
Zeitschrift: Helvetica Physica Acta

Band: 47 (1974)

Heft: 6

Artikel: On the approach to equilibrium in kinetic theory. II, Fluid mechanics

Autor: Grmela, Miroslav

DOI: https://doi.org/10.5169/seals-114589

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114589
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


Helvetica Physica Acta
Vol. 47 1974. Birkhäuser Verlag Basel

On the Approach to Equilibrium in Kinetic Theory.
II. Fluid Mechanics

by Miroslav Grmela
Centre de recherches mathématiques, Université de Montréal

(20. VIII. 74)

Abstract. The long time behaviour of solutions to the Enskog-Vlasov type kinetic equations is
studied in detail. It is found that for this purpose the Enskog-Vlasov dynamics can be reduced to
fluid dynamics. The quantities that are phenomenological in fluid dynamics appear as functions of
the quantities that are phenomenological in the Enskog-Vlasov dynamics and of the properties of
the fixed point of the Enskog-Vlasov dynamics approached as time goes to infinity. The interesting
case where the fixed point corresponds to a near critical state is also discussed.

1. Introduction

McLennan [1] and Scharf [2] have shown that the long time behaviour of solutions
to the Boltzmann kinetic equation can be obtained by solving the equations of fluid
dynamics whose phenomenological quantities are functions of the phenomenological
quantities entering the Boltzmann kinetic equation. By using the results of Ref. [3] we
can extend the work of McLennan and Scharf to the Enskog-Vlasov dynamics (hereafter

the EV-dynamics). This extension allows us to study the reduction of the kinetic
theory dynamics to the fluid dynamics in the situation where the approached (as time
goes to infinity) state corresponds to a near critical state. Both thermodynamics and
asymptotic dynamics are strictly derived only from the EV-dynamics that serve, in
this paper, as the original dynamics with which we start.

The basic ideas of McLennan and Scharf can be formulated, now in the way
applicable not only to the Boltzmann kinetic equation dynamics, as follows.

i) The equilibrium fixed points of the EV-dynamics are defined in Ref. [3] as the
time-independent solutions to the EV-kinetic equation that are moreover invariant
with respect to the transformation/(r, v) i-^/(r, —v), where r, v stands for the position
and velocity vector respectively and/, a real-valued function of r, v, is an element of the
set AC on which the EV-dynamics is defined. All possible equilibrium fixed points are
classified and the thermodynamic interpretation of the classification is developed in
Ref. [3]. It is also proved in Ref. [3] that if the equilibrium fixed point/&EV) corresponds,
in the thermodynamic interpretation, to the thermodynamically stable equilibrium
state then there is a natural Hilbert space structure for the linear space H0EV> on which
the linearized (around /0EV)) EV-dynamics is defined such that the infinitesimal
generator of the linearized EV-dynamics is an Onsager operator [4]. It means in
particular that/0EV) is asymptotically stable.
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ii) The similar discussion of the fluid dynamics in Ref. [4] (hereafter F-dynamics)
leads to the identical result, i.e. if/0F) is the equilibrium fixed point of F-dynamics
corresponding, in the thermodynamic interpretation, to the thermodynamically stable
equilibrium state then there is a natural Hilbert space structure for the linear space
H0F> on which the linearized (around /kF)) F-dynamics is defined such that the
infinitesimal generator of the linearized F-dynamics is an Onsager operator [4]. It means
in particular that/0F) is asymptotically stable.

iii) Let us take one /0EV) and one /0F) that correspond, in the thermodynamic
interpretation, to the same - in the sense of thermodynamics - state. The problem is to
find two subspaces Hx, H2 of H0EV' satisfying the following properties:

a) Hx and H2 are Hilbert spaces having the same dimension as H0F>.

b) Hx is invariant with respect to the linearized (around/0EV)) EV-dynamics.
c) Hx is asymptotic in the sense that the elements of Hx characterize the long time

behaviour of the trajectories defined by the linearized EV-dynamics. If for
example the closest to zero spectral points of the linearized EV-operator are
eigenvalues then Hx will be chosen as their corresponding eigenspaces.

d) H2 is completely isomorphic to H0F) and the linearized EV-dynamics restricted to
Hx and transformed (one-to-one transformation) to H2 is identical with the
linearized F-dynamics. The identification gives the map from the phenomenological

quantities in the EV-dynamics to the phenomenological quantities in the
F-dynamics. This map depends on the thermodynamical properties of/&FV).

