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Coupled Channel Equations and the Giant Dipole Resonance

by G. Baur and K. Alder
Institute for Theoretical Physics, University of Basel

(20. VII. 70)

Abstract. The cross section for the (y, nucléon) reaction on nuclei in the giant resonance region
is calculated in a coupled channel model. 1 particle-1 hole excitations and collective surface
vibrations, which are coupled to the particle degrees of freedom, are considered. It is shown that
the coupled channel equations may be simplified by using the 'external mixing' approximation.
Furthermore, the interference of El- and E2-radiation and its influence on the angular distribution
are calculated. Numerical calculations are done for the giant dipole resonance in C12 and O16 and
compared with the experimental data. Contrary to the usual bound state calculations this model
makes explicit predictions for the various observable quantities, such as total cross sections for
photodisintegration and their angular distributions.

I. Introduction

The main features of the giant dipole resonance for nuclei are well described in the
lp-lh model [1]. (Another, equivalent approach is the collective model of Steinwedel,
Jensen and Goldhaber, Teller [2].) In the first case one normally performs a shell-
model calculation using bound-state wave functions (e.g. harmonic oscillator wave
functions). The reaction process (y, N) cannot be treated explicitly in this bound state
model; however, the oscillator strengths are related to the cross section for y-ab-
sorption. In most cases the experimentally observed fine structure is more pronounced
than what one obtains from lp-lh calculations. In order to explain this fine structure
the following approaches have been tried: Kamimura et al. [3] included to the usual
lp-lh configurations certain 2p-2h configurations. Greiner et al. [4] included in the
macroscopic Steinwedel-Jensen model a coupling of the high-energy proton-neutron
dipole vibration with low-energy collective vibrations and rotations. Thereby they
were able to explain the fine structure of the giant dipole resonance in medium heavy
and in heavy nuclei.

Buck and Hill [5] developed a coupled channel model in order to treat the giant
dipole resonance as a reaction, taking into account from the outset that one has a
nucléon in a continuum state. With this method one is able to calculate directly the
cross section for radiative capture of nucléons by nuclei and for the time reversed

process of nuclear photodisintegration. Thus one is able to give an explanation of the
width of the giant dipole resonance. This method is analogous to the treatment of the
atomic photoeffect. The strong residual interaction between the nucléons, however,
is an additional complication, necessitating the coupling of different channels. This
formalism may also be applied to elastic, inelastic and charge exchange scattering of
nucléons by nuclei.
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In the present work the Buck-Hill model is extended to collective surface vibrations.

Numerical calculations have been done for C12, where one has also observed a

giant resonance based on the first excited 2+ state in C12 by means of the reaction
H11(p, y1)C^243MeV. We also develop a simplification of the coupled channel equations
by using isospin invariance. Calculations are done for O16, which show that the
difference between neutron and proton emission is mainly due to 'external mixing'.

The observed angular distribution asymmetry about 90° makes it necessary to
include higher multipole orders in addition to the dominant El-radiation. We consider
E 2-radiation to be the most important admixture and thus we are able to explain the

appearance of the angular distribution parameters ax and a3 in the reaction C12(y, /»JB11.

II. Giant Dipole States and Excited Giant Dipole States
Measurements of the cross sections for the reactions Bu(/>, y0)C12 and

Bn(^>, yf C| 4*MeV gave an experimental indication of the coupling of the giant
resonance with quadrupole surface vibrations [3] (Fig. la). The first excited state in
C12 may be thought of as a collective vibrational state. Now, in order to include this
excitation into the giant-resonance calculations, one might think of choosing 2p-2h
configurations, as has been done in [3]. But this would lead to great difficulties in the
Buck-Hill model; besides, some 3p-3h or 4p-4h excitations might also become

important. So we choose here a more phenomenological approach; following the work
of Greiner et al. [4] we assume that this 2+ excitation is the most important part which
is coupled to the giant resonance.
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b. Level scheme of B11.

Figure 1

a. Schematic picture of the giant
resonance in C12, as observed in the reaction

B11 + p.

1. Description of the Model

The following model may in principle be applied to any even-even vibrational
nuclei. As a numerical example we choose C12 later on.
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We assume that the Hamiltonian consists of three parts:

H Hp + Hp_CBll + Hcoll, (2.1)

where Hp is the particle part and is given by

Hp=2J<i\ T\j} afaj + -JF(ij\V \kl/afafakal (2.2)
ij ^ ijkl

The fermion operators «; obey the anticommutation relations

{a,, aj} {af, «+} 0 {af, a, } ôi}. (2.3)

The purely collective part may be written in the following form

Hcoll=hœ£K\' <2-4)

H--2
where % co is the energy of the first excited 2+ state, bf and b are quadrupole creation
and destruction operators, satisfying the following commutation relations:

The particle-vibration coupling is written as follows:

Hp-coll =Z<i\Uß\j>a+ aj (b, + (-)" &_+) (2.6)

where U is given by

U,(r) k(r) Ytß(a, tp) (2.7)

The function k(r) will be specified later when we have introduced the optical potential,
which accounts also for this coupling, as we shall see later on.

In our model we treat the giant dipole resonance of even-even nuclei (mass
number A) as a superposition of lp-lh and collective excitations. We shall restrict
ourselves to one phonon, because only one phonon seems to be established
experimentally for most of the nuclei, and besides it would involve many more coupled
channels without giving us more physical insight. For the ground state of the system
we neglect correlations; we simply use a Slater determinant of single particle wave
functions. This was found to be a good approximation by Vinh-Mau [6]. The 2+ state
at 4.43 MeV in C12 is treated as a purely collective vibrational state.

Because our Hamiltonian is invariant under rotations and the parity
transformation, we decompose the total wave function xp in the following way:

y^UvjxM ¦ (2-8)
JnM

We shall obtain a separate Schrödinger equation for each value of the total spin JM
and parity n. Then we make the following ansatz for our wave function with the
coefficients Caß, DJ'ß:

Vj»M=£c*ß(ia.mo,iß'mß\ JMy(-)a aßaa |0> |0) +
a/3

E DJfß<[jamajßmß\J'M'y<:rM'2[t\JM)(-)«ajax\0)bt\0). (2.9)
xßM'ßJ'

We use the following notation: j0> is the ground state of the A -nucléon system,
aa is the hole creation operator and at the particle creation operator. The quantum
numbers of the hole are collectively denoted by a ea la ja ma — t where la is the
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orbital angular momentum, ja the total angular momentum, m^ its ^-component.
— t is the 2-component of the isospin (t 1/2 proton, t —1/2 neutron). Analogously
ß stands for eß Iß jß mß t which are the corresponding quantum numbers for the
particle. The phase factor (—)a (—)»a-*»o is introduced so thatthe hole state of
the core nucleus transforms under rotations similarly to a particle state. 10 is the phonon
vacuum. Because of the explicitly inserted Clebsch-Gordan coefficients, Ca » and DJf o

are independent of the magnetic quantum numbers. As we have restricted ourselves
to even-even nuclei we have /" 1~ for the electric dipole resonance. For the
excited giant dipole resonance, as it is observed in the reaction B11 (p, yx) C12*

we must take the total spins l-, 2~, 3~ into account.

In practice, the sum over /' in the second term of (2.9) is replaced by the single
term with /' 1, because the quadrupole phonon will interact most strongly with
the 1~ giant dipole vibration. This is in accord with the purely collective model as
described in [4].

