
Zeitschrift: Helvetica Physica Acta

Band: 45 (1972)

Heft: 7

Artikel: Coulomb and mass difference corrections to K^-p scattering

Autor: Zimmermann, H.

DOI: https://doi.org/10.5169/seals-114431

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 02.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114431
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


Helvetica Physica Acta
Vol. 45, 1972. Birkhäuser Verlag Basel

Coulomb and Mass Difference Corrections to Krp Scattering

by H. Zimmermann
Institut für theoretische Physik der Universität,
Schönberggasse 9, CH-8001 Zürich, Switzerland

(7. VIII. 72)

A bstract. This paper presents a if-matrix formalism for low energy K'p reactions which in a
non-relativistic model includes electromagnetic mass difference effects and the effect of the Coulomb
potential. In extension of the usual if-matrix treatment both inner and outer corrections are
included in a first-order perturbation treatment, in the elastic as well as in the reaction channels.
The new results are compared with those of the previous if-matrix treatments.

1. Introduction

A formalism for the inclusion of Coulomb and mass difference corrections to the
scattering matrix for a many-channel system has recently_been published by Oades
and Rasche [1,2]. This work is particularly relevant to the KN system where there are
already six open channels just above threshold. Dalitz and Tuan [3] pointed out that
the real K-matrix elements are convenient parameters to describe such a scattering
process, the relation between the K and T matrices, the Heitler equation, then guaranteeing

a unitary scattering matrix. For this reason it is of use to apply the formalism
of Oades and Rasche to calculate the Coulomb and mass difference corrections to the
ZC-matrix rather than to the scattering matrix. _It should be pointed out that all numerical analyses of the low-energy KN
multichannel system have only partially included the Coulomb and mass difference corrections.

(For a review of such KN analyses see [4].) The method used is that of Dalitz
and Tuan [3] where the Coulomb force is only included in the K~p channel and there
only outside the range of the strong interaction (outer Coulomb corrections). The
neglect of the Coulomb forces in the ttE channels may be justified due to the much
smaller Coulomb parameter in these channels but the influence of the Coulomb force
in the K~p channel within the strong interaction region (inner Coulomb corrections)
cannot be neglected. In this paper both inner and outer Coulomb corrections are
included in all charged channels.

__
Dalitz and Tuan also only include the K°n — K~p mass difference and treat only

the kinematic effects, i.e. by including different phase space densities. In a non-
relativistic potential model the dynamical mass difference effects due to changes of
the Schrödinger equation can also be calculated and in this paper such effects are
calculated for all channels.

This non-relativistic formalism is only intended to be applied to the low-energy
region (see [1] for comments on this point) where K~p scattering is well described by
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only s-waves. For this practical reason and for the sake of simplicity the formalism is
only given for the case 1 0. Thus the basic equation is

£+*ni*>,-
(22mi(UtJ + Vi8u)\R}J r<r0

J (1)
2miVi\R}l r>r0

W

where kt is the cm. momentum in channel \iy, \R}t is the ith component of the radial
part of the state vector, m, is the reduced mass for channel \ïy, Uu is the strong
interaction potential (i\U)jy, F, is the Coulomb potential <ï|F|i> and r0 is some range
beyond which the strong interaction can be neglected (units are chosen such that
h c l).

It should be pointed out that an explicit form for the strong potential is not required
in the following work, the I 0 radial wave function being approximated by a second-
order polynomial in the numerical calculations. It should also be noted that y processes
such as radiative capture and bremsstrahlung as well as the open Atttt channel are
neglected since the relevant cross-sections are very small compared to the other channels.

For further comments on the question of neglecting the radiative capture processes
see [5].

In Section 2 the general i£-matrix formalism is outlined and in Section 3 it is
applied to charge independent K'p scattering. In Section 4 the inner corrections are
included and in Section 5 the full corrections are derived. Finally, in Section 6, the
ZT-matrix parameters of Martin and Ross [6] are used to compare physical quantities
calculated using the Dalitz-Tuan corrections and using the full corrections.

2. K Matrix Formalism
We start from the normal Schrödinger equation

(H0 + v)\ipy E\ipy (2)

where H0 is the Hamiltonian of the free particles. The solutions \ip+y and li/f1) are
defined by the following integral equations

|«Aî>=|9>a> + (£-ZZ0 + ;e)-iF|,r<;>, (3)

l#> l<Pa> + 2 2 iE - Hn ± ,e)-i V\iply, (A)
±

where \9ay is a solution of (2) for V 0. The K and T matrices are now defined by
these solutions.

