
Zeitschrift: Helvetica Physica Acta

Band: 57 (1984)

Heft: 4

Artikel: Twistor geometry

Autor: Broek, P.M. van den

DOI: https://doi.org/10.5169/seals-115515

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 14.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-115515
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


Helvetica Physica Acta, Vol. 57 (1984) 429-458 0O18-0238/84/040429-30S1.50 + 0.20/0

© Birkhäuser Verlag Basel, 1984

Twistor geometry

By P. M. van den Broek, Department of Applied Mathematics,
Twente University of Technology, P.O. Box 217,
7500 AE Enschede, the Netherlands.

(24. VI. 1983. rev. 6. V. 1984)

Abstract. The aim of this paper is to give a detailed exposition of the relation between the
geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose;
no use has been made of differential geometry and cohomology.
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0. Introduction

Twistor space provides an alternative geometry for the geometry of
Minkowski space. In order to give an idea of the physical motivation for Penrose's
development of twistor theory I will quote the first three alinéas of Penrose's
contribution to the International Congress of Mathematicians held in 1978
(Penrose 1978):

"This century has seen two major revolutions in physical thought. The first of
these, relativity, uprooted earlier ideas of the nature of time and space, and
provided us with our present picture of the world as a real differential manifold of
dimension four, possessing a pseudo-Riemannian metric with a (-1 signature.
The second revolution, quantum theory, altered our picture of things yet more
radically than did relativity - even to the extent that, as we were told, it became
no longer appropriate to form pictures at all, in order to give accurate representations

of physical processes on the quantum scale. And, for the first time, the
complex field C was brought into physics at a fundamental and universal level, not
just as a useful or elegant device, as had often been the case earlier for many
applications of complex numbers to physics, but at the very basis of physical law.
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Thus, the allowable physical states were to form a complex vector space, in fact a
Hilbert space. So, on the one hand, we had the real-manifold picture of space-time
geometry, and on the other, the complex vector space view, according to which
geometrical pictures were deemed inappropriate.

This conflict has remained with us since the conceptions of these great
theories, to the extent that, even now, there is no satisfactory union between the
two. Even at the most elementary level, there are still severe conceptual problems
in providing a satisfactory interpretation of quantum mechanical observations in a

way compatible with the tenets of special relativity. And quantum field theory,
which represents the fully special-relativistic version of quantum theory, though it
has had some very remarkable and significant successes, remains beset with
inconsistencies and divergent integrals whose illeffects have been only partially
circumvented. Moreover, the present status of the unification of general relativity
with quantum mechanics remains merely a collection of hopes, ingenious ideas
and massive but inconclusive calculations.

In view of this situation it is perhaps not unreasonable to search for a
different viewpoint concerning the role of geometry in basic physics. Broadly
speaking, "geometry", after all, means any branch of mathematics in which
pictorial representations provide powerful aids to one's mathematical intuition. It
is by no means necessary that these "pictures" should refer just to a spatio-
temporal ordering of physical events in the familiar way. And since C plays such a
basic universal role at the primitive levels of physics at which quantum
phenomena are dominant, one is led to expect that the primitive geometry of
physics might be complex rather than real. Moreover, the macroscopic geometry
of relativity has many special features about it that are suggestive of a hidden
complex manifold origin, and of certain underlying physical connections between
the normal spatio-temporal relations between things and the complex linear
superposition of quantum mechanics."

The idea behind twistor theory is to put the. null lines of Minkowski space,
being the world lines of non-interacting zero mass particles on the foreground
instead of the space-time points. These space-time points then become derived
objects; the basic quantities are the twistors. One of the advantages of this
approach is that when the theory is quantized, the space-time points become fuzzy
and the concept of null direction remains well-defined, in contrast to the conventional

theory where the points remain well-defined and the null cones become
fuzzy. Twistor space is the complex vector space C4 equipped with a Hermitian
form of signature 0; the corresponding projective space PC3 is called projective
twistor space. Null lines in Minkowski space correspond to null elements of PC3.
This correspondence between Minkowski space and twistor space, called Penrose
correspondence (Penrose 1967), will be the subject of this paper. By this
correspondence physical problems in Minkowski space are transferred into problems

of several complex variables on twistor space. Twistor theory provides a link
between physics and complex manifold theory because in many cases the field
equations of physics reduce to Cauchy Riemann equations, and therefore the
solutions can be represented entirely in terms of complex manifolds, holomorphic
vector bundles or cohomology classes on open complex manifolds with coefficients
in certain holomorphic vector bundles. The most striking result of this approach
was the solution of the Yang-Mills equations on S4 by Atiyah, Hitchin, Drinfeld
and Manin (1978). Twistor theory also appears to be the natural framework for
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the description of massless free fields (Eastwood, Penrose and Wells Jr 1981) and
of self-dual Einstein manifolds (Penrose 1976).

In Section 1 we recall briefly the concepts of Minkowski space, Lorentz group,
SL(2, C), spinors and the interrelations between these. In Section 2 twistors are
introduced, and a certain subset of them, the null twistors, are interpreted as null
lines in compactified Minkowski space. In Section 3 we give interpretations of
general twistors as Robinson congruences in compactified Minkowski space and as
null planes in compactified complexified Minkowski space and show how the
interpretations are related. In Section 4 we discuss how the conformai group acts
on twistor space. In Section 5 massless free fields are briefly discussed.

I. Minkowski space, Lorentz group, SL(2, C), spinors and all that

The real Minkowski space M is the real manifold U4 equipped with a scalar
product

* • y g^y" (I-1)

where the metric tensor g^ is given by

1 0 0 OH

0-100
0 0-10
0 0 0 -U

(1.2)

and where, the usual summation convention over repeated indices is used. If
\\x~y||2 (-(x-y) ¦ (x-y)) is positive, zero, or negative then x and y are said to
be timelike separated, null separated, and spacelike separated, respectively. If x
and y are null separated then they can be joined by a light signal; note that the
velocity of light is taken equal to 1. The Lorentz group L is the group of linear
mappings A from M onto M which preserve the scalar product:

(Ax)-(Ay) x • y Vx,yeM (1.3)

If (Ax)* AMvxv then AeL if and only if

g^A^A", g(xr (1.4)

Taking determinants of both sides of this equation gives

detA ±l VAeL (1.5)

Taking p o- 0 in equation (1.4) gives

|A°o|-£l VAeL (1.6)

The elements A e L with det A 1 and A°0 â 1 form a subgroup L0 of L of index 4
which is called the restricted Lorentz group.

The group SL (2, C) is the group which consists of the 2x2 complex matrices
with determinant equal to +1. This group is intimately related to L0, as we will
see.