2. Coupled Channel Equation

Using the Schrödinger equation we obtain a system of equations for the coefficients

Caß, Daß. (These coefficients depend on /, but it does not seem necessary to
show this explicitly in the notation.) However, we are not directly interested in these
coefficients, therefore we shall transform this system into coupled channel equations
for the radial wave functions of the particle in the continuum. Putting (2.9) into the
Schrödinger equation we have:

(0\(0\ataß(-T(K-E)WpM 0

and

(0 I b, <01 af aß (-)« (H - E) Wj„M 0 (2.10)

The vacuum expectation values may be calculated using the commutation and anti-
commutation relations or, equivalently, the Wick theorem. So we obtain a system of
linear equations known as the Tamm-Dancoff equations:

CaP <ia m« iß ™ß\JM> (eß -sa + E0-E) + £(-)«+*' Ca,ß,
a'0'

</«< «V iß- mß,\JMy{ßa.'\V\cr.ß'- ß' a> +EDa?
ß'M'n'

Ü, ma ]ß. mß, \J'M'yiJ'M'2M'\JMy<[ß\U/l,\ß'y 0,

D«ß fia nta iß f»ß I /' M'X/' W 2 ft | / My (Sß - ea + E0 - E + %co) +
2'(-)a+a' Da.ß, <[ja,ma, jß, mß. | /' M'y </' M'2p | /M><^a' | V |« jj'-/8'a>
ct'ß'M'

+ Ec«ß' (!«»«l;»f I /M> (-)" <ß\ u-, I/O -0. (2.11)
ß'

Now we want to transform this system into coupled channel equations. We first define
the following single particle wave functions (solution of the Hartree-Fock equations)
for bound states:

4(r) y v. • t(r)il*Sfr)
Y a a'a
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for continuum states:

<f>ß(r) - v.M(r)i'ßSß(t)
with

S-EVXsplJtnyYuftxrX,. (2.12)

Then we define the following wave functions:

Wpa =EC«ß </« m* iß mß\JM> <Pß(r) (P lfl iß t) >

eß

%a^ED«ß<i«m«iß™ß\J'M'y(J'M'2fi\JMy<l>ß(r). (2.13)
«/j

Now we multiply the system (2.11) with <f>ß(rf) and sum over the excited levels of
different energies sß. This leads to terms likeJT'|^j(»,0)> <[(j>ß(rx) | which we may write

eß

by means of the completeness relation in the following way:

E\Mfo)> <MrJ I ^7?- SßCro) SßCrf -^I^WXW I

• (2-14)
sß fo "i

In the future we shell neglect the contribution from the unexcited states i; this
approximation will be well justified. This sum over et on the right hand side of (2.14)
contains only few terms, besides the overlap of the particle and hole wave function
will be small because of the large energy difference.

Using the Hartree-Fock equation

efi<pfi=(T + VHF)<l>fi (2.15)

we may write (The exact form of the Hartree-Fock potential will not be used; in the
actual calculation it will be replaced by a phenomenological optical potential) :

(Epi, E + ea- Ef
(T + VHF - Eph)fpa(rQ) -£(-)«'+«' j d\ d*r2 ^J^

P'a' J T0

SfiC'o) Sj(fj) <f>*ArfV(rx, r2) (fifrf fp,a.(rf - vVa'(ri) &(r»))

-E fd^ 6(r°Jri) S/^o) S;(rx) U^rf ^aV(rJ

{T+VHF-(Eph-%oS))Wp^(r0) -E(-)a+a' f d3rxd\
faf J

0{r°7l] Sfl(r0) S;Crf fa.(rf V(rx, rf {<pa(rx) vyaV(r2) -'o

^W M'è) -EW fd3ri ^0^ SA°) S'ß(;J u-^Wairù ¦ (2.16)
P' J ro

Separating the angular part of the wave function we may now obtain the radial
differential equations. For this reason we define the radial functions faß and gaß\

W) y f*Jr){lßsßCr) damaiß™ß\JMy
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with
faß 2j Caß Vlßjßteß(r) >

eß

WPaf{r)=\eaß(r) i'oSpCr) <L™Jß™ß 1 J'M'y <J'M'2p \ J My

with

g*ß=ED*ß V^W • (2-17)
eß

For the residual interaction we take the following form:

V(rx,rn) Vpô(rx-r2)(a + bPa), a + b=l, (2.18)

where Pa 1/2 (1 + ax -of is the spin-exchange operator. This ^-function dependence
avoids integral terms in our equation. This simple choice for the two-particle
interaction seems justified because calculations performed so far for the giant resonance
with finite range and <5-forces have led to almost the same results.

The Hartree-Fock potential is as usual replaced by a local optical potential with
a Saxon-Woods radial shape. A spin orbit, a surface absorption part and a Coulomb
part have been added. For the first two, the radial shape has been assumed as the
derivative of a Saxon-Woods potential

r-R r-R
V,. XI e~ 4iWe~

VHF -* Vopl ^ + Vu° ¦ I fr "T rrjrr + V^ff + H- - (2A9)
1 + e a (1 + e a (1+ e a

Now we can also specify the function k(r), which couples the particle motion to the
vibration. A similar derivative form has also been used by Tamura [7] :

r-Rl/ K R e a

k{r) y 2^7 vF° 777W ¦
(2-20)

1 + e a

I r, ft
The square root in (2.20) \ rrf,— f= maY be determined from the £(E2)-

value and the energy of the 2+ -> 0+ transition [8]. We define

%2 (l,(lf+l) d2\ ,V_Fr2 dr2' + opt ""'L{1h
2M

F2}
%2

2M
Iß (Iß + 1)

__ ^_
r2 dr2 Vopt-(Eph-%oS), (2.21)

where M is the reduced mass of the system.
Now we are able to write the coupled channel equations in the following form:
L{1? fi(r) =E(AtAr) tj(r) + BtJ(r) gfr))

j

^} gfr) =E(DiAr) fAy) + CüW gj(r)) • (2-22)
;

After summing over the magnetic quantum numbers we obtain the following expressions

for the coupling matrices
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A-ij Aa
Vp_ Xigtir) %-igAr) lß, + ta-tß-ia. ja +v
4n r2

{ '

1a 1a' Iß' Iß' (a-bôtt)X-(l+(-)3+l^)(l A+la'+'ß

ia, iß J\ I ia' iß' J\ i
-1 In z-1 Ln + (b-^tt')Ui + Hla+la'+lß+lß')

2 2 I \ 2 2 I
I ia iß J\ l la' iß' J\ I ia iß J\ I la' iß' J\

Cij — Atj

BtJ - Baßa,ß,= k(r)]j^- ött,i'^\(l+(-)1^)

(-)
J+ia-

J'lß'fß ^^Aüßju

IF B:

(x f2x+l (2.23)

3. Calculation of the Cross Section for Radiative Capture
Now we want to calculate the cross section for the process (A — 1) + N -> A + y,

where (A — 1) is a nucleus which can be described as a pure hole state in an even-even
core and N is the incoming nucléon (either a proton or a neutron). In this chapter we
assume pure El-radiation. By the theorem of detailed balance we are then able to
calculate the cross section for the inverse process (photodisintegration) A + y ->
(A-l) + N.