The reader who is familiar with the recent Brussels school concept of subdynamics
in the theory of the Liouville dynamics [5] will find that the relation between the F-
dynamics and the Boltzmann-dynamics in the works of McLennan and Scharf is

analogical to the relation between a subdynamics of the Liouville dynamics and the
Liouville dynamics in the Brussels school theory. This observation stimulated our
interest in the extension of the McLennan and Scharf idea to the EV-dynamics since,
as far as we know, the Brussels school theory (based on the Liouville dynamics) has not
yet been extended to include thermodynamical phenomena like, for example, the
critical phenomena.

In the following sections of this paper the point iii) above is concretely realized
(the points i) and ii) are realized in Refs. [3, 4] and reviewed in Sections 2, 3
respectively). The map from the phenomenological quantities in the EV-dynamics to the
phenomenological quantities in the F-dynamics is obtained explicitly. We would like
to point out that this map is obtained purely from the EV-dynamics. No extra information

from thermodynamics, equilibrium statistical mechanics etc. is used in this paper.
The final formulas that we obtain are very similar to the formulas derived from the van
der Waal equilibrium theory (this is not surprising, since the theory of the equilibrium
fixed points is equivalent to the van der Waal equilibrium theory [3]) and from the
Enskog dynamics by using the standard methods for calculations of the kinetic
coefficients, e.g. Ref. [6]. It is well known that the critical phenomena derived from these
formulas are not realistic, which is in our case just a consequence of the fact that the
starting EV-dynamics in not realistic. We believe, however, that the extension of the
McLennan and Scharf idea developed here can be applied to more realistic dynamical
models and in this way results interesting from the point of view of the theory of critical
phenomena can be obtained.
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2. The Enskog-Vlasov Dynamics

The EV-dynamics has been introduced and discussed in Ref. [3]. In order to
establish the notation and the basis (the point i) in the Introduction) for this paper we
mention a few results derived in Ref. [3].

An elementf^hi the two-dimensional manifold - parametrized by (a, j8) - of the
equilibrium fixed points of the EV-dynamics is called a single-phase thermodynamically
stable equilibrium state if f£$= n0 (ex., ß) e~Pv2, where n0 (depending on (a, j8)) is a
positive constant determined by the condition that the function

G(EV> -win (n) - c3 i-rrcAnj ê(n) dn -c^ßWn2 + em- f ln I — \n (1)

reaches its non-degenerate maximum at n n0. The parameters (a, ß) have the following

thermodynamic meaning: ß 1/T, where T is the temperature, x ßp, where p is
the chemical potential. We define

y max G<EV) g(EV)(a, ,8) (2)

that has the thermodynamic meaning y ßp, where p is the pressure.
The phenomenological quantities in the EV-dynamics, denoted ^<EV), are

{c3, c4, a, ft(n), Fpot(|r-ri|)}. With respect to the notation used in Ref. [3] we put
cx c2 1, the functions # and Vpot are identical with the functions n and V introduced
in Ref. [3]. The quantity W appearing in (1) equals J d3r'VP0J\r - r'l), where Q is the

n
bounded space region in which the system considered is confined. We assume that the
volume of Q equals one. The physical meaning of ^(EV) is explained in Ref. [3]. From
the mathematical point of view c3, c4 and a are non-negative real constants, ê is a real-
valued twice-differentiable function of n(r), reQ, the function Vpo, is a once-differen-
tiable function from | r — r' |, r, r' e Q to the negative real line. Their further properties
are determined by requiring that the geometric properties of the manifold of the
equilibrium fixed points and (2) give the thermodynamics identical with the
thermodynamics of a van der Waals gas.