Let H(2) denote the group of complex 2x2 Hermitian matrices. Let
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o^ (p =0, 1, 2, 3) be the elements of H(2) defined by

1 /1 0\ 1 /0 1\
a°-72V0 l) ai V2Yl OJ

(1.7)

a2 vk{-i ó) CT3 vlC -l)
For each x £ M we define Ax e H(2) by

1 /x°+x3 xl + ix2\ „,A* X^=72lx'-;x> x«-x3) (L8)

This defines a linear 1-1 correspondence between M and H(2). By inspection we
find that

||x||2 2 det Ax (1.9)

and

x ¦ y det (Ax + Ay)- det Ax- det Ay (1.10)

Let (7 e SL (2, C) and Ax e H(2). Then l/Ax[/+e H(2), where if is the Hermitian
conjugate of U; so there exists a x'eM with 17Axt/+ Ax.. So U defines a linear
mapping A(U) from M onto M by x>-»x' A(U)x. This mapping is a Lorentz
transformation; this follows immediately from the equations (1.3) and (1.10). By
inspection we see that

A(U)A(U') A(UTJ') Vl/,U'eSL(2,C) (1.11)

and

A(H)=Ï (1.12)

where 11 and I are the unit elements of SL (2, C) and L respectively. It is easy to
check that

A(U) A(U')±+U ±U' (1.13)

(see Appendix A).
If U is varied continuously until it reaches 1, A(U) varies continuously to

reach I. From the equations (1.5) and (1.6) and the definition of L0 it thus follows
that A(U)e L0. The image of SL (2, C) under A is equal to L0. This last statement
is nontrivial; a proof can be found in Halpern (1968). So t/>-*A(l/) is a
homomorphism of SL(2, C) onto L0 with kernel {H, -1}. This homomorphism is

given explicitly by

[A(-7)n=TrK.LAr,,l/+] (1.14)

(see Appendix B).
It is assumed that the reader is familiar with theory of tensors. A tensor t\> of

order n + m has n contravariant (upper) indices and m covariant (lower) indices
which take the values 0, 1,2,3. Under a restricted Lorentztransformation tp

transforms into if/' according to

m,--%l A*\,A%2 • • • A^taJA-T'e/A-1)5^ • • • (A-^r.«,*»«: t1-15)
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The raising and lowering of tensor indices is done as usual with the metric tensor,
so we have e.g.

«k &.>¦' (1-16)

In the sequel we denote a tensor of order n + m by t/.^;; ^, so this symbol stands
for the whole tensor, not just for one particular component. The same remark will
hold for spinors. Tensor indices will always be Greek letters, spinor indices will be
Latin letters.

The concept of spinors is defined in analogy with the concept of tensors; the
spinor indices will take only 2 values and there are four types of indices. A spinor
£a transforms under a restricted Lorentz transformation according to

£a Uabt (1.17)

where Ue SL (2, C) and is related to the restricted Lorentz transformation by the
homomorphism discussed above. Since U is defined up to a sign we see that,
strictly speaking, we should identify spinors which differ from each other by a

sign.
A spinor £a, where a dot has been placed over the index, transforms

according to

É'4«U*6É* (1.18)

where Ü is the complex conjugate of U. A spinor £a transforms according to

?a=(U-l)baÌ„ (1.19)

and a spinor £d according to

râ=(t7-1)6a4 (1.20)

Spinors with any number of indices, dotted or undotted, may be defined by the
requirement that they transform in the same way as products of one-index spinors
with the same indices.

One easily verifies that the operations of addition (of spinors with the same
indices), multiplication and contraction (over a pair of one upper and one lower
index, both dotted or both undotted) are spinor operations. The skew-symmetric
Levi-Civita symbol

ill) (1.21)

is a spinor which is invariant under restricted Lorentz transformations and is used
to raise and lower spinor indices:

L eeha (1.22a)

r eab& (1.22b)

We now introduce the "mixed quantity" o-°b, which is a spinor (with respect to the
indices ab) and a tensor (with respect to the index p). In some particular frame
the components of <r£b are defined to be the matrix elements of the matrices a^
defined in equation (1.7).

In Appendix C we will show that <xjf is invariant under restricted Lorentz
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transformations. Let tfi* be a tensor. Then a spinor Çab may be defined by
contraction of the tensor «/*¦"¦ and the mixed quantity cr^:

r*s^ (1.23)

Raising and lowering indices gives

U <s^ (1.24)

In this way to each tensor there corresponds a spinor where for each tensor index
there is a couple of one dotted and one undotted spinor index:

rati ¦•¦cd „ab „cd„p —T iii'-ii I-t oç\W Kh - »V • • • o-v O-J/ • • • o--,hi/.£...T (1.25)

The inverse of this equation is

«Pp-t otSb • • • o-cao-p' • • CT? 4e/ -gK (1.26)

(see Appendix C).
In Appendix D we state and prove a number of useful properties of spinors

and of the correspondence between spinors and tensors. See also Pirani (1965). A
geometrical interpretation of a spinor is given in Appendix E.

II. Null twistors and null lines

Let taS? be a lightray in Minkowski space, i.e. a null straight line consisting of
the points {x^ + Ay* | A eIR} where x* is a real vector and y'Ms a real future-
pointing null vector.

According to the Theorems 3 and 9 of Appendix D the vector y* determines
a spinor tt" up to a phase factor by

y* «*&*«*' (2.1)

Since 5£ determines y" up to a positive constant, if determines tt6 up to a
complex constant. The vector x* determines the spinor xa6 by

x* o-SbXab (2.2)

Define the spinor coa by

Wa iX^TTi, (2.3)

This spinor is independent of the choice of x* on iE, since if x* e£ then
x* x* 4- \y* for some À eR, thus xa6 xa6 + A.7Tairê and therefore x^ xabiT(,.

So the null line i£ determines up to a common complex factor the two spinors <oa

and iTà. The spinor pair

L (V,7rà) (2.4)

is called a twistor. From this twistor the null line 5£ is obtained as the set of
solutions x1* of the equations (2.2) and (2.3). This is proved in Lemma 1 of
Appendix F. For any two twistors L (coa, irà) and X (£a, r\à) we define their
twistor product by

(L,X) coa-qa + TTàC (2.5)
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A null twistor is a twistor for which (L, L) 0. The twistors form a four
dimensional complex vector space which is called twistor space and is denoted by
T. The subset of null twistors is denoted by T °.

A projective twistor is an equivalence class of non-zero twistors which are all
proportional to each other. The equivalence class which contains the twistor L
will be denoted by L. The set of projective twistors is called projective twistor
space and is denoted by PT. A projective null twistor is an equivalence class of
null twistors. The subset of PT consisting of projective null twistors is denoted by
PT°. Two projective twistors L and L' are said to be orthogonal (denoted by
L • L 0) if (L, L') 0 for each L e L and each V e L'. Since each null line in M
determines a twistor up to a complex factor, it determines a projective twistor
uniquely. In turn, this projective twistor determines the null line uniquely.
However, not all projective twistors correspond in this way to null lines. We have
already seen that the spinor irà in equation (2.1) must be different from zero. In
fact, we have the following theorem:

Theorem 2.1. The equations (2.1), (2.2) and (2.3) provide a one-to-one
correspondence between the null lines in M and the projective null twistors with
TTa+0.

So except for the demand that irà ^ 0 a projective twistor must be a projective null
twistor if it corresponds to a null line in M. The proof of this theorem is an
immediate consequence of the lemmas we prove in Appendix F: a null line
determines a projective twistor which is a projective null twistor (Lemma 2) and
has 7^t^O; for each projective null twistor with Trài=Q the equations (2.2)
and (2.3) have a real solution x* (Lemma 3) and so the complete solution of (2.2)
and (2.3) is a null line (Lemma 1).

