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The stability of modulated fronts

By Pierre Collet

Ecole Polytechnique, Laboratoire de Physique Théorique, F-91128 Palaiseau
Cedex

and Jean-Pierre Eckmann

Université de Genève, Physique Théorique, CH-1211 Genève 4

(15. V. 1987)

Abstract. We study the stability of fourth order differential equations which are known to exhibit
modulated front solutions. We analyze these equations in the moving frame, and find a criterion for
marginal stability. For stationary (periodic) solutions we discuss the appearance of an Eckhaus
instability.

1. Introduction

The purpose of this paper is a stability analysis of oscillating front solutions
for the equation

d,U (€-(l + d2x)2)U-eU3, (1.1)

where U is a function of x and t, and e > 0. In the paper [CE] we showed that
equation (1.1) has propagating front solutions of the form

U(x, t) W(x, r}x - cr\2t), (1.2)

where n em > 0, and

W(xl,x2)=2J e'^'WXi), (1.3)
rceZ

with

HmW„(;c) 0, (1.4)
X—* oo

lim Wn(x) Sn. (1.5)
X—r — ac

Here, we have Sx ~ 3"1/2, so that (in particular) Wx is a nontrivial function. In
fact, for all practical purposes, we may think of W as

1

31
W(xx, x2)~-ÏF2(l(x2)eix* + l(x2)e-'**), (1.6)
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where / is the real solution of the amplitude equation

4l" + cl' + l-l3 0, (1.7)

with the conditions /(—°°) 1, l(+œ) 0, l(x) >0 for all x. The wavenumber co is

approximately equal to 1, and the speed of the front is nc where c is close to but
greater than 4.

In this paper, we study the stability of these solutions under infinitesimal
perturbations. Before we can start with this analysis, we need to explain in detail
what kind of stability we are considering. There is, in fact, an abundant literature
on this and related problems, and the word stability may have slightly different
meaning in different contexts. Our considerations come closest to, and overlap in

part, those of Sattinger [S], and of Dee and Langer [DL]. On the other hand,
what is new here is the rigorous treatment of the stability problem for a front
which leaves a pattern in the laboratory frame as it passes by.

The first observation is that a stability analysis for moving fronts is done
always with respect to some frame of reference moving at some speed c' which
may be different from the speed c with which the front itself propagates. In this
paper, we study stability in two frames:
-The frame moving with the front, i.e., c' c (Sections 1, 2),
-The laboratory frame, i.e., c' 0 (Section 3).

The argument by which one can see that stability depends on c' is based on
the fact that one may 'outrun' a growing instability by moving the point of
observation away from it fast enough. For example, if a solution grows, in the
laboratory frame, like

eQ'~YX, (1.8)

with Q>0 then in a frame moving with speed c to the right, we will see an
exponential of the form

ea,-y(x+ct) (19)

and this function tends, for fixed x, to zero as t—* °° if c > Q/y. Thus the function
(1.8) looks unstable in any frame moving with speed slower than Q/y, and it
looks stable in any frame for which c > Q/y.

A second aspect of instability (or stability) is the choice of the space of
allowed perturbations. For example, if we choose an empty space of perturbations,

the front is stable, and, more generally, a small space of perturbations leads
to a more stable situation than a large one. We want to look at this problem in
more detail, by studying the stability in the frame moving with the front.
Although this problem has already been discussed in detail in [S] and in [DL], we
repeat its discussion here, because it is one of the central issues in any stability
analysis. The confusing fact is that in a sufficiently large function space the front
solutions are always unstable, no matter how 'small' the perturbation is. We
illustrate this paradox with the equation of Kolmogoroff, Petrovsky and
Piscounoff,

d,u d2xu + u-u3. (1.10)
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It is well known, see e.g. [AW] for an exposition, that for all c > 2, the equation
(1.10) has a travelling wave solution of the form u(x, t) vc(x — ct), with
vc(+œ) 0, i»c(-°°) 1, and vc > 0. These solutions behave (for c > 2) near +°°
like

vc(z)~e-a^, (1.11)

where
c-(c2- 4)m

ft(c)=
{

2
}

¦ (1.12)

Consider now the front vc for a given c. Then for every c' (close to c), vc - vc, is

a function which goes to zero at infinity. However, the difference

uc(x, t) - uc.(x, t)

(where uc(x, t) vc(x — ct) and uc(x, t) vc(x — c't)) grows as a function of
time. This is easily seen, since, in the frame y =x + ct moving with speed c,

uc(y, t) - uc,(y, t) vc(x) - vc.(x + (c - c')t).

