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Perturbation Expansion of the Wave Function of Boson Systems

by Edgar Rhodes and Paul Erdös1)
Department of Physics, The Florida State University, Tallahassee, Florida 32306, USA

(10. II. 68)

Abstract. For applications, the Rayleigh-Schrödinger nondegenerate second order perturbation

expansion of a many-particle wave-function is explicitly presented. The wave-function
represents an assembly of bosons in a perturbing potential. The potential, expressed in second-
quantized form, is linear and bilinear in the boson operators and contains arbitrary operators which
couple the bosons to other systems of particles.

I. Introduction

In perturbation treatments of boson systems, the perturbing potential usually
has the form

V ZQk„ a; ah, A^Q'^u+SQ'J ZJ (1.1)
kk' k k

Here ak is the operator which destroys a boson of wave vector2) k, subject to the usual
boson commutation rules. It acts on the unperturbed eigenkets in the occupation
number representation. Qkk, and Q'k are arbitrary operators acting in a space
independent of the boson occupation numbers, but may depend on the boson wave
vectors and are restricted by the requirement that V be Hermitian.

This form of perturbation arises especially often in problems involving crystal
lattices, in which case the â operators may correspond to phonons or magnons, and

the Q operators may correspond to phonons or magnons, spins, electrons or localized
excitation modes. For example a study of lattice distortions by an impurity [1] would
involve local oscillator-phonon interactions, or a study of polarization of magnetic
ions in a crystal by an impurity spin [2] would present us with the problem of localized
spin-magnon interactions. The treatment of electrical resistivity involves electron-

magnon interactions [3, 4] and the theory of magnetoelastic effects [5] deals with
magnon-phonon interactions.

A perturbation treatment of this specific form of potential therefore would
be useful. We have calculated the wave function for this potential up to and

1) On leave from the International Business Machines Corporation Research Laboratory, Rüschli-
kon-Zürich, Switzerland.

2) We use the term 'wave vector' to denote the subscript ft, which enumerates the boson states.
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including second-order terms, according to the non-degenerate Rayleigh-Schrödinger
perturbation theory [6], assuming the unperturbed Hamiltonian to be of the form

#o=2>* «**«* + #' (1-2)
k

where eh is the excitation energy of a boson of wave vector k and H' is an arbitrary
Hermitian operator acting in a space independent of the boson occupation numbers.

II. Perturbation Theory

In general, the perturbed Hamiltonian is written as

H H0 + g V (2.1)

where H0 is the unperturbed Hamiltonian, V is the perturbing potential, and g is the
perturbation expansion parameter. The unperturbed eigenvalues and eigenkets obey
the equations

H0\m} Em\m}, (2.2)
and

<i\m) ôim, (2.3)

where ôlm is the Kronecker symbol. The eigenvector problem to be solved is

H\m) 8m\m), (2.4)

where £m and \m) are the perturbed eigenvalues and eigenkets.
According to non-degenerate perturbation theory, we expand the perturbed

eigenvalues and eigenkets in powers of g and write

oo

\m) |m'y + sJg1 \tn)[, (2.5)
i-i

where | m)l is given in terms of the unperturbed eigenkets. The Rayleigh-Schrödinger
theory yields

v-i <*| v\m.y | ,„\m)i= L e -E !*>• (2-6)

and

\m> v-i \<i\V\m>\2 /^IT/I^v V<i)Flm>L (e -e.)* -<m\v\m> Li x lm> \-» K*|F|m>|a / i t/i \ x-t <i\v\m'> i-\»)«=--L2- 27 (i -£)2 -<w 7 w> 2 rg rys *>
Z AS. ^m ^i-' «*m ^m *-V

as the first two terms in Equation (2.5). The \m)l in Equations (2.6) and (2.7) are so
chosen that

(i | m) òim + terms of order g3 and higher. (2.8)
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An eigenket of H0 as given in Equation (1.2) is labelled in the boson occupation
number representation by a particular set i of occupation numbers, one for each

allowed wave vector, denoted by

{»*} <.<.-.< (2-9)

for N allowed wave vectors. Since each occupation number nk may be an arbitrary
integer, there are an infinite number of such sets i. The eigenkets of H' [cf. Equation
(1.2)] will be labelled by Greek letters to avoid confusion. Our unperturbed eigenvalue
equation is then