We continue with another important theorem:

Theorem 2.2. Let !£x an !£2 be two nonparallel null lines in M. Let the

corresponding projective twistors be Lj and L-, respectively. ££x and 1£2 meet each
other if and only if Ly and l^ are orthogonal.

The proof is given in Appendix G.
A 2-dimensional complex subspace of T is called a plane. Two planes who

have only the zero twistor in common are said not to intersect. Two nonequal
intersecting planes have a line in common; a line is a 1-dimensional complex
subspace of T and thus a projective twistor completed with the zero twistor. Now
let x^ be some fixed real vector and consider the set of twistors (coa, irä) who
satisfy equation (2.3). These are just the twistors which determine null lines
through x*, and so they are null twistors. They form a plane in T°. Let this plane
be denoted by P(x|i) ¦ P(x|X) obviously does not intersect the plane 7rà 0.

Theorem 2.3. All planes in T° who do not intersect the plane irà 0 are equal
to P(x|i) for some x" e M.

The proof is given in appendix H.

Theorem 2.4. The planes P(x^) and P(y|i) intersect if and only if x* and y*
are null separated.
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Proof. P(x")nP(y") consists of those twistors determining null lines through
both x" and y*\ If x* and y11 are not null separated such twistors do not exist and
P(x"0 and P^y11) do not intersect. If x* and y* are null separated but not equal
then there is a unique null line through both x* and y1* and thus P(x")nP(y") is
a line.

Let M denote the set of all planes in Tu; Ml is called compactified Minkowski
space. M may be identified with the subset of planes P(x^) of M. Note that IVO has
a conformai structure, i.e. a null structure, but no metric: points of M have null
separation if and only if the corresponding planes intersect. So M is obtained from
M by adding to M one single point I (the plane TTà 0) and the set of points
which have null separation with I. Geometrically this means that M consists of M
and a lightcone added at infinity.

The concept of null lines may be extended from M to M by the definition that
a null line in Ml is given by the set of all planes in T° which pass through a given
line; so the null lines in M are in one-to-one correspondence with the projective
null twistors. Two null lines meet if there is a plane in T° containing both the
corresponding projective null twistors. Theorem 2.2 may now be extended as
follows:

Theorem 2.5. Two null lines in M meet if and only if the corresponding
projective null twistors are orthogonal.

The proof is given in Appendix I.
To sum up, the correspondence, called Penrose correspondence, between Ml

and T° is as follows: There is a one-to-one correspondence between the points xH
of Ml and the planes P(x*) in T°. Null separated points correspond to intersecting
planes. There is a one-to-one correspondence between the null lines if in Ml and
the projective null twistors L(,S?). Intersecting null lines correspond to orthogonal
projective null twistors. Finally

x^eifOL^cP^) (2.6)

III. Non-null twistors

In this section we will give two geometrical interpretations of non-null
twistors: as Robinson congruences and as null planes in compactified complexified
Minkowski space, and examine the relationship of the two interpretations.

Robinson congruences

We start with a theorem:

Theorem 3.1. Let L be a projective twistor and let x* be a point in M, with the
restriction that if L corresponds to a null line in M, x" does not lie on this null line.
Then there is exactly one null line through x* whose projective null twistor X
satisfies L -X=0.

The proof is given in Appendix J.
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Let L be a projective null twistor corresponding to a null line 5£ in M. !£ is
determined completely by the system of all null lines which meet it. The system of
null lines corresponds to the system of projective null twistors X which satisfy
L • X 0. This system of null lines is called a congruence since through any point
x1* eM not lying on if there is exactly one null line of the system, according to
Theorem 3.1. This concept may be generalized for non-null twistors.

The Robinson congruence for a non-null projective twistor L is the congruence

of null lines corresponding to the projective null twistors X with L-X=0.
According to Theorem 3.1 there is exactly one null line of the Robinson
congruence through any point x* of M.

The Robinson congruence can be described geometrically as follows.
Consider a spacelike hyperplane S in M with x° constant. At each point of S the null
line of the Robinson congruences is projected orthogonally into S. This gives us a
vector field in S. This vector field in tangent to a system of circles on a nested
system of coaxial circular tori. On each torus the circles link once through the
torus and once about it. This system is completed by a circle which is the limiting
member of the tori and a straight line through the centre of this circle and
perpendicular to its plane. For a picture, see Penrose (1975), page 291.

Null planes in compactified complexified Minkowski space

Complexified Minkowski space Mc is the complex manifold C4 with scalar
product

Zi-z^^zK (3-D

where g^v is given by equation (1.2). Let (coa, nä) be a twistor with ira^0.
As in the previous section we consider the equations

X» cr»bxab (3-2)

and

co" ixabTT6 (3.3)

with the difference that now x* is complex. These equatipns do have solutions;
for instance, let £â be a spinor with Çàira -i then x\f cùa^b is a solution.
Suppose that x\?+x°h is also a solution. Then xf'Trj, 0. From Theorem 4 of
appendix D it follows that x"b ka-nb for some spinor A". We obtain:

Theorem 3.2. The general solution of equation (3.3) has the form

xah xf+\aTTb,\a arbitrary. (3.4)

This solution corresponds to a plane in Mc. The difference of any two vectors of
this plane is a null vector; such a plane is called a null plane. From the previous
section we know that this null plane intersects M if and only if (coa, irà) is a null
twistor. A null plane which has the form of equation (3.4) is called an a-plane. A
ß-plane is a null plane of the form

xa6 Xf+1T"A^ x.6 arbitrary. (3.5)

Note that the complex conjugate of an a-plane is a ß-plane and vice-versa. In
Appendix K we will show that each null plane is either a a-plane or a ß-plane.
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Suppose the equation

C ixa6T,b 3.6)

has the same a-plane as solution for xab as equation (3.3). Then

T i[xf+ Aa7T6]T)É for all Aa (3.7)

Then irhr\b 0, so -nf, cirb- for some c eC.
It follows that (£a, T)d) and (coa, irà) belong to the same projective twistor.

Since to each a-plane corresponds a projective twistor (to the a-plane of
equation (3.4) corresponds the twistor (iz^irb, TTb)) we have established the
following theorem:

Theorem 3.3. The equations (3.2) and (3.3) provide a one-to-one correspondence

between the a-planes in Mc and the projective twistors with 7râ^0.

The set of twistors (<oa, irà) who satisfy equation (3.3) for some fixed x* e.Mc
form a plane (2-dimensional complex subspace) in T, denoted by P(x"). Analogous

to Theorem 2.3 we have

Theorem 3.4. All planes in T who do not intersect the plane irâ 0 are equal
to P(x") for some x*eMc.

The proof is given in Appendix L.
Analogous to Theorem 2.4 is

Theorem 3.5. The planes P(x'x) and P(y*) intersect if and only if x* and y1*

are null separated.

Proof. If x^ and y* are null separated but not equal there is a unique
a-plane through both x* and y"\ This is proved in Theorem 2 of Appendix K.
The rest of the proof is analogous to the proof of Theorem 2.4.

Let MT denote the set of all planes in T ; MT is called compactified complexified
Minkowski space. Mc may be identified with the subset of planes P(x*) of MT.