This quantity does not tend to zero as t—» +°c. In other words, very small
perturbations of the travelling wave solution lead to an instability: All solutions
are unstable in this sense.

The preceding discussion shows that stability is not a natural requirement for
the analysis of front solutions, since they are all unstable. Thus, another kind of
stability criterion is needed, and it is based on the observation that the instability
is caused by a change of speed of the front. In fact, it is this instability which
seems to be relevant from a physical point of view, and we want to minimize it. It
follows from the previous discussion that this kind of instability will be weakest
when the change of speed caused by a perturbation will be smallest. We thus
claim that the relevant quantity for stability analysis is the derivative

dc 1

dQ dQ(c)
dc

In our example, we get

dQ(c) 1 c

dc 2 (c2-4Y12'

and this tends to — °° when c—>2. Therefore, dc/dQ tends to zero and thus the
front for c 2 is least unstable to variations in the exponential decay rate. In
accordance with common usage, we call c 2 the speed for marginal instability.

In the example of the equation (1.10) discussed above, we see that the
stability analysis is described by the function Q(c), which relates the decay of the
front to the speed c. We shall find a similar function Q in the case of oscillating
front solutions. The relation between this function and the spectrum of the
perturbations will be more delicate, because Q is not real, and this problem will
be discussed in detail in Section 2. We study the equation (1.1) in a coordinate
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system moving with speed nc, i.e., with the speed of the front. For this purpose,
it is useful to change coordinates in a way which differs from equation (1.2),
namely

[/(jc, t) V(nx - n2ct, t). (1.13)

In the new frame, equation (1.1) is transformed to

d2V P(-iridx)V-eV3, (1.14)

where dx and d2 are the derivatives with respect to the first and second argument
of V, respectively, and

P(q) e-(l-q2)2 + iricq. (1.15)

The front solution equations (1.2)—(1.3) in the 'f-frame will be called V0 and it
takes the form

V0 w(- + net, ç) y WX)e"on^">)+r,c,). (1.16)
\-1 I neZ

The equation for the evolution of an infinitesimal perturbation of V0 is then
obtained by linearizing equation (1.14) at this solution. The corresponding
equation for such a perturbation a is therefore

d2aU, t) P(-irjdx)a(K:, t) - 3ear(Ç, t)( £ 1Vn(£)e<~<«A'>+'«>Y\ (1.17)
Wz i

This is a linear differential equation with periodic potential in t. We are interested
in the time evolution of a, but to eliminate the time dependence, we proceed
with the following (well-known) manipulations. The equation (1.17) is of the
form

d,a, A,a„ (1-18)

where

a,(0 a(l;,t), (1.19)

and

A, P(-it]dx) - 3e( 2 W„(ty<u"((C/',,+'iC')) (1.20)
Wz /

Clearly,

A, A,+mT, (L21)

for all m e Z, with T 2jt/(cor]c). We denote by Q(t, t') the operator solution of
equation (1.18), i.e., for any (eR and any (>(', we find for given ar that a,
equals

a, Q(t, t')a,,. (1.22)

By equation (1.21), we find

Q(t + kT,t' + kT) Q(t,t'), (1.23)
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for all k e Z, and

Q(f + kT, t') Q(t + T, t)kQ(t, t'), (1.24)

for all k>0, keZ and t>t'. Assuming Q(t, t') is uniformly bounded for
0 < t — t' < T, we see that if the spectral radius of Q(T, 0) is less than one, then

lim or, 0 (1.25)
t—*-e

in norm. In practice, this will mean that we shall study the Fourier transform in
time of a, by which the time dependence is eliminated.

