oscillatory
angular distribution may be expected. Furthermore the collective excitations, as e. g.
vibrations and rotations of the surface, are strongly excited. It should be particularly
interesting to study these excitations of the low-lying collective states which are
easily observed due to their strong enhancement.

The distorted-wave Born-approximation can often be applied to calculate the
transition amplitude. In these cases the elastic scattering is assumed to be the dominant
process and the inelastic transitions can be treated in first-order perturbation theory.
In the case of weak coupling the distorted-wave Born-approximation is formally
equivalent to the first-order adiabatic method1). However, if the interaction becomes

so strong that many levels - strongly coupled to the nuclear ground state - are
actively involved in the excitation process a set of coupled differential equations has

to be solved. Recently, this has been done numerically for the case of inelastic proton
scattering2)3).

The aim of this paper is to show under which assumptions an explicit form for the
solution of this set can be obtained in the WKB-approximation. The most important
assumption is the adiabatic approximation which neglects the energy loss of the
projectile due to the excitation of nuclear levels and treats the elastic and inelastic
scattering as a similar process. Thus the problem of computing the partial cross
section for inelastic scattering can be reduced to a calculation of the elastic scattering
amplitude as a function of the target coordinates.

In the present work the main emphasis lies in the use of a generalized optical
potential with an appropriate nonspherical shape in order to determine the transition
amplitude for the multiple excitation of collective states.

*) Pressent adress: Institute of Theoretical Physics, University of Heidelberg, Heidelberg.



Vol. 38, 1965 Multiple Excitation of Collective Nuclear States 737

II. Theory

In this section the WKB-approximation of the system of coupled differential
equations is considered in detail in the adiabatic approximation. The transition
amplitude for inelastic scattering of charged incident projectiles will be calculated.
Throughout this work spin-orbit effects are neglected, although the formalism could
be easily extended to include them.

As we work in the center-of-mass system, only reduced masses and relative
velocities and momenta appear in the equations.

The Hamiltonian for the interacting system of incident particle and target nucleus
is assumed to have the following form

H Hp(r) + Ufr) + HTfx) + Hinfr, x) (1)

where Hpfr) is the sum of the kinetic energy operator for the relative motion of
particle and target nucleus and the Coulomb potential Vc which is given for a
uniformly charged sphere of radius Rc by

2krj
iUL v

if r > Rr

h r/

~Rf 7)1 «-<*
The Coulomb parameter rj is as usually defined by

^1 2 e

n % V

where v is the relative velocity of projectile and target nucleus, Zx the charge number
of the target and Z2 that of the projectile.

The spherical optical potential Uff) is used to describe the elastic scattering and
Hintfr, x) is the interaction potential between projectile and nucleus. The relative
coordinates of the particle and the internal coordinates of the target nucleus are
denoted, respectively, by r fr, §, cp) and x. The target Hamiltonian HTf<*-) defines a

complete set of state vectors expressed by

HT(*)\0I(aL)> EI\0I(oL)>, (2)

where / specifies the eigenvalues of a complete set of commuting observables. The
exact wave function of the scattering process | xpfr, x) > satisfies the Schrödinger
equation

H\wfr,x)y=fE+E1)\Wfr,x)y (3)

and may be separated as follows

\ffr, x)y \k(r, x)y \0fx)> + Afr, x) (4)

Here [ kfr, x) > is a partial adiabatic wave function corresponding to a projectile of

energy E which is defined by the equation

[H,(r) A- Ufr) + Hinfr, x)] \k(r,x)> E\ kfr, x) > (5)

47 H. P. A. 38, 7 (1965)
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and has to be solved for fixed target variables a. The adiabatic approximation neglects
the correction term A fr, x)4) and the energy loss of the projectile due to the excitation.
Thus all nuclear states are considered to be degenerate.