41«> K<}> (£a+27%<) l«> IK}>> (21°)
I:

where Ea and | a > are the eigenvalues and eigenkets of H'.
We see from Equation (2.10) that degeneracies are present in the boson occupation

number representation which lead to infinite terms in the sums of Equations (2.6)
and (2.7). It is usual to replace these sums by integrals in the limit of infinite systems
[N -> oo in Equation (2.9)]. If these integrals converge, the perturbation expansion
remains valid and is approximately correct for large finite systems. In the divergent
case, second order Rayleigh-Schrödinger non-degenerate perturbation theory cannot
be used.

The matrix elements of V [cf. Equation (1.1)] needed in Equations (2.6) and (2.7)

are given by:

<«l <{<}\v IK» \ß> à(H}, {<})27<<al Qhh \ß>
h

fe4=fc'

+ A*({n\), {<}) 27 [K + 1) 4]1'2 <«| Qkk> \ß> à(rJk, 4+1)0 «„ < - 1)

k, w

+ *({<}. K})27tK)1/2 <«| Q'u \ß> à K, 4 -1)

+ K + l)1'2 <a| Ç;t i^ ô {nl K + i)] ; (2.11)

where ô(a, b) is the Kronecker delta of a and b, {n*k} {nQ means n\x nihx, nlk2

nk2> ¦¦• • nkN — nkN> an(i A and A* are defined as

MS >\ S i\\ \x'lx {n'k} an<i {ni} differ at one and only one wave vector
AAn*>>in*>)=\0> otherwise (2.12)

and

A* iS >\ i\\ I X>X1 {n'k} and {nk\ differ at two and only two wave vectors
A (1V-(M) j0> otherwise (2.13)

III. Perturbed Wave Function

From the results of Section II, the perturbed wave function can now be calculated.
But first we describe a few notational conveniences to be used in this section. We
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suppress thewave vector k,, replacing it by its index I, with sums over /being understood
to means sums over all allowed wave vectors k,. From Equations (2.6), (2.7) and
(2.11), we see that the unperturbed boson eigenkets will differ by at most a few
excitations from the boson occupation numbers of the perturbed eigenket being
calculated. If this set is, say, {n'k}, we relabel it as 0, remembering of course what
the actual occupation numbers are when operating on the kets.

Hence

\n[,ni, .nj, ,<> |0, ,0>. (3.1)

Deviations from this set are denoted as

Jn\, n\, n\ + p, n\ + q, <, + r, «j»

10 0, pj,0 ...0,q,,0 ...0,rm,Q 0> (3.2)

and the notation on the left hand side of Equation (3.2) will be replaced by that on
the right. The numbers labelling the kets in our new notation will be referred to as

'occupation deviation numbers'.
Although Equation (3.2) has no meaning if any of the wave vectors in the ket are

made equal, much simplification will result in the wave function formula if we allow
indices to become equal in our new notation and if we define such cases by the
convention

\0...0,Pj,0...0lqJ.,0...0,rm,0...0y, \...,(p + q)j,...,rm,...}. (3.3)

Thus the state | lk, — lk > is defined as 10 >, the original state as given by Equation
(3.1), for example. We further subdivide the perturbed eigenket into the parts

|a, 0)x= |a, 0)1+ |a, 0)f +'conjugate' term, (3.4)
and

| a, 0)2 | oc, Q)1Q + |a,0)f °' + |a, 0)%Q' + I a, 0)fQ + |a, 0)$'<Q'

+ 'conjugate' terms, (3.5)

where a denotes an H' eigenstate and 0 denotes any boson eigenstate, as described in
Equation (3.1). The subscripts are those of Equations (2.5), (2.6) and (2.7), and the

superscripts indicate the operators appearing in the matrix elements of V as described
by Equations (2.6), (2.7) and (2.11). To each term appearing in Equations (3.4) and

(3.5) which contains a Q' or Q'^ operator, there corresponds a 'conjugate' term in
which Q' is replaced by Ç'1' and Q'^ is replaced by Q'. All such terms must be added
to Equations (3.4) and (3.5) to obtain the complete perturbed wave function. These
terms are not given here explicitly, since they may be derived from their corresponding
terms by the following simple set of rules, which will become clear upon examining
the terms in the wave function below.