We now informally describe the kind of perturbations we consider. We shall
study the behavior of cr's which are bounded (and approximately constant) in the
bulk behind the front (i.e., in the region £<0) and which decay like e~st for
positive £. For each s > 0, we study the spectrum of the evolution operator A„
when acting on functions of this type. Because of the intrinsic instability of
propagating fronts, as explained before, we expect, and find, that the spectrum
lies in the closed left half-plane, and in fact contains at least one point of the
imaginary axis. The marginal stability is now defined as follows: We shall find a

function Q(q, s, c) which describes the location of the spectrum of A, acting on
perturbations decaying like e~sx and oscillating like eiqx. Q is really nothing else
than the linear differential operator in (1.17), for a bulk with frequency co:

Q(q, s, c) P(ins + q)± icone,

where P was defined in equation (1.15). (The spectrum is really contained in the
union of the sets described by the two choices of sign.) Marginal stability amounts
to saying that the spectrum lies in the closed left half-plane. This means that the

range of Q must be contained in the closed left half-plane. Thus, for every point
qc, yc for which

Re Q(qc, yc, c) 0, (1.26)

we must have

dqReQ(qc, yc,c) 0, (1.27)

and
d2qRcQ(qc,yc,c)^0. (1.28)

We now impose the additional condition that the space in which we consider the

perturbations corresponds to the front solution. This means that the decay rate
which we allow is exactly that of the front solution, i.e., qc and yc are exactly the

parameters describing a front solution. In other words, qc, yc, c is a zero of Q:

Im Q(qc, yc,c) 0. (1.29)

But we also want to express the condition of marginality: It says that, for the
front itself, the variation of the decay rate as a function of c is maximal (in fact,
infinite). Since we have Re Q(qc, yc, c) 0, we find by differentiation,

dq Re Q(qc, yc, c)dcqc + dY Re Q(qc, yc, c)dcyc + dc Re Q(qc, yc, c) 0.
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The first term is zero by (1.26). Assuming that dc Re Q(qc, yc, c) #0, we see that
a necessary condition for dcy ±°° is

dYReQ(qc,yc,c) 0. (1.30)

We shall therefore say that marginality follows from (1.26)-(1.30). (In fact, the
condition (1.30) is seen to be also sufficient, by explicit calculation.)

In Section 2 we fill in the mathematical details of the above discussion. In
Section 3, we deal with a related subject, namely the stability of the stationary
solutions to (1.1) in the laboratory frame. The stability analysis for this problem is

rather straightforward, we include it here because it has never been done
rigorously, and because we want to be sure that the propagating front (1.1) leads
to a stable or marginal bulk. In perturbation theory, the spectrum of periodic
excitations can be studied very easily, and we will do this in the calculations
leading to (3.67). One sees the emergence of an instability for certain
wavelengths of the perturbation: This is known as the Eckhaus instability [E]. The
hard, and we believe, new part of the argument is that we have to show the
applicability of perturbation theory. In fact, while perturbation theory works fine
for isolated eigenvalues, we have in the problem (1.1) two eigenvalues close to
each other, namely at a distance of order em. We give a priori bounds on the
position, and hence the separation of these eigenvalues, and this allows us to
prove the validity of perturbation theory.

2. Stability analysis of the front solution

As explained in the introduction, we study now the Fourier transform in time
of the perturbation a. We write

a(t;,t)=Z a^Oe'"""*", (2.1)
«.z

and then we get

iconrìcàn P(-irìdt)an-3e £ ^(^(^''"^"^a,. (2.2)
p+q+r=n

To eliminate the phases, we set now

ßn(C) &n(t,)e-l'°ni'\ (2.3)

for n e Z. The equation (2.2) becomes now, for each n e Z,

ioonricßn P(-irid)ßn-3t12 £ WpWqßr. (2.4)
p+q + r—n

The system in equation (2.4) is coupled, and we consider first the decoupled
problem which is obtained by replacing the sum in equation (2.4) by a sum over

p —q. Thus we study the operators

Xn P(-ind + con) - Fn(x) - iconnc, (2.5)
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where the multiplication operator Fn is given by

Fn(x) 3r12^\Wp(z)\2, (2.6)
peZ

since W-p is the complex conjugate of Wp. For further use, we note that Fn is

independent of n and is a positive, bounded function. We thus define

F(x) 3r,2Z\Wp(z)\2, (2.7)
peZ

and we note from [CE], equations 3.4, 2.7, that

lim F(x) 2ri2(l + o(r})), (2.8)r \x) — ..iT''
x—y—co

and

limF(_r) 0. (2.9)
X—r<X>

In the introduction, we have argued that we want to analyze the stability of
the solution relative to various rates of decay of the perturbation. We now specify
the function spaces with which we describe these decays. These spaces should
contain all functions which decay like the front itself, i.e., a possible choice would
be

l2(r,(2 |rç,(z)|2) 'dz). (2.10)