Tba (9b\V\9+ay, (5)

Kba (9b\V\piy. (6)

From the relation between solutions (3) and (4) one obtains the relation between the
K and T matrices [7]

T + i-nK8(E -H0)T K. (7)

If \9ay represents a plane wave in channel et with wave vector k"

\9a(x)y (2tt)-3'2 exp (ikxx) |«> (8)
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we get from equations (3) and (4), by inserting Ett\9ay(9a\,

\iPt(x)y (2tt)-3'2 exp (ikxx) |«> + 2 f d3 k'ß(2n)-3'2 exp (fk'ex)
ß •>

*[k\j(2mx) - k'2j(2mß) + ie]~' Tba\ßy (9)

\f1a(x)y (2Tr)-3<2exp(ikxx)\cty+±Z d3 k'^rr)'3'2 exp (jk'„x)
ß,± J

*[%2j(2mA - k'2j(2mß) ± U]-^Kba\ßy. (10)

In the limit \x\ -> co the integration over d3k'ß can be carried out to give

\iP\(x)y ~ exp(ilxx)\ety-^(2TT)2mßx^exp(ikßx)Tba\ßy, (11)
JC-»C0 ß

|^(*)> ~ exp(ikxx)\ocy-^(2rT)2mßx-l[exp(ikßx)Kba
JC-XJO *

+ exp (-»*, *)X_»J|/3>, (12)

where

\by=-\kßlßy,

\-by=\-ke'x,ßy,

Eb Ea or k2ß mßjmxk\.

To obtain the connection between the i£-matrix elements and the solution of the
radial Schrödinger equation, one expands both the solution and the ZC-matrix in a
series of Legendre polynomials1)

\iPi(x)y (2-rT)-3'2 2 i'(2i +1) p,(ii) \v\'(x)y, (13)

Kba -(2TT)-2(mxmA-v2 2 W + 1) PJ$„ L) K'ßx, (14)
i

K_ba -(2Tr)-2(mxme)-V2 2 (21 + 1)(-1)' P,(k„%A Klßx. (15)
i

For fixed I we have from (12)

!*'W) ~ (vx)-^2sm(kxx-lTTl2)\ety + Jky2Kßxki'2

*(vß)-1'2cos(kßx-lnl2)\ßy (16)

where v, kxjmx. With the definitions

Ki pi/2Kipi,2 and (pi/2)a(1 Sa^i/2 (17)

These expansions are only this simple for the scattering of two spin 0 particles or, as in our
example, for one spin 0 and one spin ^particle where only the s waves are important and the
higher partial waves are neglected.
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we can write for any solution of the radial Schrödinger equation

\xiPl(x)y ~ 2A*(vx)-ll2sin(kxx-lTTJ2)\ety
jc-»oo a

+ 2 KßxAx(vß)-u2cos (kßx- lTTJ2) \ßy. (18)
cß

This means that the Ä-matrix provides the transformation which connects the coefficients

of the sine and cosine terms in asymptotic form of the radial wave function.
From equation (11) one sees that the usual scattering amplitude for the transition

a -> b is

fba -mß(2rr)2Tba. (19)

The differential cross-section is obtained by using (19) together with the expansion

Tba -(2TrY2(mxmA-v2 2 (21 + l)P,(Mj Tlßx (20)
i

to give

~(a - b) kßjkx\ 2 (21 + l)P,(kßX) Tlßx\2. (21)

One obtains T'ßx from Klßx by relation (7) using expansions (14) and (20)

(T1)'1 (K1)-1 - iP (22)

or, solving for Tl,

Tl (l-iKl)-lKl, (23)

where in general

A P1'2AP1'2. (24)

In the presence of Coulomb forces the expansion of the radial wave function (18)
must be modified to an expansion in terms of the regular and irregular Coulomb wave
functions

\x9'(x)y ~ 2Ax(vx)-1'2F,(kxx,r]x)\cty + 2Kß,Ax(vß)-1>2

*Gl(kßx,Vß)\ßy (25)

where

Vt. ziz2e2v-a1.

The connection to the differential cross-section proceeds in an analogous manner to give

^(a -> b) kflkAJZ*8xß + 2(21+ 1) Pt(%,h Tlßxexp (ialx + ia\) \2 (26)
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where a\ and a\ are the Coulomb phases for angular momentum / and Coulomb par-
meters 7]x and i]ß respectively and where/S?ul is the pure Coulomb scattering amplitude
in the absence of strong interactions.

3. Charge Independent K~p Scattering

a) General notation

The nomenclature of [1] is here repeated very briefly. \iy and \j) are the states in
the charge and isospin basis.