The numerical integration of the system of differential equations gives us N
linearly-independent solutions up from which we will construct the radial functions

u^if) with the following asymptotic behaviour:
.Wt KqFM + Ckq(G (r) + iFJr)), (2.24)

where Fq and Gq are the regular and irregular Coulomb functions. For neutrons these
functions go over into spherical Bessel and Neumann functions. In the case of closed
channels (negative energy), the Whittaker and Hankel functions with imaginary
arguments have an exponentially decreasing asymptotic behaviour. The incident
channel is denoted by k. The solution uf^ is obtained by linearly superposing the
numerical solutions with different starting conditions:

*?>=E<
p~i

"pq ¦ (2.25)

Eliminating Ck we obtain a system of linear equations for the coefficients a^.
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Now one can calculate Ck and thereby the cross sections for elastic, inelastic and
charge exchange reactions of nucléons on nuclei [9].

In this work we want to calculate the cross section for y-emission leaving the
nucleus in its ground state or in its first vibrational state. For nuclei with N Z we
write the dipole operator for the emission of a photon with z-component yt as follows:

D^Df + Df.
'

(2.26)

D^f is the main term and is given by:

&?-'$<i\h'K\i>"taJ- (2.27)

t3 has the eigenvalues -f1/2 for protons and —1/2 for neutrons. D^f is the contribution
from the collective motion and has been calculated by Greiner et al. [4] using the
hydrodynamic model:

Dï] eFc-pE<2el e' I !/»> (be + H" O <»l hr Y\e, |/> afar
(2'28)

I'*' ee'ij

p has been calculated in two different approximations [4] :

p —0.766 neglecting the energy dependence of the proton density,
p —0.246 using the adiabatic approximation.

The numerical calculations show that the influence of D(}f on the total cross
section is less than 10%. But the value of p, which is not very well known, introduces
an ambiguity. So, in the final calculations this term was dropped. The following
formulae include the contribution of D^ for the sake of completeness.

The initial state of the system is given by the solution of the scattering problem.
Then the electromagnetic interaction is turned on causing transitions to the ground
state or the excited 2+-state. We consider an incoming nucléon with the wave number
k{, z-component of spin v, isospin t and a target characterized by a hole with the hole

quantum numbers ja ma la — t. Then we can write the state vector of the total system
as follows:

|*> ee rW(fe/) =i^jry'% YfAk,) </a ma iß mß\JMy
*«* Ri jßlß>.mßJM '

<ißXsv\ jßmßy (ECa'ß'Ct (-)"'</.'*viß'**r I JM> aß' a« l°> 1°)
a'ß'

+ ED.'ß'ci(-)a'<i^a'iß'^ß'\J'M'ya'M'2i,'\JMya;,aa\0yb+\0)), (2.29)
a'ß'M' ß'

where at is the Coulomb phase.

Now we calculate the following matrix elements:

BU <0 | D, |z> and B% <01 b, D^ |z> (2.30)

The first one describes the dipole transition to the 0+ ground state of the nucleus A,
the second one describes the transition to the vibrational state leaving the nucleus
with z-component of angular momentum v. We obtain the following result:

B™ff ^— E e°lß YV (ki)<.iantJfimp\lny(lfiXsv\ifimfiyEx(cl)
«i jßißx "

Ex(Ci) EfHcA + E? (Ci)

E[0) is due to the term Dj£> of the dipole operator, E[l> to D^.
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We have

W (ci) =EÏ>'"'¦ t'L'iß' R'*'~ H ~1 J_0 / drr /..^ \ 2 2 7/ (2.31)

*f» - «>£.*-* f. y (-)'V-(4'lo) /* 'W**
and likewise for the 2+ transition

Bill -V"" 27 e
^1" y*y &) </. mJßmß\JMy(lßXsv\ jp mßy

Ki ißtßi

^m[ILm)f^'
Fi(c{) F(°)(C<) + FU(c()

.ilw iß' i\ ;
^,0) w - z; ^ n i- f, *' (-),ß T J_=io)fdr r "'*'"'"* •

\ 2 2 / g

^Hc^ffE/^^P u iß' f H'^^^o)/*-^^^/..^-
(2.32)

Using unpolarized particles and not measuring the polarizations of the outgoing
particles, we may write the following expression for the differential cross section.

For the transition to the 0+ state we obtain

da,+ _
16 n / Ey0 y 1 -, «a»'„

IQ— 9 [W) Hv(2s+1)(2 Ta + 1) „À/01" 01"' l" {**Xv^ ¦

For the transition to the 2+ state we obtain

'V\ \ 1 m v m v*

dQ
-

9 \%c) T7(2 s + 1) (2 Ta F 1) ^f"'"^" Xl"{ky) Xl"' {ky)* '

(2.33)
where X1/t are the vector spherical harmonics [10], defined as

XXli YX1/1=£<1 ela\l/,yYXeea. (2.34)

Summing over the magnetic quantum numbers we obtain:
dcSni 12 e2 I Eyn \3 11

v-T Hatß-atß,) a2 f "

^(2s+i)(2?a+i) jßlßrß,lß,Q
' y lßlßi

0
2 2/

1 (1 + Hlß+lß'^ Ei(L K jß lß t) Ei, (/a ^ ^ ^ ^ po (cos#) _ {235)
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Using

/ dû PQ (cos#) =4nôQ0
we obtain for the total cross section:

16ne2 I £V0\3 1 _¦*—wbr) -rwrr\YwF^^fEAUJ'l'w- {2M}

Analogously we have for the 2+ transition:

da^ 4 e2 I Eyx \° 1 tf'%~V >1 H/+7
dû k2 \ He) hv(2s+l)(2ja+l) ;,f, J J

«i'V-^fti^ii^&iè
iß'ßiß'iß'JJQ

iß iß' Q

1 -1
0

2 2

I/2/10
L l + (-)'ß+lß'+ V) Ff (ia la jß Iß t) F/ (ja la iß. Iß. t)* PQ (cos#) (2.37)
2

and
16 n e2

2 9 k:
(2.38)i \Yc) %v(2s+l)(2iœ+l) .E\n(iJJßlßt)\*

Generally one may express the angular distribution in the form of a Legendre
polynomial expansion:

~ ^(l + E^PAcos&))- (2.39)
ah£ t- n i- > o

Because we have assumed pure El-radiation only the coefficient a2 is different from 0.

In the computer program we calculate atotal and a2. Experimentally one also observes

ax and a3 to be different from 0. This will be discussed in chapter IV.

III. A Simplification of the Coupled Channel Equations Using
Isospin Invariance
1. General Remarks

Recently the coupled channel equations have been used to calculate the giant
dipole resonance in light nuclei with doubly closed shells (C12, O16, Ca40) [5, 11].
These calculations have included lp-lh excitations of both neutrons and protons.
Because of the different single-particle energies of proton and neutron configurations
and because of the Coulomb potential the neutron and proton channels were treated
separately. In the present work we couple the neutron and proton excitations to the
total isospin T 1 and T 0. In a good approximation the 77 0 and T 1

channels are decoupled in the region r < Rm, where Rm is the matching radius to be

specified later. By this method the numerical calculations are reduced by a factor of 4,
because the computer time needed to solve the coupled channel equations is about
proportional to N3 [7]. The usual matching procedure of the numerically calculated
radial wave functions for r < Rm to the asymptotically correct solutions allows us to
take the influence of the Coulomb energy difference and of the Coulomb potential
into account exactly for r > Rm. These effects are most important in this region [12].
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In the second part of this chapter we describe our method and give the necessary
formulae, in the third part we discuss the results for the giant resonance in O18 and

compare it with calculations where the n- and /i-channels were treated separately.
The calculations differ at most by a few percent. So the difference between (y, n) and
(y, p) reaction cross sections are explained in a natural manner and traced back to
'external mixing'.