In the forthcoming calculations, we choose an equivalent formulation, based on
the observation that there is a y such that, up to polynomial corrections,

/ N. 1/2

(2 \WP(z)\2) =0(e~n, (2.11)

as *—» +oo; while near — °° the above sum tends to a constant. Thus we define a
function A e ^ as follows:

A, ^ fO, forjc<-S,
Mx) \ ' ' 2.12

Ix, for x > S,

where 5 is a (large but) finite constant, which will be chosen later. We also
require that A(x) be a monotone function of x. The spaces on which we consider
Xn are

H, - L2(R, <t>7\x) dx), (2.13)
where

<_>,(*) e~sAM. (2.14)

It is now easy to see that the operator Xn acting on Hs is conjugate to an operator
Yns on L2(R, dx), where

Yn.s <&7lX„®s P(-irid + con + insA'(x)) - F(x) - iconnc. (2.15)
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We want to study the spectrum of Yns. Since Y„s does not have constant
coefficients, we use methods from pseudo-differential calculus (see e.g. [H]) to
compute this spectrum. We thus define

D -it]d, (2.16)

and we consider the functions

Vn(q, x) P(q + con + insA'(x)) - F(x) — icontjc. (2.17)

With this definition, we have

Yn,s Vn(D,x), (2.18)

with the convention

(D + g(x))k (D+g(x))---(D+g(x)). (2.19)
k times

If P„(D, x) had constant coefficients, i.e., P„(D, x) P„(D, 0), then the spectrum
of P„(D, x) would be a subset of the range of s?„(q, 0) when q varies in R. Our
strategy consists in viewing \?n(q, x) as a perturbation of the sum of two operators
which have essentially constant coefficients. One of them is constant at +°° and
describes the stability ahead of the front and the other is constant at — °° and is

thus related to the stability in the bulk. We shall see that the stability is first lost
in the front, so that the overall stability of the problem is determined by the
analysis in the front. This will make precise arguments such as the one presented
in [DL].

We now define

ip(x) (A'(x))y2. (2.20)

Note that by the definition (2.12) of A, we find that

N
ro, foTx<-s,«'Hi, for*>5. (2-21)

Therefore ^ is a T version of a 0-function. Note that, for all m>l,
ipm(x) - xp(x) is a ^"-function which is bounded by 1 and has support in [-S, S].
It follows that for all m =: 1, m e N,

(A'(x))m i/* (x) + <pm(x), (2.22)

where 4>m is a ^"-function with support in [-5, 5]. Consider now the operator
(D + insA'(x))m for m sii.

Lemma 2.1. The operators (D + irtsA'(x))m have a decomposition

(D + ir)sA'(x))m V(D + ir}s)mil) + xDmt + Qms, (2.23)
where

t(x) (1 - ^0OT2, (2.24)
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and Qms is of the form
m-l

Qm, 2 qn-XxW, (2.25)
;=0

with qmj,s « ^"-function with support in [—S, S].

Proof. The proof of equation (2.23) is by induction. We first prove an

auxiliary identity, equations (2.26), (2.28) below. We start with m I. Then we
have, by equation (2.20),

D - insA' D + instp2 tp2(D - it)s) + (1 - ip2)D. (2.26)

We shall define recursively operators Rms, and we set R0s 0. For m > 1, we use

inductively equation (2.26) or (2.28). Then we can write

(D + insA')m (D + ir]s\p2)(D + irìSìp2)"1'1

(D + ir,sy2)(y2(D + irisX' + (1 - y2)D"-1 + Rm.x,s)

y2D(D + ir)s)m-1 + [D, ip2](D + ir]s)m-x

+ (1 - \p2)DDm~x + [D, 1 - xp2]Dm'' + DRm^x,s

+ ir]s%p2(D + irjs)m'x + ins(il>4 - xp2)(D + iris)1"'1

+ ir)srp2(l - ip2)Dm~ì + ir]Sip2Rm_XiS. (2.27)

Here, [•, •] denotes the commutator. We combine all terms except the first, third
and sixth in equation (2.27) into Rms. It is easy to see inductively that they form
a differential operator of order m-l whose coefficients are (€x with support in
[-S, $]. Combining the three special terms, we find

(D + insA')m xp2(D + ir)s)m + (1 - rp2)Dm + Rms. (2.28)

Note now that tp2 and 1 - ip2 are nonnegative, so that we can define their
(nonnegative) square roots. This leads to

(D + insA')"1 ip(D + ins)mip + (1 - ^2)1/2Dm(l - xp2)V2 + Rm,s

+ ip[ip, (D + ir!s)m] + (1 - i/>2)1/2[(l - i/>2)1/2, Dm]

tp(D + ir)s)mip + (1 - ip2)mDm(\ - ip2)1'2 + Qm,s, (2.29)

and we see that Qms has the required properties. The proof of Lemma 2.1 is

complete.
We can now consider the operators P„.

