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Dielectric tensor operator of a nonuniformly
magnetized inhomogeneous plasma

By Th. Martin and J. Vaclavik

Centre de Recherches en Physique des Plasmas, Association
Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne,
21, av. des Bains-1007 Lausanne/Switzerland

Abstract. Differential equations for small amplitude electromagnetic perturbations in a hot
nonuniformly magnetized inhomogeneous plasma are derived from the Vlasov and Maxwell
equations. Assuming a slab geometry, a perturbation expansion to second order in the smallness of
the Larmor radius compared to characteristic scale-lengths of the plasma and fields is used. The
results are expressed in terms of an equivalent dielectric tensor operator. The latter is shown to
possess appropriate conservation properties.

1. Introduction

The propagation and absorption of waves in nonuniform plasmas is one of
the principal problems in the theory of radio-frequency heating. Until recently,
the equations applied to study the problem have usually been derived using the
Fourier transform of the dielectric tensor which is valid for hot uniform plasmas.
This procedure, however, is not unique and often leads to equations which do not
possess appropriate conservation properties. Moreover, the terms due to the
gradients of equilibrium quantities are missing in the equations. Therefore the
correct equations have to be derived from first principles. This problem was first
addressed by Berk and Dominguez [1] who have devised a variational method to
derive the differential equations in question. However, the explicit form of the

equations was given only in a number of limiting cases pertinent to the
ion-cyclotron range of frequency [2-5]. The purpose of this paper is to provide a

formulation of the dielectric tensor operator that can straightforwardly be

implemented in a numerical code covering all frequency ranges.
The operator will be derived from the Vlasov and Maxwell equations under

the following assumptions:

(1) The equilibrium quantities vary in the x direction which is perpendicular
to that of a given magnetic field.

(2) The magnitude of the wave field is small so that the Vlasov equation may
be linearized.

(3) The system possesses a small parameter ô p/L, where p is the Larmor



472 Th. Martin and J. Vaclavik H. P. A.

radius and L is a characteristic scale-length of the variation of the
equilibrium and wave field quantities in the directions perpendicular to the
static magnetic field.

(4) A perturbation method will be used to obtain the solution of the Vlasov
equations valid up to <52.

In Section 2, the solution of the linearized Vlasov equation is obtained to the
desired order. The dielectric tensor operator is then evaluated in Section 3

assuming a specific form of the equilibrium distribution function. The resulting
operator is shown to possess appropriate conservation properties.

2. Solution of the linearized Vlasov equation

The distribution function / for a species with charge q and mass m, of a

plasma interacting with an electromagnetic field E, B obeys the Vlasov equation

1
dt

+ Ö-vV + -[.e + -(öxB)].|Lo. (1)/ml c i dv

Assuming a small perturbation around an equilibrium we may split / into an
equilibrium part F and a fluctuating part /. The same is true for the magnetic
field. Thus, the linearized Vlasov equation reads

¦ 3 \- q ,„ -, 3f sr2 1.. X 3F
-+v-v)f+-!L(vxB0) J- H

dt I mc dv m
E + -(vxB)

c
<2>

dv

where B0 B0(x)ez.
The equilibrium distribution function satisfies

dF dF
"<7+(öcW(i"<c:)-- 0, (3)

dx dv

where coc(x) qBJmc is the local cyclotron frequency. The solution of (3) is an
arbitrary function of the integrals of motion: v± (v2 + v2)m, v2 and P

Vy + $x coc(x) dx'. For simplicity, we shall consider only F F(v, P), where
v (v\ + v2X2.

Let / be the Fourier transform of / with respect to the variables t, y, z. On
introducing cylindrical coordinates in velocity space (v±, a, vz) and eliminating B
via Faraday's law equation (2) is transformed into

coc^ + i(co - kzvz)f -^(L+e,a + L~e-a)f A, (A)
doc I

where L± d/dx ± ky and

A=-\ê + — [Dx(Vx|)])~. (5)ml icoL v n\ dv K '

To respect causality, co is assumed to have a small, positive, imaginary part. Since
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/ must be periodic in a we can write it as a Fourier series

/= S fneina
n — — oo

The same is true for A.
According to our assumptions we now expand F up to 0(<52)

F F(v, §) + VyF' + \v2yF",

where F' dF/dÇ and |(jc) $x coc(x') dx'. Inserting (7) into (5) we can separate
order by order and perform the Fourier series decomposition to obtain

(6)

(7)

A(o, aiÇ rv± + + iE{0 _ ôni)] + VzEz d j jmn lz J

4(i) 1 [<LH± (ILL [/£;c(<5n,_2 - ô„,2) + £y(2ó„,0 - Ô„>2 - ô„,_2)]
m l u \ 4

+ -vttaEï(ô„._1-ô„,1)) + F'£y(l-
/c7u;

CO
àn.OÏ >

(8)

(9)

^2)=i r^vx x [EÂ + }+i3E(ô _ ô }]
m l zu \ 8

+ |£A,o) + /yf"£v(l-^£)(^,-1-ô„,1)
/ AT*

vzkyEX0 + — (ô„A + ôni_x)(kyEx + i—1 (10)

where <5„ „. is Kronecker's delta and G dF/dv. In the expression (10) we have
omitted contributions of the harmonies that are not needed in subsequent
calculations.