2. The Simplified System of Equations and the Matching Procedure

We start from the system of equations which may be written in matrix form in the
following way:

where /± are 1-column matrices of the N p- or N w-channels (t + 1/2) and Vtt. axe
the four following Nx N coupling matrices (we do not consider collective excitations
here)

Vfl ôtj ôt, \JL± "r; ' + -£. (Vlpt - Eph) j + VfJm, (3.2)

The reduced mass of the system is denoted by ft, V'opt is the optical potential, V%m,
a coupling matrix originating from the 2-body residual interaction. We assume for
this interaction a <5-force dependence of the following kind:

V(rx-r2) Vpô(rx-r2)(a + bPc

1

2

Gl »

a + b l, Pa —- (1 + ax ¦ af! (3.3)

We have then

Vihr-Cij [(« - b ôtt.) Wf +(b-a ôtl.) Wf]

Vp \,;«(f)\,VfW Jflr+lq-lfir-l« ifa+lq' » » ¦¦Cii~l~f f2 1«1<eU1p

Wf
Iß

J + U + l /+'«'+'l + -1

Iß J Iß
l„ + l„. + U+11 +Wr -1

Iß J Iß' J
iß+'ß'+iß+iß' + i~ —1 -1

1
(3.4)

where we have used the following notation: the orbital and total angular momentum
quantum numbers of the hole and the particle are denoted by i or / (i a ß la Iß ja iß,
j a' ß' la. jf. Iß. ]f.). The radial wave function of the hole is vt (- t(r) and / is the
channel spin, which is equal to 1 in our case. Let us now write for the /
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This corresponds to a decomposition into T 0 and T 1 channels. Assuming
isospin invariance, the equations for the radial functions g0 and gx are decoupled,
i.e. we must have

V++ V__ V+_ V_+ (3.6)

This imposes the following conditions on our system of equations. The first one is

vt i l M v, _ i (r) (3.7)
'a'a2 a'a 2

i.e. the wave functions for the neutron and proton hole states must be the same in the
same quantum state. This is fulfilled to a good approximation [13]. Anyway, present
knowledge about the distribution of neutrons and protons in a nucleus does not allow
us to take the differences between n- and p-wave functions into account in a reliable

way. By choosing different wave functions for neutrons and protons one would at
most have a fictitious improvement. Secondly the following relation must hold

V+f2-E+h\-=V0-ti-Ep-h2 • (3.8)

Here two effects play a role which cancel each other to a certain extent: The Coulomb
displacement Ac of the single particle levels and the Coulomb potential for protons
which we approximate by that of a homogeneously charged sphere

V

'

Ze2

r
Ze2

2R ('-*)
r >. R

(3.9)

r < R

where R is the nuclear radius and Z the nuclear charge. Note that for O16 the displacement

energy Ac x 3.45 MeV.

In Figure 2 we compare Ac and Vc in the case of O16. From this figure one can
see that on the average Acx Vc in the region r < Rm. Thus we can decouple our
system of equations into a T 0 and T 1 part. This reduces the number of coupled
channels. One can also see that the difference between Ac and V. becomes important
for r>Rm. However we take this effect into account in an exact way by the matching
procedure, as will be outlined below.

Putting equations (3.5) into equations (3.1) we obtain the following coupled
channel equations by using (3.6):

¦

o) (V++ + V+_) (gf (Vdiag, + Vf-°) (gf

dr, „J (V++ - V_f) (gx) (Vdiag, + VF- l) (gf (3.10)

where we have used the following definitions:

7/-° y [(2 a - b) Wf + (2 b - a) Wf],
Vj-l ctJ[ -bWf -aW?} (3.11)

dr2

d2
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Figure 2

Comparison of Ac and Vc(r)
in the case of O16. The
matching radius is denoted by
R the nuclear radius by R.

By numerical integration of the systems of differential equations (3.10) using different

starting conditions, we obtain the following solutions which are regular at

r= 0:

for T =1: gf>

iorT 0:gf, (3.12)

where i=l,...,N is an index for the different starting conditions. Let us now form
linear combinations of the following kind:

p«i)/Ci=2>M+0-2ô,
t i

imposing the following boundary conditions

f^f-ft^^ + CccAGj + tFj)-

(3.13)

(3.14)

The regular and irregular Coulomb functions are Fj and Gj. For neutrons Fj and Gj
reduce to spherical Bessel- and Neumann-functions. From the matching condition of
(3.13) and (3.14) at r Rm one obtains 4 N linear equations for the 4 N unknowns
Ccc., af, off. This system of linear equations may be reduced to a linear system of

equations for the coefficients otff and af by eliminating Ccc..

In the calculation of the dipole matrix element only the T 1 component gx

gives a contribution. The dipole operator for nuclei with an identical number of
neutrons and protons (e.g. O16) is proportional to t3 and, therefore, by acting on the

ground state of an even-even nucleus, the dipole operator picks out only the T 1

component. We must, however, calculate both T 0 and T 1 components for the
following reason: The total wave function rp, being a solution of the Schrödinger
equation H %p E %p may be formally decomposed into tp ip0 + ipx with T2 ipT
T (T + 1) tpT. If Coulomb effects are taken into account, we have [H, T2] =1= 0, and
the Schrödinger equation does not separate into a T 0 and T 1 part. The T 1

part xpx by itself is not a solution of the Schrödinger equation. The T 0 part of the
wave function influences the giant dipole resonance through isospin mixing with
T =1.
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3. Results and Discussion

Numerical calculations have been performed for 016. We take into account

lp-lh excitations. This gives us 5 proton- and 5 neutron-channels, namely

(1 Pfl si/a). (1 tfl d3if, (1 ps/2 Sxl2), (1 pf/2 d3l2), (1 pfl dsi2)

for n and p respectively.
The cross sections for the reactions 016(y, p{) i 0, 1 016(y, «,-) i 0, 1 (i 0

transition to the ground state of the residual nucleus, i 1 transition to the 3/2~
excited state at 6.33 MeV and 6.16 MeV respectively) have been measured (for further
Ref. see [5]). The cross sections for n and p emission which leave the residual nuclei
in the corresponding final states are rather different from each other. The calculations,
however, show that one can treat protons and neutrons symmetrically for r < Rm

and explain the differences by the influence of 'external mixing'.
Figures 3-6 show the total cross sections for the four reactions which may be

treated in the lp-lh model. The calculations are compared to calculations using the
same set of parameter values, but treating neutrons and protons separately (10 channels).

The choice of the matching radius Rm is based on the following considerations.
We solve our simplified system of equations, and replace the Coulomb potential for
protons by the (constant) Coulomb energy difference. Depending on the choice of Rm,
this difference Ac — Vc is more or less cancelled. Such calculations were performed for
Rm 6.1 fm and Rm 5.1 fm. From Figure 1, one sees that the conditions for
cancellation should be approximately fulfilled for these values. We obtain a slightly
better agreement for Rm 5.1 fm with the calculations including all 10 channels.

a

mb

1

¦

0'6<y,Pn)N15

VV

1

I

t
tt

\ 1
\\ J

if Nk

'/ X
1 \

N=W

— N=5

Figure 3

The total cross section for the reaction
016(y, pn). The picture shows a
comparison between the calculations with
N 5 and N 10 channels. The following

parameter values were used throu -
ghout in Figures 3-6. For the two
particle residual interaction : Vp —650
MeVfm3, a 0.7, b 0.3. For the
optical potential: V0 -55.0 MeV,
V, -7.65 MeV, R - 2.96 fm,is
a 0.5 fm, W =0.1 Eproton-

13 zu ;s MeV

IV. Numerical Results and Comparison with Experiments. Discussion
1. The Giant Resonance in C12

a. Total Cross Sections
C12 has been studied very often both experimentally and theoretically (for

further information see Ref. [3]). The cross sections for the (y, n) and (y, p) processes
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a
mb

d6<r,nn)o>5

N--5

20 25

Figure 4
The total cross section for the reaction 016(y,
n0) The same parameter values as in Figure 3

have been used.
Mel'

have been measured. As final states we have considered only the ground states of B11

and C11 respectively, which are treated as pure p3j2 hole states. Furthermore, the cross
sections for the inverse reactions Bn(p, y0)C12 and H11(p, yx)C12* have been measured.