Proposition 2.2. The operators P„(D, x) have a decomposition

Pn(D, x) ip(x)(P(D + con+ ins) - F(x))xp(x)
+ r(x)(P(D + con) - F(x))r(x)
+ Kn v - iconnc, (2.30)

where Kns is a differential operator of order 3 with coefficients in ^"[-5, S].
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Proof This is immediate from (2.17) and from Lemma 2.1.

We next view Kns — iconnc as a perturbation and we study the two other terms
in equation (2.30). We study their spectrum as a function of their numerical
range, cf. Kato [K]. The numerical range O of an operator A on a domain D(A)
in Hilbert space is defined by

e(A) {(u,Au)\ueD(A),\\u\\ l).
The following facts which are an immediate consequence of the definition will be
useful later.

(a) The numerical range of any operator is a convex set ([S], p. 131).
(b) e(A + B)œ e(A) + Q(B).
(c) If xp is (the operator of multiplication by) a non-negative function, and

0<xp<l then 0(i/>_4i/;)çUota-A-taiA0(-4). The addition and multiplication
above are for sets.

(d) If P is a polynomial, then @(P(-idx)) ç convex hull (P(R)). (Use
Fourier transform.)

(e) If F is a real function and F the corresponding multiplication operator,
then

0(F) [inf F, sup F].

We begin by considering the operators

Z„s \pP(D + con + ins)tp - ipFxp. (2.31)

Using the simple facts about 0, we get

@(P(D + con + ins)) convex hull {P(q + con + ir]s) e C | q e R}. (2.32)

Thus,

0(Z„,) ç convex hull (J AP(R + irjs) + &(-tp(F + iconnc)\p) DS. (2.33)
OsA-Sl

Clearly, the set Ds is independent of n, but not of s. We define bs:

bs sup Re z. (2.34)
zeD,

Lemma 2.3. We have

bs max (0, if + (4s - crfs + 8r/V). (2.35)

Before we prove Lemma 2.3, we state the analogous result for the second

term in equation (2.30). This term is equal to

Z rP(D + con)r - rFr, (2.36)

where t (1 — xp2)112. We observe that

0(Z)ç U convex hull AF(R) + 0(-tFt)^D. (2.37)
O-EAsl
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We define

b sup Re z, (2.38)

and the result corresponding to Lemma 2.3 is

Lemma 2.4. We have

b r12-2ri2 + Cs, (2.39)

where Cs is a positive number which tends to zero as 5 -^ °°.

Proof of Lemma 2.3 and Lemma 2.4. If we consider the contributions from
F to bs or b, then we see that they are given by

max — F(x) 0,
x>S

max - F(x) -F(-oo) + max (F(-°°) - F(x)). (2.40)
xs-S _<-S

We next analyze the common polynomial part

xs sup Re P(q + con + irjs). (2.41)
qeR

as a function of s. Clearly, the result does not depend on con. Recall the definition

P(z) rì2-(\-z2)2 + irìcz. (2.42)

A simple calculation shows that

xs sup {-(1 - t + n2s2)2 + 4r\2s2t2 - n2cs). (2.43)
(eR

The extremum of this quantity lies at

f2=l + 3r?y, (2.44)

so that the extremum xs is given by

xs V2 + (4s - c)r]2s + 8rjV. (2.45)

The assertion of the lemmas follows now from the properties equations (2.8),
(2.9) of F

By choosing 5 sufficiently large, we see that Lemma 2.3 and Lemma 2.4

imply

Lemma 2.5. For every rj>0 and every s s 0 we have

b<bs, (2.46)

if S is sufficiently large.