\iy \pK-y

|2> \nK°y

|3> \E+TT-y

\Ay E°TT°y

\by \E-TT+y

|6> \ATT°y

|1) \I 2,Erry

|2) \i i,NRy

\3)=I=l,E-rry
\A) \i i,ATry

\b) \i o,NRy

|6)=|Z 0,r-n->

(27)

The unitary matrix for the basis transformation consists of the following Clebsch-
Gordan coefficients

K) Ij=i
iy(i\j)

/° VÏ/2 0 0 VT/2" 0

/ o VT72 0 0 -vT/2 0

<t\i) - Vi/6 0 VÏ/2 0 0 VÏ/3

V2/3 0 0 0 0 -VTji

\ Vïr8 0 -VÎ/2 0 0 V\j3

\ o 0 0 1 0 o

ie following matrices are used :

(i\M\jy mt8,j

(i\p2\jy=k28u

(i\p^2\jy k\'28u

(i\D]j > (d2jdr2 + k2)8.j.

(28)

(29)
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To distinguish between quantities in the charge and isospin basis matrix elements and
components are written with superscripts /\ or r\ respectively. For example a general
state vector is written as

\R} 2Ri\i>-2Rj\J) (30)

in the two bases.

b) Exact charge independence for 1 0

Neglecting mass differences and the electromagnetic interactions one has exact
charge independence. In this case variables are denoted with a superscript N, e.g.

(31)

For this charge independent case the mass matrix MN is also diagonal in the isospin
basis. The same is true for the matrices P2N and DN. With F 0 equation (1) becomes

[2MNU\RN} r<r0DN\RN} \ l/^o (32)
10 r > r0.

From Ref. [1] we know that we can write a regular solution of (32) for r > r0 as follows :

Rt=2AaR?x 2Aj?a(vy)-l/2sm(k>!r + 8>S r>r0 i-l... 6, (33)
a tz

i and a number the six components and six independent regular solutions respectively
and Aa are six arbitrary constants. tN is a real unitary matrix, i.e.

(**)+*" 1. (34)

tN decomposes into a one-, a three- and a two-dimensional submatrix corresponding
to I 2, 1 and 0, because the strong interaction potential U has non-vanishing matrix
elements only between states of the same isospin.

The relation (18) gives us the connection between t", the phases 8X and the matrix
KN, when we expand the radial wave function \RN} in terms of sines and cosines for
r -> oo

R, ~ ê,^-1'2sin (^r)+£t(^-112cos (f^[r), (35)
r-»oc

Bi 2AJrxcos8Nx,
«

a
„ (36)

Ci 2Axt!>xsin8»x.
a

From (18) we know that

Ct 2(i\K»{j)BJ (37)
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and so, because the Ax are any constants, we have

l?xtan8»x=Z(i\K»\j)7?x (38)

or

(i\K"\j) l?fxtan 8Nx(tN)îj. (39)

As in the case of tN, KN decomposes into three submatrices. Furthermore, KN is
symmetric, which we see at once from (39) remembering that tN is real. Therefore there are
only ten non-vanishing matrix elements of KN. These are chosen as the ten parameters
describing the scattering. From these parameters one finds the values for 8X and ttxhy
diagonalizing the matrix KN.

4. Inner Corrections for I 0

We obtain the inner corrections by introducing the exact masses and the Coulomb
potential in the Schrödinger equation for r < r0. r0 is chosen as a further parameter.
The Coulomb potential is taken as that of a point-like charge and a homogeneous
charged sphere with radius r0. The corrections are only weakly dependent on this
special choice of the Coulomb potential.

(HV\jy iSlj7>iki{fntrrl r>r° (40)
(8ijVikimi 1(l.br~1 - 0.brö3r2) r<r0

(-e^ ,-=1,3,5
0 i 2, 4, 6.

The s-wave Schrödinger equation now has the following form :

„ r„ (2MU\R'N} + A\RIN} r<r0DN\RIN} \
' ' ' ' °

(42)
(0 r > r0

where

A=2MV+2(M-MN)U-(P2-P2N). (43)

As in the preceding section a general regular solution outside r0 can be written as

RiN 2AXR% 2 Axt™(vï-)-v2sin (ktr + 8™). (44)
tz at

The matrix t™ can be chosen to be real and unitary [I].

fiN'tiny i. (45)

Now tIN no longer decomposes into submatrices because of the isospin mixing caused

by the Coulomb potential and the mass differences.
From Ref. [1] we have formulae to calculate 8{N and t{% by perturbation theory

to first ordering.

8? 8Z-XM, (46)
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3? % + 2 Vß sin"1 (8Jf - 8*) Xßx, (AI)
ß±z

r°
Xßx J dr 2 (mt)-l(i\A\j) R?ßRfx. (48)

o 'J

In the numerical calculations Rfx is approximated by the simplest polynomial that
vanishes at r 0 and that joins continuously onto the solution (33) at r r0; i.e.