We expand the wave function | k > according to spherical harmonics

\k> f^gi1 **" /2'+! Yi^ 9) Tr- F'{kr)
i, s

+ Z"rYl,ll.(ê,<p)JvGl,(kr). (6)
l',n'

The first term describes the pure elastic scattering and thus satisfies the radial Schrödinger

equation outside the interaction region

[£- +k2 - *w ™ -^ - 2-w M F^k '> ° • <7>

The reduced mass of the colliding pair is denoted by m. The radial function Ffk r)
vanishes at r 0 and behaves asymptotically for large values of r as

Ffk r) J- [H*(k r) - Tjt Hfk r)] e^, (8)

where Hl—glA- ift is the outgoing-wave Coulomb function5) in terms of the regular
and irregular radial Coulomb functions, which behave as

g, -> cosa,

/, -> sina,
where

a, k r — In — rjln2krA-al

at arg f (I A- 1 + i rj)

The quantity t]l is the diagonal S-matrix element which for a complex optical
potential U can be given in terms of the phase shift as r\l exp (2 i ó,).

The second term of equation (6) gives rise to a set of coupled differential equations
which can be written in the form

Ufr) - VwJr, «)] Gfk r)

(9)

where the matrix elements fi^-j'f,' of the interaction potential are defined by

tt„;iv('. «)-!?< y/, \Hintfr, «) yv> • (10)

This interaction potential may conveniently be written in the form of a multipole
expansion

Hint(r, x) =£M^r, x) Y^fê, cp) (11)
A, ft

W + k'-^rVe(r)- l{l+l) 2 m
r* h*

27 (1_ ôu'dn„')9iM-,
i',f'

,v(r, a) Gv(k r)
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where f&, tp) are the polar angles of the vector r. Since Hint is a scalar quantity, the
moments MX/1 are transformed under rotation in the same way as the spherical
harmonics YXyl and have therefore the parity (— 1)A.

For a specific multipole order X the integration over the angular variables in
equation (10) yields for the matrix element cp

_ 2m r (2/+l)(2A + l) (2V+X) yp ¦

VWr- - "P" [ 4^ J I" A

*(óoo)(ZZZH-' (12)

For the differential equation

[£ + * - 4? Vfr) - UZZI - Z- v {r) _ 9wii (f> «)] „,(* r) o (13)

where we have included the diagonal part of the interaction potential, the following
solution in the WKB-approximation can be found outside the classical turning point rt

r

u'(k r>=t*yi/2 sin (/k^ dr+-J-) if e -v > o

n

U'{k Y) \ (TfiWr eXP (~ I fK{r) dr\] 1ÌE~V<Q>

where the expressions Kfr) and V axe defined by

Kfr) [*• - *JL Vc(r) _ ZZi^. _ 2JL tf(f) - ^(r. a)]1'2

7SF,(r) + l7(f) + ^(ft|1!M + i2±«).

The asymptotic behaviour of the function «,(& f) for large values of r is given by

ufk r) -*- sin lk r —- / n — rj ln 2 k r A- al A- r\\

with the following expression for the phase rji

r

rji= Kfr) dr A- — — kr A- —— I n A- r\ln2kr — ol.4
h

The system of coupled differential equations may be solved by the ansatz

Gfkr) ufkr) exp (-i Ç (k r)). (14)

Substituting this expression into equation (9) we obtain

r r

U*AA+ f u' {-%f dr E (1 - <V V) /' ui *Z;V uv dr ¦ (15)
' l',u' J
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Using the WKB-approximation the second term on the left side of equation (15) has
to be neglected. A first-order differential equation results for the function f. Since

d£jdr must be bounded at r 0 and ufr) behaves like rl+1 for small values of r, the
lower limit of integration must be zero. Thus we see that

-or [«/(*»')]-*27(l - àiP ò^) /«,ç>,„.,v w,< dr.
t',n' 0

Since the integral on the right converges the asymptotic limit becomes

da °°

-fo= [siny,]-227(1" ójrdM„.) [ulcpl/l.rß,urdr, (16)

where the phase y, is defined by

yt kr —- In — rj in 2kr + at+ rj,.