«
r mb

: °"tw»'s

: /^^
: j —w=;o

- — N=5

MeV

r mb

20 25

0,6(y,n,J0'5

N=10

W=5

MeV

22 27

Figure 5

The total cross section for the reaction 016(y,
^>t) N15 *. The same parameter values as in
Figure 3 have been used.

Figure 6
The total cross section for the reaction 016(y,
nx) O16*. The same parameter values as in
Figure 3 have been used.

According to the assumed spherical-shell model, the ground state configuration
for C12 is (1 s1/2)2 (1 p3jf* for both neutrons and protons. For the giant dipole state we
consider the following lp-lh excitations (for neutrons and protons) :

Pa/l si/a). (1 Pm dau)> C1 Ps/2 dm)> (l si/2 Pile ¦
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For the hole energies we use the following values. The p3l2 hole energy is 18.72 MeV
for neutrons and 15.96 MeV for protons. The 1 sxl2 hole energy is 35 MeV for protons
and neutrons. The 1 p3l2 hole energies have been taken from the neutron and proton
separation energies of C12. The 1 sxj2 hole energy for the proton has been taken from
(p, 2p) experiments mentioned in Ref. [14]. The 1 s1/2 hole energy for the neutron
is about the same.

cr
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i \
-

l \
1 \ r-12, ,o"C tf.PnJB
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\ Vp -650M«vfm3

to
1

1

1

1 \

j
\ »p—415MeVfm3

1
1

1 1
1 // /

\ \
20 25

C%n0>c"

MeV

20 MeV

Figure 7

The influence of the strength
Vp of the two-particle

interaction on the C12(y, pfB11
and C12(y, M0)Cn cross
section. In Figures 7-10 the
following parameter values
were used throughout: a
0.7, b 0.3, Vls -7.5
MeV, R - 2.668 fm, ad
0.425 fm. The calculation has
been performed forF0 —

55 MeV, ß, 0.60 and the
two different values V
650 MeVfm3 and Vh

P
-415

MeVfm3.

In order to describe the Bn(p, yx)C12* reaction, we include a coupling of the

particle degrees of freedom to the quadrupole surface vibration. As Greiner et al. [15]
have shown, such a coupling may be important for light nuclei as in the case of C12.

One might think of extending the lp-lh-space to 2p-2h configurations which is

rather complicated. Besides, higher configurations such as 3p-3h or 4p-4h might
become important. Therefore, another approach is necessary, which should be

incorporated in the coupled channel method. The success of Greiner's calculations for
(medium) heavy nuclei suggests that such an approach may be used for C12 as well.
Only the lowest 2+ vibration has been seen experimentally and therefore, we only
take this excitation into account. The 2+ state appears as a final state in the B11 + p
reaction with about the same cross section (integrated over all energies) as the 0+
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ground state. The 2 parameters needed to describe this quadrupole vibration are fixed
by the energy of the 2+ state and the B(E2) value of the 2+ -> 0+ transition. The
particle-vibration coupling term may be expressed by means of the optical potential,
so that no new parameters are introduced. The Hartree-Fock potential is replaced
by the local optical potential given in equation (2.19). The parameters V0, Vls, W, R
and a have to be considered as essentially fixed in our calculations. They were only
slightly varied to obtain the best fit and to determine qualitatively the influence of a

change in the parameters on the giant-resonance cross section. The strength Vp of the
two particle residual interaction (see equation 2.18) is also given approximately by
other experiments.

Now let us discuss the reactions B11(p,yfC12, C12(y,p0)B11 and C12(y, n)Cu.
The fine structure of the C12 giant resonance is not very pronounced, the calculations
show good agreement with experiment. The different parameters were varied giving
the following result. Figure 7 shows that an increase of the strength of the two particle
interaction Vp moves the peak to higher energies, whereas an increase of the depth V0
of the Woods-Saxon potential moves the peak to lower energies, which is illustrated
in Figure 8. If an absorptive part is introduced in the optical potential the cross section
is lowered, especially in the region of the peaks (see Figure 9).

C'2lV,p„)B'

o-
mb

20

to

2

mb

C!2<J,n0)c"

V0 -55.0 MeV

V, -53 0MeV

20

-10

2i EtMeV

Figure 8

The influence of the depth V0 of the optical potential on the reactions C12(y, £)Bn and C12(y, »)CU.
The calculation has been performed with Vp -415 MeVfm3 and ß2 0.30 and the two values
of the depth parameter V0 -55 MeV and V0 -53 MeV.

The influence of the particle vibration coupling on the cross section is of special
interest. Only in second order DWBA is such an influence obtained, and one expects
therefore only a small effect. However, the coupled channel calculation of the cross
section with a realistic value ß2 0.60 in the case of C12 deviates considerably from
similar calculations with ß2 0.0 (see Figure 10). An increase in the strength of the
particle-vibration coupling causes a decrease in the cross section for energies above
the main peak (~ 23 MeV). The dipole operator D^ does not change the number of
phonons, but by means of the particle vibration interaction, phonons can be created.
This state can, therefore, not decay into the C12 ground state by El radiation. Thus,
the observed weak residual peak at ~ 26 MeV cannot be explained in this way.
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Figure 9
The influence of the absorption parameter W on the reactions C12(y, ^>)BU and C12(y, »JC11. The
results are compared with experiments from Ref. [16]. The calculations have been performed with
the parameters V0 - 55 MeV, ß2 0.60 and the three absorption parameter W 0, W

The reaction Bn(p, y1)C12* allows a partial study of the giant resonance built on
the 4.43 MeV level in C12. Let us first give a schematic picture (see Figures la and lb).
We consider the ground state of B11 to be a 1 p3j2 hole configuration; the excited states
\-~, §-~, -\~, -| " may be thought of as a phonon multiplet (-|-~ ® 2+) in a core
excitation model. This degeneracy is removed by other interactions. The giant dipole
state formed in the reaction C12 + y contains mainly lp-lh components; therefore,
one would expect the B11 ground state to be the main contribution to the final state.
This actually happens, as may be seen by comparing the C12(y, p) and the Bn(p, y0)

cross section [16]. According to the principle of detailed balance we have:

da

dû (V2(y,p0)B")
kp (2/+1) (2s+1) da

k2~ (2/0+l)2 dQ
(B11(/.,y0)C12) (4.1)

where kp and k are the proton and the y-ray wave numbers, s 1/2 is the spin of the
proton, / 3/2 the spin of B11 and 70 0 the spin of C12.