The critical state/£EV) corresponding to (xc, ßj is defined as the equilibrium fixed
point with smallest ß at which G(EV) reaches its degenerate extremal value. It means
that (ac, ßj are determined by two equations

r 0 (3.1)

1 / de d2&\- -'" (3.2)— c3 j, ira31 3 Yn
n\ \ dn dn2

where

de
r=l+wn0; w c3fTra3\n \-2a

dn
+ c+ßW.

n nn

The solution of (3.2) is called the critical density and is denoted by nc.
The Fourier transform (with respect to r) of the local linearized (around fjffig)

EV-dynamics (in other words the Fourier transform of the Hessian of the EV-vector
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field evaluated at/<EVs>) with k (0, 0, k) fixed is

9<P(EV) IASA o(EV> œ(EV>. (4)
dt

Ç<EV> 9(1

where op<EV) e H0EV\ #0EV) is the complex Hilbert space whose elements are ç>(EV)(v),

v e R3. The scalar product <<piEV), <p(2EV)> in #<EV> is defined by

<9>iEV>. <P2EV)> j d3v I — e'1'2»"2 «v)(v))M<EV» <p<2EV)(v), (5)

where cp* is the complex conjugate of 9 and

(6)A^»cp=cp + wjd3\n0l — e-ll2ßv29(v).

The mathematical and physical reasons for introducing this particular scalar product
in H<EV> are in Ref. [3]. One of its advantages is that we do not need to deal with the
complicated operator QiEV> but with the much simpler operator Aœy»Q<-^»

^(hv)ç(ev) no&{no} Rbj _. ik\„3 + c^m/^Ho — + e(n0)]+c4ßW
\n=n0

.3

x j d3Yx fatqJvj) (vIt 3 + v3) <p(\J + c3ft(n0)j j dH

x J d3vtfseqjvj (v16 - h,)x,k3cp(\j -y.(vIx - vjxj, (7)

where the summation convention has been used, v3 means the third component of the
vector v, x is a unit vector, the operator RBl is the well-known linear Boltzmann
operator. It has been proved in Ref. [3] that the operator ^(ev)ç(ev) in Cl2 (or çœv)
in iï0EV)) is an Onsager operator [4]. It means in particular that its real part is a
selfadjoint operator and its imaginary part multiplied by the imaginary unit i is also a

self-adj oint operator.

3. The Fluid Dynamics

The fluid dynamics (hereafter the F-dynamics) has been discussed in Ref. [4J. In
order to establish the notation and the basis for this paper (the point ii) in the Introduction)

we mention a few results from Ref. [4].
An element of Fseqs (A0, E0, 0, 0, 0) of the two-dimensional manifold of the

equilibrium fixed points (parametrized by (y, ß)) is called a single-phase
thermodynamically stable equilibrium state if N0, E0 are constants (A0 > 0) determined by
the condition that the function

G(F> jd3r(-S(E,V)+yV + ßE) (8)
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restricted to the manifold r(E, V) 1/ß reaches its non-degenerate minimum at
A0, E0. In (8) we used V 1/N, the function S(E, V) is defined by the following relations

dS

dV
P

T

dS

dE~
(9)

We define

x= min GC»=gc»(ytß)
<E,V)|t_Ä-l

(10)

The parameters a, ß, y have the same thermodynamic interpretation as in the
preceding section.

The phenomenological quantities in F-dynamics 0»(F» are {p(E, V), r(E, V),
X(E, V), rj(E, V), tfJE, V)}. For their physical meaning see Ref. [4], from the
mathematical point of view we assume that p and t are twice differentiable functions ofF and
V, X, v and y]„ axe continuous, A =£ 0, r|an T, X, n, i,v evaluated at/s(^s are positive.

The critical state /£F) corresponding to (yc, ßj is defined as the equilibrium fixed
point with smallest ß at which G(F) reaches its degenerate extremal point. It means that
(yc, ßj are determined by the condition that the determinant of the matrix A(F) equals
zero and by the minimality of ß.

AC»

'jjiiPn-YTn), ßrR, 0, 0, 0

ßTn, ßre, o, o, 0

o, o, 1, o, 0

o, o, o, 1, 0

o, o, o, o, 1

(11)

where we use the notation t„ (dr/dN) |(£o> ,yo) etc.
The Fourier transform (with respect to r) of the local linearized (around /s(eF)s)

F-dynamics (in other words the Fourier transform of the Hessian of the F-vector
field evaluated at/s(F)s) with k (0, 0, k) fixed is

dcpC»

dt
QC»(piF) (12)

where <p(F) e /70F), qj(F) (n, e, ux, u2, uJ, H0F' is the complex five-dimensional Hilbert
space with the scalar product

G<9f\ <p(2F)> (n*x, e*,u?) ^(F) e2 (13)

\u2f
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The linear operator Ç(F) is given by the matrix

<?<F)

0 0 -ik NQ 0 o \

A
N̂o

k2 -A^L
A^o

k2 ik 0 0

0 0 -i'»' + V Jk2 0 0

0 0 0
^o

0

0 0 0 0 -^Lk2

(14)

A„

It has been proved in Ref. [4] that QiF» in HiF> is an Onsager operator.