Points of Mc have null separation if and only if the corresponding planes
intersect in a line. The concept of a-plane may be extended to MT by the
definition that a a-plane in Mc is given by the set of all planes in T which pass
through a given line; so there is a one-to-one correspondence between the
a-planes and the projective twistors.

The Penrose correspondence between Mlc and T is thus as follows: There is a
one-to-one correspondence between the points x* of Mc and the planes P(x")
inT. Null separated points correspond to intersecting planes. There is a one-to-
one correspondence between the a-planes A in Mc and the projective twistors
L(A). Finally,

x'eAOL(A)cP(x') (3.8)

Relationship between a-planes and Robinson congruences

For each projective twistor L we now have two geometrical interpretations:
an interpretation as an a-plane A in Mc and an interpretation as a congruence R
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of null lines in Ml. The relationship between these two interpretations is as
follows: each ß-plane which intersects both A and Ml intersects Ml in a null line
which belongs to R, and through each null line of R goes a ß-plane which
intersects A. This will be proved in Appendix M.

TV. Conformai transformations on twistor space

In the previous sections we introduced twistors as structures in compactified
Minkowski space M. We used a fixed origin and frame. The result however is to
be interpreted as independent of this origin and frame. In this section we will
examine what happens to twistor space when we apply a transformation to Ml

which leaves its null structure invariant. The group of these transformations of Ml

is called the conformai group and is denoted by C. It has the coset decomposition

C=C0+pC0+tC0+ptC0 (4.1)

where C0 is the normal subgroup of C consisting of the conformai transformations
which are continuously connected with the identity transformation,
p denotes space inversion and t denotes time inversion. Since null lines are
transformed into null lines by a conformai transformation, projective null twistors
are transformed into projective null twistors. It is shown in Penrose (1967) that
Robinson congruences are transformed into Robinson congruences. So to each
conformai transformation there corresponds a transformation of T which leaves
T ° invariant. The transform of L under a conformai transformation is denoted by
L. So we have

L-L=0OL-L=0 (4.2)

If L, and \L-, correspond to null lines which meet each other, then also the null
lines corresponding to Lj and Ia2 meet each other. So

L1-L2 0OL1-L2 0 (4.3)

if Li • Lj Ia2 • Ia2 0, according to Theorem 2.5. This implies, as was shown in
Penrose (1967), that equation (4.3) holds for every L^L^ePT.

Let G be the group of transformations of PT preserving orthogonality. We
have found a homomorphism from C into G. Actually, C and G are isomorphic,
since for every g e G a corresponding conformai transformation can be
constructed: let x" be a point in Ml and take two null lines through xR then g
transforms these null lines into null lines which intersect in a point x*\ This point
x" is independent of the choice of null lines through xR and the mapping x*>-^x*
is a conformai transformation. So we have found that the group of transformations

of Ml preserving its null structure is isomorphic to the group of transformations

of T preserving orthogonality. The connection between these groups is given
by equation (2.3), the equation which gives the connection between null lines in
M and projective null twistors. For each heCwe have a transformation T(h) of
PT:

L>-*L=T(fi)L (4.4)

but since we prefer to work with T rather than with PT we would like to consider
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a corresponding transformation 17(h) of T :

Lr^L=U(h)L (4.5)

The condition U(h) must satisfy is

U(h)L=T(h)L VLeT (4.6)

but this equation does of course not determine U(h) uniquely. So we have a
freedom in our choice of U(h). If U(h) satisfies equation (4.6) it is said to induce
T(h).

A transformation U of T is called semilinear if

U(\L + p.L') £(\)UL + £(p)UL' VL.L'eT, VA, p eC (4.7)

where the mapping £:C —>C is given by

f(A) A VAeC (4.8)

or by

£(A) A VAeC (4.9)

It is clear that each semilinear transformation U of T induces a transformation of
PT. We have the following theorem:

Theorem 4.1. Each transformation T of PT which preserves orthogonality is
induced by a semilinear transformation U of T. If Uy and U2 are two semilinear
transformations of T which both induce T then U1 \U2 for some AeC. Tha
semilinear transformations U of T which induce transformations of PT which
preserve orthogonality are those which satisfy

(UL, UL') CÇ((L, L')) VL, Vel. (4.10)i

where C is a real constant.

This theorem is the application to twistor space of a general theorem first given ini
van den Broek (1983) which is a generalisation of a famous theorem of Wignen
which is well known in quantum mechanics.

If U is a semilinear transformation of T the set {Al/ | À. eC, A ^ 0}, denoted
by U, is said to be a ray of semilinear transformations. So Theorem 4.1 says that
for each TeG there is a unique ray of semilinear transformations of T which
induce T and that there is a one-to-one correspondence between G and the rays
which satisfy equation (4.10). Let G denote the group of these rays, then G is
isomorphic to G and C. G has, analogous to equation (4.1), a coset decomposition

G G0 + AG0 + BGo + ABG0 (4.11)

where G0 is the subgroup of G which is isomorphic to C0 and consists of the rays
whose elements satisfy equation (4.10) with C positive and £ satisfying equation
(4.8). The coset representatives A and B may be chosen such that they contain
elements A and B respectively which satisfy

(AL,AL') -(L,V) VL,L'eT (4.12)

(BL,BL') (L',L) VL.L'eT (4.13)
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The group of semilinear transformations U which satisfy

UL, UL') (L, V) VL, V e 1 (4.14)

and which have determinant equal to one is SU (2, 2). Each ray Ue G0 contains 4
elements of SU (2, 2), say U, iU, -U and -iU. So there is a 4:1 isomorphism

SU (2, 2)^-U C0 (4.15)

In the literature this isomorphism is usually introduced via the two 2:1 isomorphisms

SU (2, 2) -^* SO (2, 4) -^*. Co (4.16)

Now we will derive explicitly for each conformai transformation the corresponding
transformation of twistor space. For C0 these results are first given by Klotz

(1974), for pt by Penrose (1967) and for p and t by van den Broek (1983). Let a

conformai transformation:

x^r^x* (4.17)

be given, then we have to find a semilinear transformation U of T such that

(i) UeG, i.e. U satisfies equation (4.10)
(ii) if L (o)a, TTà) is a null twistor and if x* is a point of the corresponding

null line:

<oa ixabnb (4.18)

then, if UL (coa, ti^), x*1 is a point of the transformed null line:

wa ixabTTb. (4.19)

Note that (ii) determines U on T° only; the extension to T then being determined
by (i). Consider first restricted Lorentz transformations

x»=A»vx" (4.20)

In this case the transformation of twistors follows immediately from the transformation

of the spinor components (equations (1.17) and (1.20)):

cda=Qabcob (4.21a)

^d (Q-1)Vb (4.21)

where Q belongs to SL(2, C) and corresponds to A in the way discussed in
Section 1.

Next consider the translations

x* x* + a* (a* real) (4.22)

The corresponding twistor transformation is given by

coa coa + iaabTTb- (4.23a)

aA TTà (4.23b)
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It is easily verified that this transformation is semilinear and satisfies equation
(4.10), and that equation (4.19) follows from equation (4.18).