Carrying out the integration in equation (16) we obtain

Hk r) - -f [ctg y, - 1] X (1 - àir «„„.) <7„i;,v (17)

where

~T J Ul9ln;l'n'UVd(kr) ¦

If we choose the direction of the incident beam as the polar axis of the space-fixed
coordinate system equation (6) can be expressed in the asymptotic limit as follows

\k> E [*' eÌ(n+Òl) (2l+l) pt (cos#) X7 sin (kr- J-In + a, A- ô,)

+ a-i Yl0(&) exp [- -A- £(1 - ÒIV d0fl.) al0.rJ
i', p'

x ihexp (* rr ~ ^a l n+°i + y])] ¦ ^18)

In the second term of equation (18) a linear combination of solutions Gfk r) may be
chosen so that the complete wave function j k > represents asymptotically an elastic
ingoing and scattered wave and in addition an extra outgoing inelastic scattered wave.
In the arguments of the asymptotic expressions of the wave functions the term
rj ln 2 k r and in the second expression the term ctg y, £ A — àn- òu-0) al0.;<^< have been

t'.f'
dropped. The total adiabatic scattering amplitude is defined by

f(d-,A) limre-ikA\ky - eikf (19)
r—H»

where A fx ß y) denote the Eulerian angles which rotate the space-fixed coordinate
system into the body-fixed system. If we choose for a, the expression

a. -Z J/4Z J/2/+ 1 i> e,ai
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and make use of the asymptotic expansion of a plane wave given by

eih> 2Ji'(21 + 1) P, (cos*) J- sin {k r - ~ I n}, (20)

the evaluation of the scattering amplitude yields

M A) 1J1-]rf2l+l)Pl (cos*) {exp [2 i (a, + Ó,)]

+ exp [2 f a, + iti,~ J-X (1 - V Vo) *io,*v] - l} • (21)

According to equation (21) the amplitude for inelastic scattering from the nuclear
ground state | I0 M0 > to the excited final state | If Mf > is thus in the adiabatic
approximation

//,*,;/.*. (*) «fM, I 2Tä27(2/ + 1) Pl (C0S^) e2Ì°l

Xexp[-^-;i7ff/o;;v]|^oM0>. (22)

Here we have made use of the approximate relation
1

rjr _ 0loio t

which is valid in the asymptotic limit. The exact asymptotic value of »1, is overestimated
by a term of the order of rf5.

The differential cross section can be expressed in terms of the scattering amplitude
/(*) by

%'t^x EM\fIfMf-Mmj (23)

where we sum over the final magnetic quantum numbers Mf and average over all
initial M0.

III. Collective Model

In collective excitations of low-lying nuclear states two different modes of excitation

can be distinguished. The first are spherical shape oscillations, while the second

are rotations in the shape of a permanently deformed nucleus. To interprete successfully

single2)6) and multiple7) excitations of these collective states the optical model
has to be extended as to include nonspherical potentials8).

We have also introduced an absorptive potential in order to take care of all reaction

processes other than the ones treated explicitly by means of coupled channels.

A. Rotations

The interaction Hamiltonian can be derived from a deformed potential well under
the assumption that the potential strength depends only on the distance (r — R) from
the assumed nonspherical surface,

Rfê', cp') R0 [1 +2X Y^'. 9')] • (24)
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where the polar angles (*', cp') are measured with respect to a body-fixed coordinate
system defined by the principal axes of the nucleus. The deformation parameter ß
and the asymmetry parameter y axe connected with the quadrupole deformation8) by

o n o siny
«20 P cosy, a2± 0, x2±2 ß —-=-.

If the parameter y 0 the nucleus shows an axial symmetry.
The deformed potential well may be described by a Saxon-Wood potential as

follows _,,,,
Ufr - RfW, cp')) - U0fe{r-R{6 •* »'« + l)-1 (25)

An expansion of equation (25) around the mean value of the radius R0 gives

Ufr -R)= Ufr - R0) - -L Ufr - R0) Ò R + •. (26)

where
ô R R0 [2X YJV, cp')} (27)

The first term on the right side of equation (26) can be identified with the spherical
optical potential while the nonspherical terms yield the interaction 11 In the following
we compute explicitly the transition amplitude to first order in the deformation. The
contributions from the second-order interaction potential in the transition amplitude
to second order in the deformation are not negligible10) as will be discussed in
section V.