4. The Subspace Hx

We have to find the five-dimensional subspace Hx of H0EV) satisfying the properties
a), b), c) in the point iii) of the Introduction. With the use of Theorem 3 in Ref. [3] we
can follow closely Refs. [1], [2].

Let H0 be the nullspace of the operator RB with the basis xi 1. X2 — ihv2 ~
(3/2/3)), Y3 v3, Xa, v2, Xs — v2 We shall assume that k is small. The imaginary part of
A<EV)QiEv, js considered as a small perturbation of the real part and, as was proved in
Theorem 3 of Ref. [3], for k sufficiently small, the eigenvalue 0 of RB will split smoothly
into five eigenvalues cot, i= 1, 5 that are the closest to zero spectral points of
y4(EV)Q(EV)

The corresponding eigenfunctions are pt, i — 1, 5. The eigenvalues co, and the
eigenfunctions pt can be calculated by using the standard perturbation method and the
corresponding infinite series is, for * sufficiently small, convergent. We shall write
explicitly the results for cot up to the order k2 and pt up to the order k.

co, cok2 + ikA

u>2 cok2 — ikA
2r

cü3 -—ß2K2(l+iTTn0a3e(no))2k2
ci

o>4 -j8*i(l + ±TTn0a3§(no))2k2

COs 0>4,

where

(15)

co -iß(Kjl + ±TTnoa3&(no))2) + ß-s2(l+\Trn0o3§(n0))2),

1/2

^ |t^ s l+e0, e0 c3^Tm0a3ê(n0), q 3r + 2s2.
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The quantities kx and k2 axe defined by

((vtVj-i 8uv2), Tlm)CL2 kx (8n 8Jm + 8imSi( - f 8U8lm),

where )Cl2 means the CF2 scalar product. The functions St and Tu are defined as the
solutions of the integral equations

-n0ê(n0)RBilSt I — - — \v„

-n0ê(n0)RBi, Ti} (vtVj- iv28u),

that are orthogonal to H0-
The eigenfunctions pt are

pt pep. + ^(i) + ^(2)( (16)

where i/40) e H0 and in the basis y,

f,°> (l,$j3s,-pM,0,0)

^»>-(l,i/b./M,0.0)

#p> j 1,-^,0,0,0

f°} (0,0,0,1,0)

Pf» (0,0,0,0,1),

0<» -4 (ßA (1 + -â" 77«o Û"3#K)) T33 - f ßs 1 + f 77W0 C73#K)) S3

P<2» -i(ßA(l + ^TTn0a3&(no))T33 + $ßs(l + lTrn0a3ïï(n0))S3)

pa. _i^l(l4-f tt^o o-3#K)) S3
s

PV -iT32

<l>a) -iT31,

Pf^iteipr+gipn
9? i(g2i9T+gUT)
P32» i(g\P?»+g\Pf)
P? 0

^<2> 0,
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where the coefficients gj are arbitrary and will be specified in the next section. The
eigenfunctions p,,i=l,..., 5, are orthogonal up to the order *, i.e.

iPt,pJy Nt8tJ + 0(k2),

Ni iq, N2= q,iN3
rq

N, N5 -_.
1

2s2' ¦'* J J
The calculations leading to (15), (16) are rather lengthy but straightforward.

5. The Fluid Dynamics as the Asymptotic Enskog-Vlasov Dynamics
We shall now find H2 and the dynamics in Hx transformed into H2. The following

observations help to find H2 and its basis vectors cp,, i 1,2,... 5.