This means that the instability of the front is stronger than that of the bulk.
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Since the operators Z„s and Z are densely defined, closeable, and have a

common dense domain, (being fourth order ordinary differential operators with
constant coefficients plus a potential) we see that the sum Z„,s + Z is densely
defined and

®(Zn,s + Z)çz G(ZX + 0(Z) ^Ds + D. (2.47)

By Lemma 2.5, we see that for sufficiently large 5,

sup Rez<bs. (2.48)
zeO(Z-,j+Z)

We now relate bs to the spectrum of Z„tS + Z. Some care is needed in the
discussion of these matters, since different authors use different conventions. We
follow here the conventions of Kato [K].

Definition 2.6. The essential spectrum Ee of an operator T is the set of £ e C

for which either

R(T — Ç) is not closed,
or

R(T - Ç) is closed but nul (T - £) def (T - Ç) oo.

Here, R denotes the range, nul is the dimension of the null space, def is the
dimension of the null space of the adjoint. According to Problem 3.6 in Section
V.3.2 of Kato [K], the essential spectrum of an operator A is a subset of the
closure of ©(A). The preceding discussion is not optimal when bs 0 but
us t]2 + (4s - c)r}2s + 817V is negative, because (2.35) is not optimal. By
subtracting us from Y„,s, and going through the proof, we find

Proposition 2.7. For every s > 0, the essential spectrum of Z„ s + Z — iconnc is
contained in the halfplane Rez^us.

Note now that us can be computed from the polynomial

Q(z) P(z) — iconnc

n2 - (1 - z2)2 + incz - iconrjc. (2.49)

The points of maximal Re w. are given by the extrema of Re Q, cf. (2.41)-(2.45).
We can now easily determine the conditions for marginal stability, which can be
viewed as the point where the variation of us is minimal. As we have explained in
the introduction, the point of marginality z0 is determined by the following
conditions:

Reß(zo) 0, (2.50)

3ZoReß(z0) 0, (2.51)

with the additional condition

^Reß(zo)<0. (2.52)

But we want to choose also the imaginary part of z0, i.e., s, in such a way that the
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front solution decays like e~sx. In other words, z0 must be chosen in such a way
that not only (2.50) holds, but also

lmß(zb) 0. (2.53)

Note now that z0 should really be written as q0 + ir]s0 — <7o + it\y, where y is the
decay rate of the front described earlier. We now sketch the main steps of the
simple calculation to determine z0. If we fix y, then we see from (2.51) that q0
must satisfy either qQ 0, or

X~^- (2.54,

The first solution leads to a critical point whose real part is more negative than
that of the second, and thus marginality is dictated by (2.54). Next we see that
(2.50) leads to

1 - cy + 8rç2y4 + 4y2 0, (2.55)

while (2.53) leads to

-cnco+cri2qo-8r)Yqo 0 (2.56)
i.e.,

<7o —Ta o 2 4/ x • (2-57)
Jj(l-8r?zy7c)

The derivative (2.51), with respect to y leads to

-c + 8y + 32?j2y3 0. (2.58)

Solving these equations perturbatively, we find the solutions (including the first
non-trivial corrections in 57),

to2 1 + rj2/4,

c 4 + r/2, (2.59)

y i-3ij2/8.
We next discuss the spectrum of Yns. The reader should realize that up to

now, we have only analyzed the essential spectrum of Zns + Z — iconrjc.
Intuitively, the numerical range of an operator corresponds to its continuous
spectrum. Furthermore, a perturbation, if it is relatively compact, (in our case

Kns cf. (2.30)) should only change the discrete spectrum, which can only
accumulate at the continuous spectrum. We now make this argument more
precise.

Definition 2.8. We denote by A(F) the complement of the closure of 0(F).

Theorem V.3.2 in [K] says that if T is closable then for £ e A(F), T - % has
closed range, and nul (T - Ç) 0. Assume now t, e A(F), D A(F*), where
overbars denote complex conjugates. Then def (T — £) nul (T* — £) 0> since

l e A(T*). By the second half of Theorem V.3.2, this implies A(T) D A(F*) is in
the resolvent set of T and T has no spectrum there.
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We can apply this discussion to the operators Zs<n-\-Z and we see that this
sum has no spectrum in the open right-hand plane if us ^ 0. In fact, this is an 'if
and only if statement since it is easy to construct approximate eigenvectors for
any value with real part below us.