For the dilations

x» cx» (c>0) (4.24)

the corresponding twistor transformation is given by

coa -Seco" (4.25a)

Trà=-=iTà (4.25b)
vc

as can also immediately be verified.
The accelerations

* 2" ^ (fl(i real) (4 26)
l-a„x" + Kava")(xpxp)v

correspond to the twistor transformation

w" <oa (4.27a)

irà TTà + iabàcob (4.27b)

One easily verifies that this transformation is semilinear and satisfies equation
(4.10). To show that equation (4.19) is applied by equation (4.18) requires in this
case some algebra, which is given in Appendix N.

Since each conformai transformation belonging to C0 can be written as a

product of restricted Lorentz transformations, translations, dilations and accelerations

we have now established the correspondence between C0 and G0.
Consider pt, the inversion of space and time:

x* -x* (4.28)

It is obvious that the corresponding twistor transformation is

côa -coa (4.29a)

ira "à (4.29b)

This transformation satisfies equation (4.12), so the coset AG0 of equation (4.11)
corresponds to the coset ptC0 of equation (4.1).

Consider finally the conformai transformation

x» (x°, x\ x2, x3) (-x0, -x1, x2, -x3) (4.30)

This transformation is the time inversion t together with a rotation through tt
around x2-axis. It is straightforward to verify that the corresponding twistor
transformation is

<L"=^" (4.31a)

Trà=ïTu (4.31b)

This transformation satisfies equation (4.13), so the coset BG0 of equation (4.11)
corresponds to the coset tC0 of equation (4.1). Herewith the correspondence
between C and G has been established.
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V. Massless free fields

Now that we have finished our exposition on the geometries of twistor space
and Minkowski space we will end this paper with a comparison of the description
of massless free fields in both geometries. In the space time formalism the
massless free fields are symmetric spinor fields satisfying a differential equation:

v"aiVaa4> 0 (5.1)

Vaa4>ab,.c 0 (5.2)

V">ab..c 0 (5.3)

Here V" is the spinor which corresponds to the tensor d*\
A free massless field of positive frequency with helicity n is described by

equation (5.1) if n =0, by equation (5.2) if n>0 and by equation (5.3) if n<0.
The number of indices of cp is equal to 2 \n\. The equations with n ±2 are the
Dirac-Weyl neutrino equations, and the equations for n ±l are Maxwell's
equations.

In the twistor formalism the massless free fields of helicity n are holomorphic
functions on twistor space which are homogeneous of degree —2n —2. The
differential equation has been absorbed into the geometry! The corresponding
spinor field is obtained via a contour integral. If f(L) is such a function, and if
ns.0 then this contour integral is given by

«W-cOc*) jf *¦**¦«•¦¦ ^cf(ÌXabTTb, 7Td) Att (5.4)

where

Ait TTà diTä (5.5)

and the contour Y lies in the plane corresponding with x*\ avoids singularities of /
and varies continuously with x^.

Appendix A

Theorem. Let U and U' be elements of SL(2, C). Then

UAUf=U'AU" VAeH(2) (A.l)

if and only if U ±U'

Proof. It is clear that equation (A.l) follows from U ±U'. Suppose U and
U' satisfy equation (A.l). Let V=U'-'U, then VAVf A for each AeH(2).
Taking A equal to the unit matrix gives VV+ 1, so V V" ' and we have
VA A V for each A e H(2). Taking A equal to ct3 gives

/»ii vl2\/l 0\/l 0\/t>„ vi2\
\v2l v22)\0 -1/ \0 -lAt-21 v22)
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or v12 v2i 0. Taking A equal to o-x gives

/on 0\/0 1\ /0 l\/«„ 0\
V 0 u,J\l 0/ \1 oA 0 u,Jt)22/ M U/ \l 0/ \ u u22y

from which it follows that vx,=v22.

VeSL(2,C)^det V l-*v2u l^vu ±l^V ±V->U ±U' QED

Appendix B

Theorem. Let U belong to SL (2, C) and let the Lorentztransformation A be

defined by x,li A*\x" where UAxUf Ax. and Ax =x,icrti- Then

A-p=TrKUo-pt/+). (B.l)

Proof. From

Tr (o^crj 8^ (B.2)

it follows that

Tr(o-(1Ax)=Tr(tataT(ix-o-J x-. (B.3)

Let x11 be the vector whose p-th component equals 1 and whose other components

are 0. Then

Ax crp (B.4)

x"1=A"p (B.5)

and thus

A% Tr (a^Ax.) Tr (o^l/A,!/*) Tr (o^L^U*). QED

Appendix C

Let the matrices a* be defined bv

<h= 8""ecaedbo-ld (Cl)
Note that this definition is consistent with the rising and lowering of the mixed
quantity o-£B.

Lemma 1. <b <b (C.2)

Proof. Straightforward verification.

Lemma 2. cr^o-f ô\ (C.3)

<b<d 5ca5db (C.4)

where 8*» and <5ab are the usua/ Kronecker delta symbols.

Proof. Straightforward verification.
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We want to show that the mixed quantity o-£b, whose components are in some
frame defined to be the elements of the matrices cr^, is invariant under restricted
transformations. This will be achieved once we have proved the following
theorem:

Theorem 1. Let A be a restricted Lorentztransformation and let U be an
element of SL(2,C) corresponding to A via the 2-1 homomorphism of L0 and
SL(2,C). Then

<r?=UacTFdAS*? (C.5)

Proof. From Lemma 1 it follows that equation (1.14) can be written as

A\ o-^Ubco-ldTrd

Multiplying both sides with Apva'J[ and using equation (C.4) gives

A^ApVpf=Ap"U>c/Ü^ (C.6)

so equation (C.5) is proved if we show that

A%V<=cr? (C.7)

and this equation is an immediate consequence of equation (1.4).

Theorem 2. Equation (1.26) follows from equation (1.25).

Proof. Immediate consequence of Lemma 2.

Appendix D. Spinor algebra

Theorem 1. Raising and lowering a pair of dummy spinor indices produces a
sign change.

Proof. It is sufficient to show that £ar\a — £aTja. From the equations (1.21)
and (1.22) we obtain

CVa e^&Veea - &ncSbc - 4tj" QED

Theorem 2. Two spinors £a and 17a are proportional if and only if $ana 0.

Proof. It follows from theorem 1 that if |a and tj" are proportional then
^"Va 0. It is straightforward to check that

eabecd + eac6db + £adebc=0. (D.l)
Contracting with ê-T]d gives

£ab&T)c-rr,b + £V=0. (D.2)

If £t}c=0 then

fV !V (D-3)

from which it follows that £a and na are proportional.
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Theorem 3. The spinors £" and tj" have the property

<rfb T)V (D.4)

if and only if £a e'"-r\a for some phase factor e'8.

Proof. It is clear that (D.4) holds if Ç" e'V- Since t\at\a =0 (Theorem 2)
contraction of equation (D.4) with r\a gives

VaèaIh 0 from which it follows that riaÇa 0.

Now theorem 2 says that r|a and £a are proportional, and from equation (D.4) it
follows that the factor of proportionality should have modulus unity.

Theorem 4. J/ die spinors p"b and irb have the properties ixabvb 0 and TTb j= 0
then pab \aTTb for some spinor A".