R?x(r)=r(A,x + rB,A r<r0, (49)

Aix =ï?xr-0l(vNi)-v2(2sincoix - k»r0coscoix), (50)

B^^r-^r^k, rncoscoix-smcotx), (51)

«,. #r„ + $?.
(52)

Proceeding in exactly the same way as in the previous section one now obtains the
Zf-matrix with inner corrections

(*1-KJNli) 2^tanSf(?'X-. (53)
a

The symmetry of KIN also follows here from the orthogonality relation (45).

5. Inner and Outer Corrections for I 0

Now we solve the exact radial Schrödinger equation (1). We can express a general
solution for r > r0 in terms of the regular and irregular Coulomb wave functions for
1 0.

Rt 2 AxRix 2 Ajix(vj)-l'2[cos8ixF0i(r) + sin8lxGoi(r)]. (54)
a a

Ax are again six arbitrary constants. Because equations (1) and (42) are identical for
r < r0, one chooses tix and 8lx such that Rlx and R'ix join smoothly at r rQ. With the
definitions

Qlix ttxsin8ix, (55)

¦ Q2ix tixcos8ix, (56)

we get from this condition

Çlla (vù^k^AFo,)' - (R'iNJ Zo,]P-v (57)

Q2tx (vty<2 fr[(RfflG0i - R\Nx(Gol)']r=ro, (58)

where the dash denotes the derivative with respect to r. The exact ^-matrix follows by
comparing (25) with the expansion of the solution (54) in terms of FQl and Gol.

K=Q1-Q2-V (59)
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Calculating the Wronski determinant with two different solutions of equation (1)

one obtains the following condition

Q1T-Q2 Q2T-Q1. (60)

This ensures that we have a symmetric ZC-matrix.

6. Results

In order to see the effect of the full corrections Table 1 gives some results for the
total cross-sections with a pK~ input channel. The values of KA for I 0 and 1 are
those given by Martin and Ross [6]. The if-matrix value for I 2 and the radius r0
is given in Table 1.

Table 1

Differential cross-sections times in at 100 MeV/c for pK~ scattering in the absence of the pure
Coulomb amplitude (in mbarn). The 1 0 and 1 K" matrix values are taken from Martin and
Ross [6].

K» (I 2) -> 0 0 0 0 0.1 -0.1
r0 —>- 0.4 0.4 1.0 0.4 0.4
Corrections -> No DT Full Full Full Full

pK-^-pK- 101.8 115.1 111.8 110.0 111.8 111.8
pK~ -* nK°
pK~ -> 2+TT-
pK- -* 2°7,°
pK~ -r- 2-v+
pK~ -+ Air0
2+12-
Al(2° -tA)

18.8 19.3 18.3 18.6 18.3 18.3
29.9 30.8 31.6 31.4 31.7 31.5
26.5 27.3 25.4 24.7 25.0 25.8
72.0 74.1 74.9 76.4 75.2 74.5
26.9 27.7 28.5 29.4 28.5 28.5

0.416 0.416 0.422 0.411 0.421 0.422
0.504 0.504 0.529 0.544 0.533 0.525

The first three columns show the results with inclusion of various corrections. No
corrections means no Coulomb and mass difference corrections but with the exact
momenta in the kinematical factors. DT corrections means with those corrections
described by Dalitz and Tuan [3]. The only difference to the former case is the inclusion
of the outer Coulomb correction in the pK~ channel. Full corrections means with all
corrections as described in this paper. As one can see, the differences between DT
corrections and the full corrections are as large as the DT corrections themselves.
The ratios E+jE~ and Aj(A + E°) are especially changed by the full corrections,
the DT corrections cancelling for these ratios.

Columns 3 and 4 show the results for two different radii r0. Again the two ratios
E+IE~ and A(A + E°) are most affected by r0.

The last two columns contain results with two different 1 2 ZC-matrix values.
The difference in the cross-section values is so small that it would not be possible to
determine this ZC-matrix element from a fit to the available data. Conversely it means
that this unknown matrix element will not introduce an important uncertainty on the
1=1 and 1 0 matrix elements.

In Figure 1 the predictions for the branching ratio Aj(E° + A) in the three cases
with no, DT and full corrections are compared in the energy range from 0 to 200 MeV/c
K~ laboratory momentum.
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These results show that the corrections due to the Coulomb and mass difference
effects are appreciably changed from the conventional Dalitz and Tuan values. For
this reason it is important to refit the low energy K~p data using these new corrections.
The results of such a fit will be published later [8].

(b)

0.2

IKPlsb

MeV/fc140 160 200100 120 180

Figure 1

The branching ratio r Aj(2° + A) for K~p scattering in the cases (a) with no or DT corrections
and (b) with full corrections. The values for KN are taken from Martin and Ross [6] ; r0 0.4 fm.
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