Our next task is to analyze the spectrum of Yns. Note that the operator
Zs „ + Z has a constant fourth order term (since ip2 + r2 1). By construction,
the perturbing operator (KniS — iconnc) is the sum of a third order differential
operator whose coefficients have compact support, and of a constant piece, which
is purely imaginary. Therefore, we can apply Theorem IV.5.35 in [K], which says
that the essential spectrum is converved under relatively compact perturbations.
The imaginary constant just pushes the spectrum in the imaginary direction.
Hence we have shown the following

Theorem 2.9. The operators Xns have, for s close to yc, an essential spectrum
in the closed half-space Re z < us.

The above bound is saturated, i.e., one can find spectrum arbitrarily close to
the line Rez us.

We finally have to deal with the problem that there are several sectors, i.e.,
the operator acts on the direct sum of spaces indexed by n. This operator is

almost, but not quite, a direct sum. The only nondiagonal terms are of the form
(cf. (2.4))

(Nnß)n -3n2 2 WpWqßr. (2.60)
p+q+r=n

r¥=n

These terms go faster to zero at +°o than the term F(x) of (2.7), and at —oo they
tend to a constant (very fast) which is of order o(ri2). If we equip the space with a

norm,

n=oo i

Nl- 2 €-»*¦( \an(x)\2<t>-2(x)dx)
n — oo \J /

then we see that the discussion goes through as before. Hence, Theorem 2.9
implies the

Theorem 2.10. For s sufficiently close to yc, the essential spectrum of {Xn}„eN
in the space Hs lies in the set

Re z < rj2 + (4s - c)r\2s + 8r/V.

This set is saturated, i. e., there is a point in the spectrum for which equality holds.

Furthermore, up to terms of higher order, the spectrum is marginal in the



Vol. 60, 1987 The stability of modulated fronts 983

sense of our earlier discussion, for

co2 1 + n2/4,

c 4 + r,2, (2.61)

s i- 3»72/8.

Here, s is equal to the decay rate of the front.

3. Stability of stationary solutions

In this section, we study the stability of stationary solutions. A stationary
solution is a solution U of equation (1.1) which is independent of t. In [CE] we
have shown that there are non-trivial stationary solutions: Given K>0, there is,
for all e > 0, and all co satisfying

0 < (1 - w2)2 < .Ke (3.1)

a solution U(x, t) S(x) of equation (1.1) which is of the form

S(x) 2 SXœx, with S_„ 5„ e R. (3.2)

(3.3)

(3.4)

(3.5)

¦1.

Remark. In [CE], we have proved less than the properties stated above. In
fact we restricted (1 - m2)2 < û(e2), and we gave bounds which are less good than
equation (3.5). It is, however, easy to see that straightforward modifications of
the proof lead to these improved bounds (which we did not need in [CE], because

of restrictions on co having to do with the existence problem for the front).
The perturbations of the stationary solutions will be considered in the

laboratory frame. Thus, the equation for their evolution takes the form

3,a(x, t) ea(x, t) - (1 + d2x)2a(x, t) - 3eS(x)2a(x, t). (3.6)

This is again a problem with periodic potential, but this time the periodicity is in

x, not in t as in equation (1.17). According to the theory of Bloch waves, (see

e.g. [RS, Vol IV]), we have to look for eigenfunctions of the r.h.s. operator in

«sZ

The Sn depend on co. We have

Sx r/2 + 0(e4'5),

with T satisfying

(1 - co2)2 e(l - 3T2/4),

'0 if n is even,

s„ <

0(e) if |«| 3,

6(e2) if j«| 5,

^(X5) if n is odd and \n
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equation (3.5) which are of the form

a(x) ß(x)ei«x, (3.7)

with ß a 2^/co-periodic function and — co/2 < k < co/2. This leads to the study of
the spectrum of the operators AK, given by

AKß(x) eß(x) - (1 + (ìk + dx)2)2ß(x) - 3eSm(x)2ß(x). (3.8)

and acting on ß e L2([0, 2ji/co], dx).

Theorem 3.1. For every co satisfying

|o;2-l|<(e/3)1/2, (3.9)

and for every k satisfying — co/2<K<co/2the spectrum ofAK lies in the closed left
half-plane. On the other hand, if the inequality (3.9) is reversed, the spectrum of
AK intersects the right half-plane for some k, (and sufficiently small e), i.e., the

stationary solution exhibits a so-called Eckhaus instability [E].