The nuclear shape expressed by equation (27) is measured in a body-fixed
coordinate system. The transformation into a space-fixed system is given by

Y,A&', ?') 27 YXßfe, tp) D"*fx ß y) (28)
ß

where fxßy) are the Eulerian angles from the body-fixed to the space-fixed axes11).
The comparison of the first-order interaction term in equations (26) and (11) yields

Mx„ =-R0JiUfr- R0) £xl Z>> ß y) (29)

For an axially-symmetric deformation the multipole operator simplifies to

^1/lër Ar U(r-R0)Y?Jß,x), (30)

where (ß, x) are the polar angles of the nuclear symmetry axis. The derivative of the
spherical optical potential Ufr — R0) is for the special case of a Saxon-Wood potential
(see equation (25)) given by

d TT/ D \ ^o eV r-R ,Q1.
-^— Ufr — RA —- -— -—r, v (31)dr v w a (e" + l)2 ' a

K '

The matrix elements 9?,0;;>' defined by equation (12) have to be computed explicity
and may be written for a quadrupole deformation as

9to; ,V - \T ßRo(~) [(2 I + 1) (2 /' + 1)]W

Mx„ -R.
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The nuclear wave functions of a rotational band are given in the notation of
Edmonds11) by

\IMKy )J2-JJA D'MKfxß 0)

Expanding the product of the two P-functions again into P-functions the transition
amplitude in equation (22) then can be written in the following form :

fitMt-,i.M^) -2\1rEi2If+1 )/2/0 + l (2/+1)

x (- D*'" K ï ï »,
7 " l ïYr) aIMf_Mo, (33)

x (34)

Mt M0 Mj - M0) \-KK0J IM'-M° '
where

aIM=[4nf2lA- l)]"1'2 f dx f dß sin ,9 YIMfß, x) £ (2 I + 1) P, (cos*) «"<"
0 0 I

xeXp [,¦M.,[,-„ + iw>] i/21 + ipîv + i (\2Qr„

27(-T^.«)(ZZ);
An imaginary part W0 with the same shape as the real part U0 is included in the
optical potential. The radial matrix elements P,,- are defined by

oo

rn, Jul(kr)F(r)ul,(kr)d(kr), (35)
o

where the function Ffr) is given by

Ffr) e« (ey A- 1)~2

Finally the differential cross section (23) can be expressed by the amplitudes aIM
through

% - T» <2/,+ l)ig<2/+ D (_^o)W- (36)

B. Vibrations

Vibrations of spherical nuclei can be described by the same nonspherical
interaction potential as for rotations. But we have now to treat the deformation parameters
xXv in equation (24) as dynamical variables. In the usual way we can decompose xXfl
into operators bX/1 and bXß which annihilate and create a single 2A-pole phonon of
vibration and satisfy the relations

Mî„~», + i, bLK nf> E% N> (37)

where N is the total number of phonons in a given state. Therefore the parameter x
can be expressed by

a>- l/lf [^ + Zi)"d (-i)"«L,, <38>
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where Cx is the restoring force and % cox the energy of one phonon.
As we consider only quadrupole deformations, the quadrupole phonon states can

be classified according to the five vibrational quantum numbers nß

IV \n+2 »+i «o n_x n_f) JJ AA=A (C)"" !°> ¦ (39)

In analogy to the permanent deformation parameter ß for rotational excitations we
introduce here a dynamical deformation parameter defined as the root mean square
deformation in the nuclear ground state

ßl <0|27KI21°> (2A+ 1) -J^. (40)

f
Since the deformation is no longer static, the formulas (24), (27), and (29) can be

regarded as being referred to space-fixed axes. The multipole operator MXft can then
be expressed to first order in the interaction by