Let us consider the hypothetical time reversed reaction Cl2i3MeV(y, p)B}1, where i
characterises the various final states of the residual nucleus B11. This excited giant
dipole resonance will contain primarily a component with a quadrupole vibration.
As final states of B11 we expect mainly those of the phonon multiplet. The quadrupole
particle coupling will be responsible for the ground state transitions. The probability
of the B11 ground state may be estimated with the dipole sum rule (applicable also
to the excited state as well as to the ground state) using the experimentally known
cross section for Bu(p, y-JC12*. Accordingly we have:

oE0\(E)dE

af+(E) dE

2n2 e2 h NZ
m c A

2n2 e2 Ii NZ

0.8*)

(1 + 0.8 x) (4.2)
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where a%\ is the dipole absorption from the C12 ground state and o\\ is the dipole
absorption from the C]24fMeFexcited state. The parameter x is used to account for the
exchange forces (x <~ 0.5). Experimentally the dipole sum is exhausted up to 60% at
27 MeV [17]. The rest lies at higher energies where other mechanisms, such as quasi-
deuteron absorption play role. We find (see Ref. [3]) :

o (B"(p, yf) dE 2 a (B"(p, yA) dE (4.3)

Applying the principle of detailed balance we obtain, apart from a kinematic factor
of the order of unity,

oft.dE 5 a (C12*(y, pfBn) dE (4.4)

i.e. the C424JMeF (y, p0)Bu reaction exhausts the giant dipole sum rule only to about 1/5.
The other final states would be, according to our picture, excited states belonging to
the phonon multiplet in B11 or C11 in the case of neutron emission. The calculations
in Ref. [3] do not distinguish between these different final states.

c'2(,.pAb"
mb mb

25 MeV

Mr.».*»
1^=0.0 Vp=-650MeV A

— h'0.3 v 5SMtV

25 MeV

Figure 10

The influence of the vibrational parameter /?2 on the reactions C12(y, pjB11 and C12(y, «)Cn. The
calculation has been performed for the three values ßn 0, ßn 0.30 and ßn 0.60.

The total cross section for Bu(p, yx)C12* has been calculated taking the channel
spins 1~, 2~, 3~ into account. Results for various parameter values are given in
Figure 11. The cross section is too low for realistic values of Vp. However, by choosing
Vp 0 and thereby neglecting the particle hole interaction one obtains a satisfactory
fit to the experiment.

b. Angular Distribution of the Bu(p, y0) Reaction Including E2-Radiation

The angular distribution of the C12(y, p0)Bu (see Ref. [18]), and of the time
reversed Bu(p, y0)C12 (see Ref. [19]) reaction have been measured and analysed in the
form dajdû a0j4n (1 + E av Pv (cos??)). The angular distribution parameters av

are a sensitive test for the multipolarity of the y-radiation and for the relative intensity

and phases of the partial waves involved. The main contribution to the anisotropy
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comes from a2, which is expected, as El-radiation is dominant. Since the distribution
is asymmetric about 90° we require ax 4= 0 and a3 #= 0. The coefficient ax vanishes
within the limits of experimental accuracy. To explain these angular distributions
we must invoke interference of multipole radiation of different parities. Thus the ax
coefficient originates from either El-Ml or E1-E2 interference or both; whereas a3
stems from E1-E2 interference. One can apply the coupled channel model for
arbitrary multipole radiation. Here we consider the E2-radiation to be the most
important contribution. In this model all observable quantities are completely fixed,
contrary to the usual bound state calculations.

Let us first make some remarks about Ml-radiation. Vinh-Mau and Brown [14]
have calculated the highly excited states of C12 in a bound-state shell model. They
found a 1+ level at 16.1 MeV containing about 100% of the total Ml-strength. This
level consists mainly of a l/)3/2_1l^>1/2 configuration and is not much perturbed by the
residual interaction. In order to obtain such a result, one had to assume a rather high
spin-orbit splitting of 14 MeV. Since we are mainly interested in excitation energies
above 16 MeV where the Ml transition strength is depleted, we neglect Ml-radiation.

B (p,ftlC12 (4.43MeV)

-^ - exp

3^ *"

C
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1 i / / \o _ 1 1 ¦¦' „/ N>s
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*i 50 _ \ FV) 1
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^SOMeVfrn3

VQ=-0MeVfm3 V=-55 OMeV
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Excita tlon
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Figure 11

A comparison of the calculated total cross section for the reaction Bny y1)C12* with experiment.
The experimental cross section from Ref. [3] is compared with calculated values using the following
parameters. R - 2.67 fm, ad 0,425 fm, Vu -7.5 MeV, W =• 0, a - 0.7, b 0.3 and/S2 ~ 0.60.
For
-55.0 MeV

Vp and V0 the following three combinations have been used:
- 55 MeV, Vk -610MeVfm3 and Vn

650 MeVfm3 and V0 -
-60.0 MeV.

Thus we discuss now the more important E2-radiation. Restricting ourselves
to even-even nuclei, we have J" 2+ for E2 excitations. In the numerical calculation
of the radial scattering functions we neglected the residual two particle interaction,
thereby decoupling the system of equations. This simplification should already be a
good approximation, as may be seen by a simple argument according to the schematic
model of Brown and Bolsterli [1]. For repulsive forces the residual interaction shifts
the collective (coherent) state to higher energies, whereas for attractive forces one
obtains a collective state at lower energies. In the latter case the higher lying energy
levels are not very much affected by the residual interaction. On the other hand the
low lying collective level obtains a strongly enhanced transition probability from the
2+ to the 0+ ground state. Therefore, we expect that the residual interaction does not
have an important influence in the energy region which is of interest here (~ 15-30
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MeV). This is quite contrary to the 1~ levels in the giant resonance, where the residual
interaction is decisive.

In the formalism of second quantization we write the quadrupole operator as

follows :

<3(2 v) ôtxt2 eE<i\ r2 Y£ |/>+ a, (4.5)
ij

Now we consider the quadrupole matrix element between the excited 2+ state and the
ground state. The z-component of the target spin is ma, ft is the z-component of the
spin of the projectile and ki is its wave number. We thus have

£';' (2 „. ft,.) s <o | ç(2,) 1^;%) y ^
E e'a'ß YL &) <i« m« iß mß I 2 "> <h x s f11 iß mß> E^l* iß lß *)

-

E2(iJaißlßt)^atyJ^fJßR!lß(-i^\ (1 + (-)'»+^(j_ "1
0

\ 2 2

where 7?a » denotes the radial quadrupole integral defined by
00

s.r/^wf«.£w • (4-7)

o

The radial hole wave function is denoted by vt j t and fffjaittjßt is the radial wave

function in the continuum for the projectile. For the E1-E2 interference contribution
to the differential cross section we obtain, starting from the formula for multipole
radiation in [20]

doint__4e2p /EYy 1 „««»„-«/J

(4.6)

ÏMM4 1 im yk2 \%c) %v(2s+l) (2;B + 1) iRl£tiß'ßiß'lß'Q

Uh* ^(i+H^H'^ (4-40) (Jo 0) \%, Q

(2
2

ç) EliL l« ^ let] E*(/a '« ?> ^t] * Pe (cos^ ' (4'8)

where E is the energy of the emitted y-ray and v is the velocity of the projectile.
This is a first order contribution of the E2-radiation. These effects have been

experimentally observed. In second order, E2-radiation also contributes to the total cross
section and to the angular distribution coefficients a2 and a4. For unpolarized
particles we have

ot0M (E2) -^f %v{2s+l){2ia+1) E I *.</. '. iß h 0 P - <«)
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where k E \% c. Similarly we obtain for a2(E2) and a4(E2)

aQ (E2)

H. P. A.

5 k2

'ß'ß

£ /(W G-
iß lßiß'lß'ia

MiJaißißt) EttiJziß'iß-1)* (4.10)

with

GîrIr ,lß,ia Iß Iß' Q y() 0 ()/ 1 2 ,Ä, Ç
22Ç\
0 0 0/

iß 2 fa n- Q
22 1

0/ 22Ç

The total coefficients are thus given by
„total fl2(El) + a2(E2) atotal at(E2)

In Figures 12, 13, 14 the results of our calculations are given for the coefficients

ax, a2 and a3. In the present model the relative phases and intensities of the partial
waves, on which the angular distribution coefficients depend, are explicitly
determined. We now want to give a qualitative discussion of the situation.