Finally, substituting (6) into (4) and separating different orders we obtain a

recursion relation

fXii).
1

jQ_„ L 2
J-fT+fsl-l)(L+ttlV + L-m^+Atw], (11)

where Qn co — ncoc — kzvz.
For / 0, this relation simplifies to

/<ü,=
AT
iQ-„

and after a little algebra

/Ïcn. l
Q_

«(0) A(0)l»-i _¦- *»+i l+M(i)
«-„+.

+ L"
Q_

(12)

(13)
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4(0) a(0)\L+X^+L-^-)Q-J^ Q_„r'\2 Q—+i V ^ -t+2

4(0) 4(0)
+ L--^[L+4^ + L- n+2

-2

-t( 4(1) 4(1) \L*As=L + L.As±L)_iAm\m (i4)

3. Dielectric tensor operator

Having found the perturbed distribution function to the required order we
can calculate the perturbed current density according to

J--C

/- + -C

v±dvJL\ dvz{v±[(f1+f_l)ëx + ëyi(fx-f_x)] + 2vzf0êz}, (15)
0 J-oo

where the symbol Es denotes the sum over all the plasma species. To simplify
notation this symbol will be omitted in what follows. Once the current is known
the dielectric tensor operator e can be determined from the relation

« «• Am<->
£ /+ — a, (16)

co

where the conductivity tensor operator o is given by

]=o-E (17)

and / is the unit tensor.
In order to perform the velocity integration in equation (15) we need to

specify the equilibrium distribution function. For practical purposes we choose a

Maxwellian

where N(x) and T(x) are the density and temperature of species, respectively.
We now insert (18) into (8)-(10) and combine these with (12)-(14). On
substituting the resulting expressions into (15) we can easily evaluate the integrals
over vx. In fact, only a few u±-moments of the Maxwellian are involved. The
integration over vz, however, is more complicated. First, we have to commute
the operators L± with the denominators Q"1 in such a way that various products
of the latter can be decomposed in terms of irreducible fractions. Secondly, we
transform the derivatives dF/d^ into dF/dx. These operations are tedious and
lengthy but they allow us, at the same time, to cast the expressions into more
compact and symmetric form. When this is achieved, the ^-integration becomes
straightforward since all the integrals in question can be represented by a plasma
dispersion function and its derivatives. For the sake of brevity we shall use the
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notation

Z„=—^— Z'm (19)
co — ncoc

Zn=-Zn, (20)
m

where

Z-XiaP)
is the plasma dispersion function as defined by Shafranov [6], cop is the plasma
frequency of species and vT (2T/m)U2. We can then write the final form of the
dielectric tensor operator as follows:

The zero order contribution

/ y£> <> o \
e(0> ?°>- -iy<? y£> 0 (22)

\ 0 0 y£>/

y£> -^ (Zi + z_o +1, yg> - — (z, - z_,),

which is formally the same as in the case of a uniformly magnetized homogeneous
plasma.

The first order contribution

(23)

0 ißX2-r
dx

ß,X\ + YW,(i)
dx

i-rßscz ~rßdx dx

[(co - coc)Zx -(co + wc)Z_,],
2coct),K

[2coZs — (co — coc)Zx — (co + co,.)Z_x],
2coco..k

m0 0 -iv
(i) u0 0 (24)

yii* -kyßyz, Yylz -kyßxz + r7K - coZ-,).
coco,.kTdx
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The second order contribution

"(2):

d d
— cx —
dx xx dx il-\dx axyi + ßxy -Ìdx/

0

d d \
axydx + dxßxy)

d d
dxayydx 0

0 0
d d

dx zz dx

+ X,

a*x ^~7H (^2 + Z-2 - Zi - Z_0,
1_

2coco\

1

^~2^! (Z2-Z_2-2Z1 + 2Z_1),

1

avv —5 (Zz + Z_2 - 3Z, - 3Z_, + 4Zo),

[(co - coc)2Z, + (co + û)c)2Z_! - 2co2Z0],

"yy 2COC02

1

a„ 2coco2ck2

1

(25)