MXß=-R0^Ufr-R0)x*Xß, (41)

and thus the matrix elements tpl0.v ¦, defined by equation (12), yield

" m -jkL (-J) [(2 I A- 1) (2 V A- l)]1'2 (- 1)"
y 4 ti \ "-r j9l0;l'fi' ~ fj2

The transition amplitude for scattering from the ground state | 0 > to the state | nß >

may be written in the form

<»„!/(#) |0> <n„\ ±..£(21+1) P, (cos*) e2i°i

x exp [£Aß (bl + f- 1)" b2^)]\ 0> (43)

where

]/Ati
L -J|- (U0 + i W0) {2 1 + 1 27/2 /' + 1 (- 1)"

JJ>%->-
Again we have included an imaginary part in the optical potential and the radial
matrix elements P,,< are the same as defined in equation (35).

The operator expression in equation (43) can be evaluated by the following
method. The product of the two operators exp fe a) and exp (e b) may be expanded

e" e"> exp (JJ B" Gr). (45)
V

where the operators a, b satisfy the commutation relation

[a, b] l, (46)

and where e is an arbitrary c-number.
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Expanding all exponential functions we obtain

n Ja2 62 \ Ja3 a?b ab3 b3 \l + efa + b)+e*(-Y + ab+ -) + «»(_ + _ + — + — +

i +E£"G* + tt (27£V Gv)2 + -3t fE£V Gv)3 + • • •

V V V

A comparison of both sides to the same power of s" yields the following relations for
G„ if G0 1 :

Gx a + b, G2 -Z [a> 6]> g3 _L [(a _ 6)> [Ä) j]] etc. (47)

The commutation relation (46) enforces Gz and all higher terms to vanish. The

operator expression (45) therefore takes the form

6e(a+b) eea esb e-ll2e^ (4g)

Using this relation the amplitude in equation (43) simplifies to

<»„ i/wi o> « AEv i+i)Pi ("'») '""

X^[-+ZlAry]n-^. (49)

The considered nuclear vibrational states are degenerate. Instead of labelling these
states by the quantum numbers nß, the total vibrational number N, the angular
quantum numbers /. and M axe conveniently used in the following. Therefore a

transformation to this new representation must be made

iN IM |/(0)| 0> =27TV IM | nßy <nß |/(*)| 0>

The differential inelastic cross section with the excitation of a vibrational state with
spin / and phonon number N is now given by

^=27l<JV/Afl/wi°>la-
M

IV. Coulomb Excitation

The inelastic scattering of charged particles is always accompanied by Coulomb
excitation which may even be the main mode of excitation12). In this chapter we want
to show how this Coulomb excitation may be included in the calculations. This can be
done by modifying the interaction form factors. In the case where both nuclear and
Coulomb forces contribute to the excitation, their amplitudes are coherent and
interfere.

The Coulomb interaction between target nucleus and incident projectile is given
in multipole components as

hc 4 n z1 ^27yr+i r~*~x Y*Jê> v) ^*(£ *' /*) » (5°)
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which is valid if the projectile remains outside the nucleus during the collision. The
multipole operator for electric radiative transitions 2R(£ X, pt) is defined by

3RfEX,pt) jAYXßfe,cp)Qnfr)dr.

The nuclear charge density operator gn(r) can also be expanded in multipole
components

Qfr) Z2e£oXßfr)Y*ß(e,tp).
A, fi

A comparison of equation (50) with the expansion (11) yields

McXlt ^£fr->-i MfEX.pt),

which holds outside the nucleus.
In the special case of a uniformly charged nucleus, an explicit expiession for MXß

can be obtained from equation (26). In first order in the deformation we get

_3Z1z2e* * \RArX+i iir>Rc
M>-» - 21+1 a^ X \r*jR*c+1 iir<Rc, P '

where Rc denotes the radius of the charge distribution.
For a permanently deformed nucleus the spherical tensor xXfl can be expressed

through the deformation parameter ßx and the orientation of the nuclear symmetry
axis. We obtain thus for M\