Proof. Let tj" be a spinor with the property t}àTTa 1. Define Aa by A"
/xabT)b. Then

[,iab-AVR 0 (D.5)

and

[pati - Au7rb]T,b pabnb - pa' r,c7rbT,b 0. (D.6)

Since any spinor |b is a linear combination of 7rb and r\b we conclude that

fxab'-Aa7Tb 0. (D.7)

Theorem 5. To a contraction of two tensors corresponds the spinor who is the
contraction of the spinors who correspond to the original tensors.

Proof. Straightforward consequence of lemma 2 of appendix C.

Theorem 6. The spinor gabcd corresponding to the metric tensor g"" is given by

gabcd eacebd. (D.8)

Proof. According to theorem 5 the spinor form of x* gli"xv is

x^-g"'-^ (D.9)

and from equation (1.22) it follows

xab e...ebdx^ (D10)

This proves the theorem.

Theorem 7. The vector x* is real if and only if the corresponding spinor xab is
Hermitian, i.e. its components satisfy xab xba.

Proof. If x^ is real then

xba xb" o-.^x*1 a"bx» xah

If xab xh" then

Yü _ _ix „ab _ (i çàb _ n ba __ px — crabx — <Tb(iX — CTbaX — X
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Theorem 8. The vector z" is a null vector (i.e. z^z* =0) if and only if the
corresponding spinor zab is equal to kairb for some spinors Aa and Trb.

Proof. If zab AaTTb then z^z» zabzab AaTrbAa7rb 0. If z^z» 0 then

_ _ab _ -cd _ ,ab _ 1 /-, 0Ö
_,

1 ì ,OÌ,l()\_nzabz - z ecaedbz - 2(z z -z z - 0.

Let the spinor irà be defined by its components in some particular frame
according to

7ró=-z0i; tt^z00. (D.ll)
One verifies easily that zab7rb =0. If 7rb happens to be zero, one may take

7ró -zli; 7T, z10 (D.12)

Except when z" 0, is which case the theorem obviously applies, we have found
a spinor 7rà which satisfies zab7rb 0 and 7rb^0. From theorem 4 it follows that
zab Aa7rb for some spinor Aa.

Theorem 9. The vector i^" is real, null and futurepointing (tp°>0) if and only
if the corresponding spinor t//ab can be written as

djah Ctb (D.13)

for some spinor £a.

Proof. If equation (D.13) holds then t/.* is null (Theorem 8), real (Theorem
7) and futurepointing:

^0=o-2brlfi=^(i0lö+^f1)>o.

Now suppose that t\t* is real, null and futurepointing. From Theorem 8 it follows
that we may write

4iab kaTTb (D.14)

From Theorem 7 we obtain

AV^ÄV* (D.15)

Contracting this with Aa gives Aa7ra 0, which means that A" and ira are
proportional (Theorem 2). So

¦ira c\a (D.16)

where c is a complex number. Substituting (D.16) into (D.15) shows that c should
be a real number. Now

/0 0 \a b 0 _\ afb _ „I \ 0 TO 1 \i\tp CTabk TT crabck A c(k k + k k

and therefore c>0 since i/.°>0. So we have

ta^ab cAaÂb, c>0 (D.17)

If we define £a =VcAa then equation (D.13) follows.
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Theorem 10. The tensor if/*" is real and antisymmetric if and only if the

corresponding spinor djahcd can be written as

djabcd eac<£bd + ebdcpac (D.17)

for some symmetric spinor cpab.

Proof. Let if/*" be given by

-T" <(,o-"cdVeac4>bd +eT]- (D.18)

It is clear that if/*" is antisymmetric, and tp"-1' is real since <r£b <rba. Now let ifr*"
be a real antisymmetric tensor, and let

xfiabcd cTabcjcddj^ (D.19)

Then djabcd -tpcduh and so we have

djaixd {{djabcd - djcbad + djcbad - dj'dab] (D.20)

From equation (D.l) it follows

0 [eacepq + eapeqt + eaqecp] i/>pbqd eacdjbpd - i/.abcd + djcb"d (D.21)

and

0 [etóeM + e^eài> + ebpeqd] ^cpa<, + ebdtpcpa" + </<cdab - ^cbad. (D.22)

So equation (D.20) becomes

^bcd ifg-^bpd + 8«^«*] (D.23)

Let the spinor <pab be defined by

d,ab \ djbpaò (D.24)

Then

<i>ba=è*v* -w***=wr 4>ah (D.25)

so <f>ab is symmetric. Since i/.1"" is real we have

V V crp"o-;'V- cT'ïo-tif>»' ip'""'' (D.26)

from which it follows that

r('=2^Pàp=Wpa (D.27)

With (D.24) and (D.27) we can write (D.23) as

^abed gac^bd + gbd^ac QED

Appendix E. Geometrical interpretation of a spinor

A spinor £a (not equal to zero) determines a real futurepointing null vector

«r <rïsf*|* (E.l)

according to Theorem 9 of Appendix D. All spinors which determine this vector
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are equal to £a up to a phase factor; this is an immediate consequence of
Theorem 3 of Appendix D. Let na be a spinor with

CVa 1 (E.2)

and define the vector co* by

^ <h[e-nb + vaï6] (E.3)

Then co* is real (Theorem 7 of Appendix D) and co^co^ —2, so co* and \ji* are
linearly independent. Let r)a also be a spinor with

T'Ha 1 (E.4)

and define

<a* <r!y;e^'+*"!*] (e.5)

Then

rW„-T.a) 0 (E.6)

and thus, according to Theorem 2 of Appendix D,

TJa T)a + Ar. AeC (E.7)

It follows that

â>* (o* + (k + k)dj*. (E.8)

The plane spanned by co* and 41* is determined uniquely bij £a and is called a

"flag" with i/** as "flagpole". Let the vector x* be defined by

X^KT&rii'-il'f*]. (E.9)

X1* is real and XnX* -2. From t^w* tp-^x" w^^" 0 one easily deduces that
4-*, x11 and co* are linearly independent. If the phase of £a is changed:

£"-»¦£Ve, 0eR (E.10)

then

T)a-ta.T(ae ie (E.ll)
and

w^<b(r^V'e+T1afV2'a) w* cos 20+ x* sin 20. (E.12)

So by this change of phase the flag is rotated round the flagpole through an angle
20. By a change of sign (0 7r) the flag remains unchanged. So the geometrical
interpretation as flags of the spinors £a and — £a is the same.

Appendix F

Lemma 1. Lef a twistor L (coa, irà) be given and suppose that the equations
(2.2) and (2.3) have a real solution x*. Then the complete real solution of these

equations is a null line. The direction of this null line is given by equation (2.1).
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Proof. Suppose that x* is also a real solution of (2.2) and (2.3). Then

Xab7Tb XS" 7Tb (F.l)
from which it follows, according to theorem 4 of appendix D that

xab-x(f Aa7rb (F.2)

for some spinor A". Since x* and x* are real, theorem 7 of appendix D gives

Aairb Ab7Ï-a (F.3)

Contracting with Aa gives

AQ*" 0 (F.4)

so

Aa cir" (FS)

for some ceC, according to theorem 2 of appendix D. It follows that

x*-x*=cy* (F.6)

where y* is given by equation (2.1).
From equation (F.3) it follows that c is real. Since y^ is real and null

(theorem 9 of appendix D) the vector x* lies on the null line through Xq with
direction y*. On the other hand, it is obvious that each point of this line indeed
satisfies the equations (2.2) and (2.3).