2*y(Z- + Z-i - 2Zo) + -f (Z, - Z_x) +-^ (Z_x - Z)xy 2coco2

Yxx 11 xy ^
y<2) -^ y<? o |,

0 0 yg'

1 d2

(26)

y.(2)_.
1 1 dcoc d I ta.,

Zx Z_!
2| (^ + Z-O + T—ir-l^ + Z-i-^r—2cococ l 2.ÌJC cür (ù: <£c

+
d2coc

~d~X

dco,

dx

— (Z, + Z_2 - Zx - Z_x) + /- (Z - Z_x)

— — (Z_x - Zj) + — (Zx + Z-X-Z2- Z_2)
coraûj an

+ L
d <io;r f d .ta, „L-(Z1-Z_1-Z2 + Z_2) + -C(2-(Z1 + Z_1)

+ — (4Z, - 4Z_2 + 5Z_x - 5Zx)| + -c fj- (Z + Z_x)
co,. J eu Wx

¦A:2 nr
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n. 1 fl d2
Z2 - Z_2 + — - —

co,, dx dx \ 2 2

+
1 I a, „ Z_x Z
-.z.-z_tata.--T +£<z'+z-»]

d2ft>c

dx2

|(Z,.Z.,-Z2-Zta.2) + 2f{£(Z,-Z.,,

+ — (2Zo - 3Zx - 3Z_x + 2Z, + 2Z_2)1 + — f— (Z, - Z_x)
ft>c J <w lax

dft)c d ill+^^+z-m-kyaxy'
m 1 f 3 d2 ,_ „ _

1 dcoc d .„ „y» 0—5 -;t5(Zx + z_x) +——c— (Zj + z_2 + iz,
2a>a)z L 2 dx a>r dx dx

+ |Z_x-4Z0) +
iii»-
(ix Leo,

1

(Z- + Zta_2 + Zx + Z_i - 4Zo)

+ £<z--z-)]+(f)
Z2-Z_2)\ + 2 —-J to ax

2r 3 d 4
-—(Z_1-Z1) + ^(2Z0

0] + 2-
ft)^ d

cocdco

l.A(L
cocdx \m
1 J IT

cor

rt)

co dx Vcordx \m
co,

+ ky

+ k

dx

.dx
(Z-X-Zx

1:<z_l)[+^> + z_l)+f£<z,-Z_,> — k2rv
n,yK*xxt

y(2) _J_{ü722 2cok2\co2
d2 - 1 dû>c d - 7

'

¦7-7.(0}p~ ^Zo) + — — (cuZq- (Mz)
dx F

co,, dx dx

-K î ich^ -^ - <«+^M+2£ Ö£^
+ 2 —-Zo

ft), ax
fc>„-

In order to avoid confusion it should be noted that the operator d/dx in the

expressions for ß, y(1) and y(2) operates only on the equilibrium quantities.
Equations (23) through (26) are the main result of this paper. As can be seen

from (23)-(26) the dielectric tensor operator is of a Hermitian form, i.e., exhibits
certain symmetry properties. On the other hand, it does not satisfy the Onsager
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reciprocity relation. For instance, y$(—B0) ^ Y$(B0). The reason for this
symmetry breaking is the fact that the unperturbed state of the system in
question, described by the distribution function F(v, P), is not a state of a

thermodynamical equilibrium, but only a steady state.
In the geometry considered the time averaged Poynting theorem may be

written in the form

f--èRe(*.»«-£to(*.e.£), (27)

where equations (16) and (17) have been used. Here S is the time averaged
x-component of the Poynting vector given by

„2
S tt Re (Ê* x B)x ¦£—

8.T öJZCO
Im

dx
lkytLx + e:

dEz

dx
(28)

Let us now dispense with the dissipative part of the plasma dispersion
functions. On making use of equations (23)-(26) we can then transform equation
(27) into

-(S + ST) 0, (29)

where

co
ST —-11m

8jt
a E* — +a F*^+F*UXX'-'X j ' UyylAy < La z a,

dEz

dx
+ ßyZEy

+ Re ar E*^-EL-1 X *->

dx

dE
y-Lf)+(ßXyEXßxX)Ex (30)

may be identified as an energy flux density due to plasma thermal motion.
Equation (29) implies that the total energy flux density 5 + ST is constant, a result
which was to be expected since e is Hermitian in the absence of dissipation.

4. Conclusion

We have derived the linear dielectric tensor operator for a hot nonuniformly
magnetized inhomogeneous plasma in a slab geometry. The tensor is valid up to
second order in p/L and explicitly takes into account the gradients of equilibrium
quantities. Its form is Hermitian and therefore suitable for implementation in a

numerical code based on a variational formulation.
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