Let xtj be the dipole matrixelement for the incoming partial wave with orbital
and total angular momentum I, j, normalized in the following way:

^2 2/5 1 + ^2 2/3 | + Pol/2 1

'; c"<r.Pn)B"

.5 ref.17

25 MeV

(4.11)

Figure 12
The angular distribution parameter ax for the
reaction C12(y, £>0)Bn. The parameters mentioned

in Figure 7 and Vp - 650 MeVfm3
have been used in all calculations from
Figures 12-15. The experimental data were
taken from Refs. [17] and [18].

ref. 17

MeV

Figure 13

The angular distribution parameter a2 for the
reaction C12(y, /»„JB11. Only El radiation has
been taken into account.
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MeV

Figure 14
The angular distribution parameter a3 for the
reaction C12(y, /»0)Bn.

We obtain from (2.35) and (2.36) setting ja 3/2 and evaluating the 3 /-symbols
explicitly

2 3 3

5
l%a|

1

«2 (El) Re (x5l2 x3l2*)
f'5

Re (xm %/2*

I X3l2 yj
Re (x3l2 x.112) (4.12)

This El-contribution is always much larger than the corresponding E2-part. In [18]
the intensities of the partial waves have been taken from particle-hole calculations
and the relative phases have been fitted to the experiments. Thus all observable
quantities are determined by the model. In Table I some results are compared with
the results of Ref. [18]:

Table I
Relative intensities of different partial waves compared with the results of Ref. [18]

20-23 MeV [18] 21.7 MeV now 24-27 MeV [18] 25.9 MeV now

e+ 1*2 5/212 91.7% 84 73.7 81

Qo 1 *2 3/2 I 6.8 1.5 12.9 18

et l*oi/2l2 1.5 1 13.4 1

From this table one sees that the rfB/2-partial wave gives the main contribution.
A pure ds/2-partial wave would yield a2= — A. Thus qualitatively the following
picture emerges for the different y-energies.

For an energy of E 28 MeV the ^^-contribution dominates, but we have also

an appreciable negative term from the d5i2-sxj2 interference, while for Ey 23.8 MeV
the <£5/2-contribution again dominates, but because of the phase difference the dil2
and sxj2 partial waves do not interfere. For E 19.7 MeV the sxl2 partial wave
dominates, but still gives rise to a2 4= 0 due to the interference term with the dit2-

partial wave.

We try to explain the occurrence of ax and a3 by an interference of the dominant
El-with E2-radiation, neglecting the contribution of Ml-radiation (which cannot
contribute to a3). The effects of E2-radiation show up most clearly in ax and a3.
The total cross section atotal (E2)is always found to be smaller than 1% of the total
El cross section. Similarly, the E2-parts of a2 and ax have been calculated up to a

y-energy of 27 MeV. They are illustrated in Figure 15. It is seen that the coefficients
rise with energy and that a4 is always < 0.02, while a2 < 0.03. The experimental data
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are too inaccurate for a comparison; ai ~ 0 is consistent with the experiment. Also a2
is completely dominated by the El-part, and it is justified to neglect the E2-part.

a2(E2)

16 irh+f MeV
Figure 15

The contribution to the angular distribution
parameters a2 'and ax for the reaction C12(y,
/»„JB11 due to E2 radiation.

In our crude model we are thus able to reproduce the order of magnitude of the
observed coefficients. However, there are conflicting experimental results for the
coefficient a3, which have been obtained by different experimental methods. The
authors of [18] studied the angular distribution of protons from the C12(y, p) reaction,
using bremsstrahlung y-rays. Hanna et al. [19] studied the angular distribution of the
photons in the time reversed process Bu(/>, y)C12. Our calculations favour a3 > 0,
as it was obtained by the authors of [19]. However, the experiments in [18] yielded
a3 < 0 for the entire energy range considered.

Many different partial waves may contribute to ax and a3. In our calculations of
the E2-radiation we have a dominant /7/2-part. However, the angular distribution
coefficients depend also on the relative phases between the El- and E2-matrix
elements and other partial waves become important. The important terms for E
25.4 MeV are presented in Table II. The signs of the corresponding terms are indicated.

Table II
The important partial waves for the angular distribution coefficients ax and a3 at E v 25.4 MeV.
The signs of the corresponding terms are indicated.

Efd^n) E2(p3j2
El(d5ii) Ei(Fh)
Ei(srlz) EAPrh
Ei(hh) Ez(Pzk )* +

Eridhlz) Eî(Prk)
Er(d5l2) E2iPol2)
Er(dzte) Eï{Ulè
Er(hh) EfJilè

By slightly changing the /7/2-contribution, one can appreciably change ax and a3.
By using different values for the I ¦ s potential or the residual interaction, the /7/2-

part may be suppressed in order to obtain negative values for a3, as have been
observed in Ref. [18]. The assumed model seems basically correct and accounts for
the main feature. Of course, it could be improved by taking the residual interaction
into account, but this would lead to a much greater numerical effort and would not
alter the situation significantly. One could also argue that the 2p-2h (1 Uco)
configurations should be included. These lie in the same energy region as the lp-lh (2 fi co)

energies used here. However, it seems too difficult to carry through such a programme.
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Figure 16

Total cross sections for O16 + y-reactions. The experimental data were taken from Ref. [5j.
The following parameter values were used in the calculations : Vg — — 55 MeV, VXs —7.5

MeV, R 2.96 fm, a,
meter W -0.1 Ep and W

C).5ivci,Vp - 650MeVfm3,
0.

0.7, b 0.3 and for the absorption para-

2. The Giant Resonance in 016

For O16 we use again the spherical shell model. The ground state configuration is

(1 si/2)2» (1 ^3/2)4» (1 Pnè2 f°r both neutrons and protons. The giant-dipole state is

formed by lifting nucléons from the 1 p shell into the 2 s, 1 d shell. The ground
states of N15 and O15 are treated as pure one hole configurations (1/»1/2_1), and similarly
the 3/2- excited states at 6.33 MeV in N18 and at 6.16 MeV in O15 are treated as
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(1 p3/2-1) hole states. Only these states can occur in our model as final states of the
photodisintegration. In Figure 18 the low lying levels of N15 and O15 are shown.
The hole energies are extracted from the proton and neutron separation energies of
O16 and the single particle spectra of O15 and Nls. We obtain a 1 pXl2 hole energy of
12.11 MeV for protons and of 15.65 MeV for neutrons. For the p3j2 hole energy we
obtain 18.44 MeV for protons and 21.81 MeV for neutrons.

For the hole wave functions harmonic oscillator wave functions have been
assumed, which fulfill the condition <r2> 3/5 R2. The Hartree-Fock potential is
replaced again by a local optical potential given in equation (2.19). In principle, these

potentials may be dependent on the nuclear state but in order to limit the number of
parameters, they were chosen to be the same for all channels. The values V0, VXs, W
are rather well known from other experiments, and were varied only to a small extent
for a best fit to the experiments. The same procedure was applied to the strength Vp
of the two particle interaction.