Lemma 2. // the equations (2.2) and (2.3) have a real solution x*\ then
L (coa, TTà) is a null twistor.

Proof. Since x* is real we have xab xbu. If equation (2.3) holds then

(L, L) COaTTa + TTaCOa ixahTTbTra - ÌXàbifbTTa Jx""-)Tb*a ~ ÌX6"ÌTaÌT0 0

Lemma 3. Let L (co01, ira) be a null twistor and let ttü i= 0. Trie« the equations
(2.2) and (2.3) have a real solution x*.

Proof. If L is a null twistor then

coaira + cöaTTä=0. (F.7)

Suppose (oaTTai^0. Let xab be given by

xab=——. (F.8)
a> ttc

Then

„ -COaC0hTTo
tX TTb - — (O

CO TTC

and

-mà>ob _uôàwb
_-c c - X ¦

CO Tfj. CO 7T.
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So x"6 satisfies equation (2.3) and x* is real according to Theorem 7 of Appendix
D. Now suppose coaTra 0. Choose a spinor £a such that

«"*« L (F.9)

Let xab be given by

xab=coalb + cobÈ,a- (F. 10)

Then

ÌXabTTb ÌWa|*-!Tb + IWb|a7rb CO"

and

xab=coàÇb + cobïà xbà

which proves the lemma.

Appendix G. Proof of Theorem 2.2

Suppose that if, and !£2 meet. Let x* be the point of intersection. Suppose
L, (co", 7ra)eL, and L2 (£a, i)JeL2. Then

coa ixabirb (G.l)

T ixa% (G.2)

and

xab xba. (G.3)

It follows that

(Lu L2) o)aTJa + irj* ixabTrbTJa - ixdbfjb7ra 0

and so L, and I^ are orthogonal.
Now suppose that Lj and Ia-, are orthogonal projective null twistors. If

(coa, wJeL, and (£a, Tjje-L, then

coaaa + cI)aiTà=0 (G.4)

«"*!« +fdTld 0 (G.5)

and

o>ar)a + CTTa 0. (G.6)

Since the corresponding null lines are supposed to be nonparallel we also have

*aTJa^0. (G.7)

Consider first the case that coaH-a/-^0. Then a point on Xy is given by equation
(F.8), and so all points of S£y are given by

xab'=^-^- + AiTa7rb AeIR (G.8)
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Take

A= TTTT—â ~- KCl.'))
ITT T]c7r TJjOJ 1TC

From the equations (G.4) and (G.5) it follows that A is real. For this particular
point x* on if?, define the spinor xa by

Xa ixabT|b. (G.10)

It is now a trivial exercise to show that

XaÌTa=e*a (G.ll)
and

Xar)a èar)a. (G. 12)

Since 7Ta and fja are independent, due to equation (G.7), we have

Xa èa- (G. 13)

Sox" also belongs to £ß2, and thus !£x and iE2 intersect.
Now consider the case where <oaira 0. We may choose (£a, r\à) from L^ such

that

TT-*a (G.14)

due to equation (G.7). From equation (F.10) it follows that !£x consists of the
points

xab=waT)b + wbrja + A7ra7rb. (G.15)

Take

A -iÇar)a. (G.16)

A is real according to equation (G.5). As in the previous case one shows that

r ix"br.b (°-17)

for this particular x* on Xy, and so if?, and iE2 intersect.

Appendix H. Proof of Theorem 2.3

Lemma 1. Lef L, and \L-, be two different projective null twistors. The plane
they span lies entirely in T° if and only if L, and l^ are orthogonal.

Proof. Let this plane be denoted by P. Each element of P has the form
Ly + L2 where L^L, and L^L^. If L, and L2 are orthogonal then (Li + L2, Lj-I-
L2) 0 and thus P lies entirely in T°. Now suppose that P lies in T° and let
L,eLi and L^I^. Then (L1 + L2,L1 + L2) (L1, L2) + (L2,L1) 0 and
i(Ly + iL2, Ly + iL2) (Ly, L2) - (L2, Ly) 0. So (Ly, L2) 0 and thus L, and L-, are
orthogonal.
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Lemma 2. Lef Ly (coa, ird) and L2 (£a, Tjd) be two linearly independent
twistors. If the plane they span does not intersect the plane Xà 0 then irar}d^O.

Proof. Let this plane be denoted by P. Elements of P are given by
(kcoa +p*Ha, kiTa+p-na) where A, fi.eC If kirà+p-qà=0 for some A,/xeC then
we must have kcoa +p£a =0 since P does not intersect the plane Xd — Ò. But then
A =p.=0 since Ly and L2 are linearly independent. So iTd and Tjd are linearly
independent. From Theorem 2 of Appendix D it now follows that Trar\d ^ 0.

We are now able to prove Theorem 2.3.
Let P be a plane in T° which does intersect the plane xd 0. Let Lt

(coa, 7rd) and L2 (£a, Tjd) be two linearly independent null twistors from P. Then
Lj and Lj are different and, according to Lemma 1, orthogonal. Lemma 2 says
that iraT)d^0 which means that the null lines corresponding to L! and L^ are
nonparallel. According to Theorem 2.2 these null lines meet. Let x* be the
intersection point. Then P(x|i) contains both Ly and L2, and thus P(x*) P.

Appendix I. Proof of Theorem 2.5

Suppose the null lines Xy and X2 correspond to the projective null twistors
Lj and L^. If Xy and X2 meet then there is a plane in T° which contains both Li
and L2. If Xy is equal to X2 then L, is equal to L^ and thus Lx • L^ 0. If Xy is not
equal to X2 then Lt is not equal to L2. Now Lx • L^ 0 according to lemma 1 of
Appendix H. If La • L^ 0 then the plane spanned by L! and \L-, lies in T °

according to Lemma 1 of Appendix H. So this plane is both an element of Xy and
of 22. So Xy and X2 intersect.

Appendix J. Proof of Theorem 3.1

Let L be a projective twistor and let x" bea point of M, with the restriction
that if L corresponds to a null line in M, x* does not lie on this null line. Let
(coa, 7ra)eL and define

r)" co-- ixabTTb (J.l)

C ixai,vb (J.2)

The righthandside of equation (J.l) is non-zero, due to the restriction made
above. The projective twistor X containing (£a, Tjd) is a projective null twistor
corresponding to a null line through x*, according to equation (J.2). Further we
have

warja + ttJ" cüafja - Ì7ràxabfjb cüafja - iirbxabfja r)ar]a= 0.

So L • X 0, and we have shown that at least one projective null twistor X exists
which determines a null line through x* and satisfies L • X 0. Now we show that
X is uniquely determined. Let X be any projective null twistor with the requested
properties, and let (£a, T)d)eX. Then equation (J.2) holds and since L-X 0 we
have

waTJa + 7rdr=0 (J.3)
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Substituting equation (J.2) into equation (J.3) gives

coar)a - .7rdxabf)b (coa - ixabTrb)r)a 0. (J.4)

It follows that

o)a-ixab7rb Af}a (J.5)

for some A eC with A^O. From the equations (J.5) and (J.2) it follows that X is

uniquely determined.

Appendix K

Theorem 1. Any null plane in Mc is either a a-plane or a ß-plane.