1) cjcpt, <p(EV)> has to have the transformation properties ot a vector.
2) The inverse of the matrix B\f <05,, cpf) has to coincide with the matrix ^4(F)

(see (11)).
3) The straightforward calculation shows that

— <1, cpy -ikr(y3,cpy, (17)

where 95 e H0EV\

We take

03! —, cp2=Kx v+K" 93: 9*: «TV (18)

The coefficients Kx, K2 will be specified later. As follows from (3.1) ß -> ßc implies
r ->- 0. It means that the changes arising if approaching the critical point can be read
from the dependence on r. It follows from (18) that the inverse A(2) of the matrix B12'

i<9t, 9i>)is

2 K2rß

AC2»

2ß K
-— — r2 +

faß3 n0\K,

2K2rß
3nlK2x

0 0
3n0K2

2 ß
0 0

3 A?

0 0

(19)

If we introduce x] and 6] by

cp,= 2 xJPj
i=i

and

1=1

(20)
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then we can write the EV-dynamics in H2 as

da,

dt YiJ J

where

at <9n9(EA

and

Q?/ [l «,V ei]*.

We shall write

0> xmlj+kxWij
9=9mij +k9wlj.

By using (20), (18) and (16) one finds that

/3n0

f 2q

3 n0

27

a<°>
h{K"+

Kxs\
ß J

±U2,
2q\

\ 1 1

\ 2jM 2ßÄ

\ ° 0

\° 0

XWij -i 1 «(0Uigï,

i*i

K.s

2 ßr
3 Kxn0

KnS
2ß

685

(21)

(22)

2«0s2

rq

q(K2S2+2ßK>-

0 0

s 0 0

0 0

0 1 0 /

0 0 l/
(23)

(24)

Ki Vw -h

9m

2 ßr 3 „-A—\K2s-—Kx
3Kxn0\ 2ß

ßr I Ki
Kxn0s\ ßs

0

0

2ßs
3K~i 3A

0 0

2 ßs

3 Ki
et

3A
0 0

ßr

sKx
0 0 0

0 0 0 0

0 0 0 0

0H»i=il0io»gih
1*1
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By identifying Am with AiF» and Qi2) with Ç<F) we get the so-far unspecified
coefficients Kx, K2, g], i, j 1, 2, 3 and ^(F) expressed in terms of 0»(BV».

First we compare A1-2» with A(F». We get

2 ß
ßT°=3KÄ

2 Knr
r. — - ¦

3n0K2

2/A2\2 rI I "* -p"-^ -3[Fjr2 + ß-
(25)

By identifying the corresponding matrix elements Qt2) and Qffl that are proportional

to Äwe obtain trivial identities for i l,j 1, 2, 3; i 2, j 1, 2; i 3,j 3.
Fori 2;j 3

y K2sA- K2r+AL, (26)
»oß ß

For i 3,j=l
(2K2s 1

Pn -r{-
Ji Kx ßl

which, by using (25) and (26), appears to be a trivial identity. For i 3, j 2

1 2 s
«o|8t„ + —yre -—-,

n0 o Kx

which turns out again to be a trivial identity if using (25) and (26). By comparison of
(26) and (2), (1) one gets

(27)

Ki 1

K2r
s

i<:4 Wn0.

Te
2

" 3

rm _ 1
3 cxW

P
r
"V \- c4 sWr. (28)

By identifying the corresponding matrix element of Qf2- and Q(T» that are proportional

to k2 one obtains, for^' 3,i =1,2, i 3,j =1,2,

g2i+gl 0

gi+g23 0, (29)
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fort l,/=l, 2

8{ 0, (30)

where

S{ 2x^J9f»1(co - A(g\ - gl)) + A(xf» 9™»(g3 - g3)

+ a?" 0<°>3(g3 - g|)) + a?» 9tm*co3.

From (14) and (26) we have

T„

From

QVi=Q^i
Qf.\ Q?,2

one gets

S2 -^32. (31)
w0

The solution of (29), (30), (31) is

2 s2

gl-'-A-1^,
g\ -g\i

g\=-k

1 w3
?2 -

i 3r

g\ -gl (32)

From QC» Çg> Qf) Q?7 one gets

7] ßKjl + -t\Trn0a3e(n0))2 (33)

FromÇ2F> <2<2>

X ß2K2(l + iTTn0a3e(n0))2 (34)

and from Q3FJ Q3f we get (34) and

rlv ß2K2(l + f 77«0a3^K))2(s2- 1). (35)
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The map from 0>c*» into ^><F) - depending on (a, ß) - is now explicit in (28), (33),
(34) and (35). liß^r-ßc then r ->• 0 (see 3.1) so that the critical phenomena are read
from the dependence on r.
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