1. Change the sign of each e having the same subscript as a Q' or Q'^ operator.
2. Change the sign of each ket boson 'occupation deviation number' having the

same subscript as a Q' or Q'+ operator.



Vol. 41, 1968 Perturbation Expansion of the Wave Function 571

3. Add 1 to each n having the same subscript as a Q' operator.
4. Subtract 1 from each n having the same subscript as a Ç'î operator.
5. Change the sign of each Kronecker symbol marked with an asterisk.

6. Replace Q' by Q'< and Q1' by Q' after completing steps 1 through 5.

Each 'conjugate' term is derived by applying all six steps above to its corresponding
term as given by Equation (3.7), (3.9), (3.10), (3.11) or (3.12).

The asterisk mark on certain Kronecker deltas below has no other significance
than that mentioned in rule 5. Roman letter subscripts below are boson wave vector
indices and Greek letters denote eigenstates of H'. The first order terms are

I a, 0)1 =£[(«, + 1 - 6tJ) nj]*£' E^E^-st V» I1" - ^> (3-6)

and

\«,0)?=£nV2£ ^f^lßyl-ity. (3.7)

Here and below, the prime on the summation indicates that terms for which the
denominator is zero because of equal indices (i.e., not due to degeneracy) are excluded.
In this case, ß 4= a when i /. The first second order term is given by

la>i°> V/. 11 x \„ V" K/3I0.7I«)!2^^ ^^,+ 1-^,)^' (Ea-Eß+ej-e{)'
</JIÖ«l«>- [27% <«| Q„ ]a> JjE>t + 1 - ô,j) n^Z'^^ |/?> |lf, _ Xjy

+ 27[(»i + 1 - ôu) nj K + 1 + à„ - à,j - ôlm) (nm + ômi- ômj)Y'2
ij Im

v V <V\Qlm\ßXß\Qij\a> iv H -, -, -, v, ,oo\X L (E„-E,. + e.-e. + e -FA~IÊ^ Ea + e.-eA \Y> I1*' " V ^ " X-> " ^8)
/Sy (£a-£y+£.-£. + £m-£;) (£„-£„4-6,.-g.)

The prime on the double sum above implies that ß 4= a if * /, and y 4= a if * j and
1 m or ii I j and m î. The remaining second order terms are

l„ niO'O' !a> l°> V™ VI«. 0)a ô LniL2 ^ *y (£a-£^+e£)2

- Fr«. (n. - ô*-!!1'2 F <z.L?M><ÊMl^> iv\ i _ i. _ i.> (39)
^,L»,l», <VJ 2, (£a-£y+£. + £.)(£a-£^ + £f) iy/1 x" V- ^

<i8ie;-ia>
I«, or - - [£«,<«! ç» |«>] Z-ff^g^-l/?> I -x-i,->

<Y\Qji\ßXß\Qi\*>+ è ' " ' 2, (£a-£y£y£;-e,) (£.-£,+.,-)

x |r> I - l|f \j, - lf> (3.10)
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I«. o)P=27[(»< +1 - <y % (»i + *n - w2
x y <Y\Qi\ß><ß\Qij\*> .v |i _, _iv /311v

where the prime on the sum implies that ß 4= a if / », and

|a Q)Q'tQ' Y\n (n +1- A*\,1I2 y> <Y\Q'A*ßXß\Q'i\a>
|a,UJ2 4^(^ + 1 Orf] j, (E.-Ey+e^BjiiE.-Eß+e,)

x|y>|-l„ly>, (3.12)

where the prime on the sum implies that y 4= a if j t. Equations (3.4) through (3.12),
when substituted into Equation (2.5), constitute the perturbed wave function of the
boson system, correct to second order.
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