_ 3ZlZ,* I/ZZlZ y (ß x) x lÄ'/rA+1 if r > R<
152)M,-»~ 2A+1 P*V2JL+1 y>-AP'<*> X \rARkc + 1 if r < Rc

'

Coulomb excitation effects can thus easily be included by modifying the radial form
factors. The radial matrix elements P,,< in equation (35) has to be replaced by the
following expression :

oo

Zr / «;(* r) [Ffr) - JJaI^JaEL -L] Ulfk r) d(k r), r > Rc.
o

V. Discussion of Results

According to equations (49) and (44) and for a quadrupole interaction computations

of different angular distributions have been performed for the inelastic alpha-
particle scattering of 64.3 MeV and 43 MeV for Ni68. Calculations have been carried
out for the multiple excitation of the first 2+ state (Çv — 1-45 MeV) and the 0+,

2+, 4+ triplet fQi+ - 2.47 MeV) of the vibrational nucleus.
The main purpose of this paper is a study of the coupled channels predictions in

the WKB-approximation which might be a very attractive method for optical model
calculations14). The potential has a broad, flat bottom with a gradually tapering
surface. The small radial derivatives of the potential allow for high energies a WKB-
treatment. We have made use of sets of optical parameters obtained from previous
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analyses of experimental data by P. Darriulat et al.13) for Ni58 (64.3 MeV) and by
R. H. Bassel et al.8) for Ni58 (43 MeV).

The optical potentials have been chosen in such a way that the elastic and the
inelastic 2+ (N — 1) differential cross sections for Ni58 (a, a') are in agreement with
experiment. All parameters of the model are then fixed and total and differential
cross sections of the triplet can be predicted. We did not make extensive studies of the
effects of varying the parameters since this would have required a large amount of
computer time.

In all our calculations we have chosen the same shape for the absorptive part of
the optical potential as for the real part. The deformation of the real part alone is

responsible for the excitation of collective states.
In the numerical examples of this section we used the following parameters for the

Saxon-Wood potential for Ni58 for the two different projectile energies E (Table I).

Table I

Ug (MeV) 47.6 44.99
W0 (MeV) 13.8 20.91

«(/) 0.549 0.565

«„(/) 6.14 6.08
E (MeV) 43 64.3
ß 0.18 0.15

The inelastic angular distributions for 64.3 MeV alpha-particles on Ni58 are shown
in figure 1. The experimental values had been obtained at Berkeley13). They show
well-defined oscillations which are typical for surface reactions. This follows from a
discussion of the behaviour of the integrands in the radial matrix elements P,,-15).
This expression (see equation (35)) has its maximum for values of / and I' which
correspond approximately to the classical orbital momentum. Moreover very high
partial waves do not contribute due to the centrifugal repulsion.

The angular distributions in figures 2 and 3 have the same parameter values as

given in table I ; here the process of Coulomb excitation of the vibrational states by
the incident charged projectiles is explicitly included. This process interferes destructively,

especially at forward scattering angles, with the pure nuclear excitation
mechanism. As has been shown in section IV the computation of the contribution
due to Coulomb excitation is straightforward within the framework of the present
treatment. We assumed that the deformation of the charge distribution and of the
potential is the same. In the Coulomb excitation process a much larger number of
partial waves contribute to the excitation amplitude than in the purely nuclear
interaction. As mentioned above the Coulomb excitation contributes considerably
only for small scattering angles, otherwise the nuclear contributions are the most
important ones. This is illustrated in figure 4.

Even though the multiple excitation of collective states could be solved exactly
without making use of the adiabatic approximation, we assumed that the ingoing and
outgoing momenta are equal. In order to estimate the effect on the diffraction
structure due to the energy loss an average of the initial and final wave numbers
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should be substituted for k. This effect is shown in the angular distribution for the
first 2+ level of Ni58 in figure 5. The most significant difference is a slight shift of the
diffraction pattern to larger angles ; however, the general shape of the pattern is not
appreciably altered. Since in nonadiabatic transitions the overlap between initial and
final wavefunctions is less perfect, a reduction in the intensity is observed. Furthermore

the maxima and minima in the diffraction structure become less accentuated.