The lp-lh excitations occurring in the case of channel spin 1~

(1 Ps/2 SH2)> (1 P~l dm)- (1 Ps/2 df,\f, (1 pi/I s1/2), (1 pfl d3lz)

were coupled to states of isospin T 0 and T 1. As discussed above, the Coulomb
interaction was treated exactly in the external region by means of the matching
procedure.

With the model described above we may calculate cross sections for the following
4 processes and their time reversed processes:

016(y, PoWs, O™(y,p)Klfn*MeV,O"(y,n0)O™ and 0"(y, n)0\%MeV

The cross sections for O16 + y and for the reaction N15 (p, y0)O18 have been
measured. Especially Caldwell [21] was able to measure the 4 processes separately.
Also transitions to the positive parity levels in 01S and N15 occur, but Caldwell found
the probability to be small. The 1-hole final states account for 78 + 8% of the total
absorption cross section, in accordance with the lp-lh model. In order to explain
transitions into the positive-parity levels one would have to extend the model at least
to 2p-2h excitations. As Caldwell's experiments have shown, however, these
components are only weakly excited, so that we may neglect them here, although they
seem to be responsible for the fine structure [22].

The calculations performed here do not show such a well developed fine structure
as has been found in the various experiments, especially for N15(/>, y0)O16. However,
the absolute magnitude and position of the giant resonance are reproduced, as well
as the angular distribution parameter a2. The parameters used are practically fixed
by other experiments and may be varied only very little, so that one actually does not
use adjustable parameters. Obviously, the lp-lh model does not suffice to explain
the fine structure and the (weak) transitions to the positive parity levels. Some
calculations have been performed. If the parameters are changed we obtain the
following results which correspond to those of C12. A decrease of \Vp\ moves the peak
to lower energies and a decrease of \V0\ moves the peak to higher energies. The
addition of an imaginary part in the optical potential lowers the cross section for all
energies, especially in the region of the peaks. The imaginary part is important in
obtaining the correct order of magnitude of the cross section (see Figure 16). The
imaginary part in the potential roughly compensates for channels, which are not
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treated explicitly in our model. The dominant channel is the N15(/>, a)C12 reaction.
For a qualitative understanding of the situation see below.

The measured angular distribution of the N15(/>, y0)O16 reaction has been
expressed in the form of a Legendre polynomial expansion:

do

"dû 4n (l+2JavPv(cos§)). (4.13)

It was found that ax, a2, a3 4= 0. In Figure 17 we give a comparison between the
experiments by Baglin and Thompson [23] and our calculations for pure El-radiation
for a2. The model used here makes definite predictions for the intensities and phases
of the partial waves. The phases vary rather quickly in the region of a resonance but
slowly elsewhere. The resonance energies are at about 23 MeV for the <23/2-level and at
about 15 MeV for s1/2.

Thus the energy region from 13-28 MeV can, roughly speaking, be divided into
three different parts: First, E > 24 MeV, where the d3/2-part is much more important
than the s1/2 part. We obtain, therefore, for the angular distribution parameter
a2 —0.5. Second, the region with 15 MeV < Ey < 24 MeV. Here the s1/2 part plays
a role as well, contributing to a2 in the interference term —l/|/2 Re(xxi2x*f). The
phase between xxl2 and x3j2 is of the order of n. We obtain, therefore, a positive
contribution. Third, E < 15 MeV, where the sxl2 part dominates, so that the angular
distribution becomes isotropic, i.e. a2 0.

MeV20

Figure 17

The angular distribution parameter a2

for the reaction N15(/»,y„)016. The
parameter set in Figure 16 is used. The
experimental data were taken from
Ref. [23].

Let us make some additional remarks on the dependence of the cross section on
the relevant parameters.

The coupled channel equations are rather complicated, and it is difficult to
deduce formally qualitative results for the solutions when the parameters are varied.
However, one would expect to obtain the behaviour described above for physical
reasons :

(i) In a deeper potential well the resonance energies move to smaller energies.
(ii) The influence of the two particle interaction is most readily studied qualitatively

in the schematic model of Brown and Bolsterli [1]. It was shown there that an
increase of the strength | T^, | of the two particle interaction moves the resonance peak
to higher energies. Our numerical results lead to the same conclusion, although it is

difficult to understand this qualitatively.
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(iii) The absorptive part in the optical potential includes in an approximate way
channels not treated explicitly. This leads to a lowering of the cross section, as has
also been found numerically.

7.31 3/f
6.79 3,

6.33 3/2

6.16 3,'/2

5.30 Af
S.28 5/f 5.21 V

5.78

0 h 0 'À Figure 18
„° 2 Level schemes of N15 and O15.MeV N,5 MeV q15

Acknowledgments
One of the authors (G.B.) is grateful to the Swiss National Foundation for

financial support. We thank dipl. phys. Th. Ballmer for help in the calculations.
The numerical calculations were done on the UNIVAC 1108 of Sandoz AG, Basel.

REFERENCES

[1] G. E. Brown and M. Bolsterli, Phys. Rev. Lett. 3, 472 (1959).
[2] H. Steinwedel, J. H. D. Jensen, Z. Naturforsch. 5a, 413 (1950).
[3] M. Kamimura et al., Nucl. Phys. A 95, 129 (1967).
[4] M. G. Huber, H. J. Weber, W. Greiner, Z. Physik 192, 223 (1966).
[5] B. Buck and A. D. Hill, Nucl. Phys. A 95, 271 (1967).
[6] N. Vinh-Mau, Nucl. Phys. 54, 321 (1964).
[7] T. Tamura, Rev. Mod. Phys. 37, 679 (1965).
[8] Nucl. Data 1 A, 21 (1965/66).
[9] Th. Ballmer, private communication (Diplomarbeit).

[10] A. R. Edmonds, Drehimpulse in der Quantenmechanik (Hochschultaschenbücher-Verlag,
Mannheim 1964).

[11] M. Marangoni, A. M. Saruis, Phys. Lett. 24B, 218 (1967).
[12] D. Robson, Phys. Rev. 137B, 535 (1965).
[13] C. Mahaux and H. A. Weidenmüller, Shell-Model Approach to Nuclear Reactions (North-

Holland Publ., Co., Amsterdam 1969), p. 278.

[14] N. Vinh-Mau, G. E. Brown, Nucl. Phys. 29, 89 (1962).
[15] D. Drechsel, J. B. Seaborn and W. Greiner, Phys. Rev. 762, 983 (1967).
[16] S. Penner and J. E. Leiss, Phys. Rev. 114, 1101 (1959).
[17] D. S. Dolbilkin, Photodisintegration of Nuclei in the Giant Resonance Region, ed. D. V.

Skobel'tsyn (Consultants Bureau, New York 1967), p. 68.

[18] D. E. Frederick, A. D. Sherick, Phys. Rev. 176, 1177 (1968).
[19] R. G. Allas, S. S. Hanna, L. Mayer-Schützmeister and R. G. Segel, Nucl. Phys. 58, 122

(1964).
[20] M. M. Blatt, V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley, New York 1952).
[21] J. T. Caldwell, Phys. Rev. Lett. 19, 447 (1967).
[22] V. Gillet et al., Nucl. Phys. A 97, 631 (1967).
[23] J. E. E. Baglin and M. N. Thompson, Nucl. Phys. A 138, 73 (1969).


	Coupled channel equations and the giant dipole resonance