Proof. It is clear from the definitions that a null plane cannot be a a-plane
and a ß-plane at the same time. Let x*, x* and x* be three non collinear points of
a null plane in Mc. The null plane then consists of the points

x*=x* + k(xt-x*) + p(x2L-x*) k,peC (K.l)
From Theorem 8 of Appendix D it follows that

xf xSb + a"ßb (K.2)

xf xt+ ya8b (K.3)

ya8b-aaßi'=xad>b (K.4)

where none of the spinors aa, ßb, y", 8b, xa and cpb is equal to zero. Contracting
equation (K.4) with cpb gives

ya8bchb=aaßbcpb (K.5)

If both sides of this equation are zero, then 8bcpb ßbcpb =0, so Sb and ßb are
both proportional to cpb, and thus proportional to each other:

Sb - ußb forsomc i-cC (K.6)

Equation (K.l) may now be written as

xab xt+ {kaa + pvya}ßb (K.7)

It follows that the null plane is a a-plane. If both sides of equation (K.5) are
nonzero then

ya r-aa for some veC (K.8)

Equation (K.l) may now be written as

xab + xf + aa[kßb + pv8b]. (K.9)

It follows that the null plane is a ß-plane. This proves the theorem.

Theorem 2. If x* e Mc and y* e Mc are different and null separated there is a
unique a-plane which contains both x* and y*.
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Proof. Since x" - y" is a null vector we have from theorem 8 of appendix D

xab-yab Aa7Tb. (K.10)

Since x* and y* are different 7rb^0. The a-plane given by the points

{xab + paTTb | pa arbitrary} (K.ll)
contains x*(pa=(l) and y* (pa -Aa). Suppose there is a second a-plane
containing x* and y* consisting of the points

{xab + £V I ka arbitrary} (K.12)

Then

£V -Aa7rb (K.13)

for some spinor £a, since the a-plane contains y*. Contracting this equation with
T)b gives, since Aa^0, Txbr\b =0, so trb and Tjb are proportional, which means that
the a-planes are the same.

Appendix L. Proof of Theorem 3.4

Let P be a plane in T which does not intersect the plane Xä= 0- Let
Ly (coa, iTd) and L2= (|a, T)d) be two linearly independent twistors from P. Then
'"'"Vdi'O according to Lemma 2 of Appendix H. Define x* by

xab=-J-(a/V-rV') (L.1)
IT 17c

Then a>a ixabirb and £a ixabt]b, so LysP(x*) and L2eP(x*). It follows that
P(x*) P.

Appendix M. Relationship between a-planes and Robinson congruences

Lemma 1. Lef L (coa,irà) be a non-null twistor with ird^0. Lef A be the
corresponding a-plane in Mc and let R denote the corresponding Robinson congruence

of null lines in M. Then a ß-plane B which intersects both A and M intersects
M in a null line which belongs to R.

Proof. If xfteAnB then

a." ixab7rb (M.l)
and B consists of the points

{xSb+T,V I X* arbitrary} (M.2)

for some fixed t/". Since B intersects M there is a spinor £b such that

x?+r,aè xb0a + r)6ê (M.3)

according to Theorem 7 of Appendix D. Now BC\M consists of the points

{*ob+T|a£b + ATiafjb|Ae[R}. (M.4)
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This is a null line, and the corresponding projective null twistor X has a

representative X (cpa, rjd) where

4>a i(xSb+T)a£b)fjb (M.5)

We have to show that this null line belongs to R, i.e. that L • X 0. This will be
achieved if we show that

o>aVa + TTÂd 0 (M.6)

The equations (M.5) and (M.3) give

4~>& -i(xdb+fjà^)T,b -.(xbli + T,brW. -ixJV
From equation (M.l) it now follows that

1TaCp~a -ÌxSàT)b1Td -0)bTJb

and this proves equation (M.6) and thus the lemma.

Lemma 2. Let L (o>a, ird) be a non-null twistor with 7rd^ 0. Let A be th«

corresponding a-plane in Mc and let .R be the corresponding Robinson congru
enee. For any null line XeR the (unique) ß-plane B through X intersects A.

Proof. Suppose if is a null line of R corresponding to the projective twistot
X. Let x" bea point of X and let (£a, r\d) belong to X. Then X is given by the
points

{xab + AfjV|Ae!R}. (M.7)

The unique ß-plane B through X is given by the points

{xab + fjapb | pb arbitrary}. (M.8)

B intersects A if and only if there exists a spinor pb such that

<oa i(xab+fjapb)7rb. (M.9)

Since X belongs to R we have

COai)u +77J" =0 (M.10)

and since x* eX we have

r <xabT.b. (M.ll
Substituting equation (M.ll) into equation (M.10) gives, using xab xba

(coa-ixab7rb)fja=0. (M.12

It follows that

wa-ixabTrb Afja for some A eC (M.13

Choose pb such that

pb-iTb -iA. (M.l 4

Then i(xab + fjapb)-n-b JxabTrb + Afja wa, due to equation (M.13). So equatioi
(M.9) holds for this choice of pb, so A and B intersect.
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Appendix N

In this appendix we will show that equation (4.19) follows from the equations
(4.18), (4.26) and (4.27). Substituting equations (4.26) and (4.27) into equation
(4.19) gives

ab _ i ab „cd
a •

X 2a XcdX
<*> =i- iTTt Td TJl^b + ta^co"]. (N.l)

1 - acdx 4- iacda xefX '

Multiplying this expression with the denominator of the righthandside and using
equation (4.18) gives

- acjXcdxab7rb + iacaacdxCfX€/xab-n-b

-xabagbx8b7rb - |aabxcdxcdTTb + '2a^xcdxc\hx^Trb. (N.2)

This expression is proved if we prove the two following expressions:

acdacdxeixeixab 2aabxcaxcaaKhX8b (N.3)

2acaxcdxab 2xa(,af.hx*b + aabxcdxcd (N.4)

It is straightforward to verify that

aa6aRh+iakkakh8\ (N.5)

and with this equation (N.3) is proved immediately.
To prove equation (N.4) we start from the real antisymmetric tensor

a*x" — a"x*. According to Theorem 10 of Appendix D we can write the
corresponding spinor as

~abvcd „cd-.ab „dcTbd i „bdiac /\t r:\ax —ax e <p + e cp (N.6)

Here cf>ac is given by

^,QC=|[acpxa,b-aaVp] (N.7)

according to the proof of this theorem. From Theorem 7 of Appendix D it follows
that

4>bd 5[a„dxp6 - aPVl- (N.8)

Combining the equations (N.6), (N.7) and (N.8) and contracting with xcd gives

xcdxcdaab - xcdacdxab \eacxcd a/x»6 -^x^V
+ \eidxcda%xaó -x2e^xcda^x%. (N.9)

Raising and lowering indices gives

xcdxcdaab -xcdacàxab -|xc,aapdxpb + 2-xadapbxpd

-|xcbacpxap + èxcbaaiixcp. (N.10)

Noting that because of equation (N.5) the second and the fourth term of the
righthandside are both equal to \xcdxcdaab and that the first and the third term of
the righthandside are equal we obtain

èxcaxcVb - xcdacVb -xadapdxpb (N. 11)

which is identical to equation (N.4)
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