60 ;a\

Nil
1=2

-

10°-

Figure 4

Effects of contribution of a larger number
of partial waves to the angular distribution
for 64.3 MeV alpha-particles on Ni58, where
Coulomb excitation is included. The dashed
curve is calculated with lmax 40. The
solid curve is the same as in figure 3 with

N
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Figure 5

The dashed curve shows the effect on the
diffraction structure for 64.3 MeV alpha-
particles on Ni68 due to the energy loss
during the scattering. Here we used for k the
average of the initial and final wave numbers,

k (1/2) (kiA-kf. The solid curve
is the same as in figure 3 with kf kf.

Figure 1

Angular distributions for the scattering of 64.3 MeV alpha-particles from Ni58. The optical-
potential and nuclear deformation parameters used for the calculation are presented in table I.
The experimental data are taken from reference 13. The reaction cross section for the first 2+ state

is 1.86b.

Figure 2

Angular distributions for the scattering of 43 MeV alpha-particles from Ni58, including the influence
of Coulomb excitation. The optical-potential and nuclear deformation parameters used for the
calculation are presented in table I. The experimental data are taken from reference 16. The

reaction cross section for the first 2+ state is 1.53b.

Figure 3

Angular distributions for the scattering of 64.3 MeV alpha-particles from Ni58, including the
influence of Coulomb excitation. The same optical-potential and nuclear deformation parameters

were used as for the solid curves in figure 1.
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As can be seen in figure 2 the magnitude of the differential cross section of the 0+

fN 2) state is appreciably lower than that of the first 2+ state (about a factor 200).
It is also smaller than that of the triplet 2+ and 4+ states (about a factor 2 and 7,
respectively). Comparing the cross sections of the projectile energies which have been
calculated for 43 MeV (figure 2) and 64.3 MeV (figure 3) we see that in the latter case
the differential cross section for the first 2+ state is somewhat reduced (about a
factor 1.4). It is approximately constant for the 0+ state, whereas it increases for the
triplet 2+ and 4+ states (about a factor 2.4 and 1.4, respectively). The predicted values
for the reaction cross sections in case of inelastic alpha-particle scattering for the first
2+ state are 1.53 barns lor 43 MeV and 1.86 barns for 64.3 MeV. This indicates that the
values of the inelastic cross section is growing with increasing projectile energy. It is
pointed out in reference 8) that they also rise with increasing charge number Z.
A comparison of figures 1 and 3 shows that the inclusion of Coulomb excitation
reduces somewhat the magnitude of all inelastic differential cross sections at forward
scattering angles (~ 15%). For larger scattering angles the differential cross sections
are pratically unchanged. This indicates that the multiple Coulomb excitation can be

neglected for these bombarding energies. However, for projectile energies of about
20 MeV and for nuclei in the Ni mass region, the Coulomb excitation cross section

may become comparable to the direct nuclear cross section. The same situation may
be expected for bombarding energies of about 60 MeV in the mass region of the
permanently deformed nuclei. The excited collective states will then be primarily of
rotational character and the process is described by the equations (36) and (34).

As can be seen from the diagrams the computed inelastic differential cross sections
fit the experimental datas reasonably well. There is a discrepancy for small scattering
angles for the projectile energy of 64.3 MeV. This disagreement may be explained by a
too small value of the deformation parameter ß. It is interesting to compare the values
of the nuclear deformations ß derived from the inelastic scattering experiments with
the results obtained by electromagnetic methods. The BfE 2) values extracted from
Coulomb excitation and lifetime measurements are connected in first order with the
deformation ß by 7^2:0^2) .„,P \y>\4n)ZeB%' { '

where a uniform nuclear charge distribution with a sharp surface of an average radius

Rc= 1.2 A11* fhas been assumed. Taking into account second order effects we get
slightly smaller values for ß. We thus obtain for Ni68 a value of ß 0.19. This is in
good agreement with the inelastic scattering result obtained for an energy of 43 MeV
(see figure 2). It has been suggested that the deformabilities decrease with increasing
projectile energies. Thus the discrepancy at 64.3 MeV can also be explained by the
fact that during the interaction time the alpha-particle sees only a few oscillations of
the nucleus (about 10 at 100 MeV), i.e. it does not see any stationary states at very
high projectile energies for nuclei in this mass region.

It must be emphasized here that the magnitude of the cross section depends not
only on the nuclear deformabilities ß, but also on the details of the inelastic form
factor Ffr) (see equation (35)).

The results of inelastic scattering processes determine the deformation parameters,
provided the collective model is valid. These parameters agree with the results
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obtained by other methods. The magnitude of the cross section is very sensitive to
changes of the form factor parameters. This is again an argument in favour of the
model. More detailed theoretical calculations and precise experimental data might
show whether the form factor chosen in equation (31) is correct. Deviations from this
expression are expected especially in the case of transitions between different single
particle states in odd-^4 nuclei.

The results of figure 1 show that the angular distributions of the one and two
phonon states are in phase, which is in accordance with the well-known phase rule1).
This rule states that for even values of Al the angular distribution is in phase, while
for odd values of Al it is out of phase. The conditions for the validity of this phase rule
are fulfilled for (a, a') reactions at energies of about 40 MeV. It would be interesting to
check this phase rule experimentally also for energies of some 60 MeV. Recent
experiments16) have shown that the inelastic angular distributions with excitation of
states with spin 4+ in the nickel region disobey this phase rule. They were found to be
almost exactly out of phase with the 2+ distributions. This might be explained by
second order effects in the deformation, thus leading to a direct two-phonon excitation

of the 4+ state10). Because the energy ratio for the 4+ and 2+ levels in Ni58 is
different from 2, suggesting a breakdown of the vibrational model, an increasing
contribution of the direct two-phonon excitation results. This can be explained by the
fact that the first 4+ state includes some admixture of the state containing a single 4+

phonon. Therefore a comparison between experimental data and our theory should
include this direct excitation mechanism, too (see also section VI).

VI. Summary and Conclusions

A coupled channel theory of direct interactions in the WKB-approximation is
presented in this paper. The underlying basis of the used model is the adiabatic
approximation. In the case of excitation of vibrational states it is possible to obtain
exact results without the use of the adiabatic approximation. This is not the case for
rotational states.

It is possible to extract reasonably good values for the nuclear deformabihties ß
from the inelastic scattering data. The agreement between the values of ß obtained in
this way with those derived from Coulomb excitation is satisfactory. This is an
evidence for the validity of the collective model. However, at very high projectile energies
further elaborate calculations are needed in order to be able to make definite
statements. A direct solution of the set of coupled differential equations might be done on a
fast computer. Such calculations have been carried out for the case of inelastic proton
scattering3). Also numerical calculations with nonlocal operators in coordinate space
might be of interest, since this takes into account the energy dependence of the optical
potential at high projectile energies.

In the present treatment the inelastic scattering problem was solved only to first
order in the interaction. In particular terms of order ß2 and higher were neglected. These
terms are associated with the second derivative of the interaction potential which
describes a direct two-phonon excitation of the 4+ state. Including this term the actual
angular distribution of the 4+ state is then the combined result of both the multiple
and direct excitation. Provided only pure quadrupole vibrations are used for the
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description of higher collective states, the above mentioned admixture effect of the
state containing a single 4+ phonon must be included. This results in an apparently
increased contribution of the direct two-phonon mechanism over the multiple
mechanism.

Because of the sensitivity to interference between the various contributions,
the inelastic scattering of alpha-particles, together with the theory developed here
and the possible extensions, provide a very useful tool to study and interpret the
higher collective states.
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