Proof. The proof will be in two parts. We begin by showing the absence of
spectrum in certain regions of the k, co-plane (Theorem 3.2). In particular, we
shall see that for small k there are two isolated eigenvalues close to zero. We
shall then use perturbation theory to show that these two eigenvalues are
negative.

We want to solve the equation

(AK-k)ß u (3.10)

when u e L2([0, 2n/co], dx), i.e., we want to show that equation (3.10) has a

unique solution ß e L2([0, 2ji/co], dx). We decompose ß and u into their Fourier
components,

ß(x)=\yjßxnx- (3.11)
neZ

The equation (3.10) is then equivalent to the system of equations, defined for
n eZ,

eßn - (1 + (ìk + icon)2)2ßn - kßn - 3e £ SpSqß„ 3e £ SpSqßr + un.
p+q=0 p+qj=0

P+q^n (3.12)
Since Sp 0 for even p, the system equation (3.12) decouples over the even and
odd subspaces in n.

It is useful to introduce the notation

Tm 3 2 SpSq. (3.13)
p + q=m

Note that Tm T_m) and that Tm 0 when m is odd. Furthermore, by equation
(3.5),

r0-3-2(r/2)2-2 (3.14)
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>2k

and

7. 71, 1. (3.15)

Theorem 3.2. Let a < 3~V2, and assume that \co2 - 1| -£ ae1'2. For sufficiently
small e (depending on a), the operator Am — A has a bounded inverse on l2for A in
the region D of Fig. 1.

Proof. Our basic strategy is to invert the operator on the l.h.s. of equation
(3.12) and to view the problem equation (3.10) as a contraction problem. Several
modifications of this basic strategy will be needed, and in particular, we need to
consider with special care the sectors n +1, -1 and n 0, ±2.

We define the multiplication operators Kn by

K„ €-(1-(k + con)2)2 - A - e .To,

and the (convolution) operators Bnj, by

ß'f»BnJ(ß) 3 E W,.

(3.16)

(3.17)
l/,+<7l=7

p-t-q+r—n

With these notations, equation (3.12) takes the form

FCißn eBnA(ß) + "n. (3.18)

We begin by giving bounds on B„,-. There is a constant L such that for all

j s 0, one has

I4../(/8)I=sL||/5||2. (3.19)
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This follows from

\BnJ(ß)\ < 0(1) 2 1/3-1 2 e^""^'"2^
r p+q=n—r

< 0(1) 2 |/5r| e1""'"5
r

^0(l)\\ß\\2. (3.20)

Equation (3.5) implies that if j > 3, then

\BnJ(ß)\<Le\\ß\\2. (3.21)

We begin now the detailed study of equation (3.18).

Case \n\ s 3. In this case, we write equation (3.18) as

ßn eK-*BnA(ß) + KlUn, (3.22)

and we define the map U„ by

U„(ß) eK~lBn,x(ß) + K~X (3.23)

Since |jc| ^ co/2 and 7^, > 0, we see that the operator -K„ is bounded below by

-Kn^Cn4,
for all A -=- —1. Hence,

|tf-1«ll|-SC-,ii-4||!.||2, (3.24)
and

|6^-XiG8)|^0(en-4)||j8||2> (3.25)

so that
/ x 1/2

2 \€K-lBnil(ß)\2) ^0(e)\\ß\\2. (3.26)

Thus, the homogeneous part of Un is a contraction when |/i| >3.

Case |rt|=2 or « 0. For |n| 2, resp. rt 0, the operators K„ take the
form

K±2=e-(l-(K±2co)2)2-eTo-r\, (3.27)

K0=e-(l-K2)2-eTo-L (3.28)

Since |*:| < co/2, we see that for n -2, 0, 2, one has

IK-'uJ^O^Wuh. (3.29)

Case |rt| 1. This is really the interesting case, because the linear operator
has spectrum very close to zero. Here we study the coupled system of equations,
which we first rewrite in the form

Kxßx - eT2ß_x eF_2j33 + eBUA(ß) + ux,

-eT_2ßx + K-Xß_x eT2ß_3 + eB.XA(ß) + u_x.



In matrix notation, this is then written as

<y X2ßA
\T2ßJ <:Äß)X

UßV
/ "l
\u_x

with

M=( K,
-eT

eT2\

-2 Kj'
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(3.31)

(3.32)

Instead of solving equation (3.31), we use the identity equation (3.22), and we
formulate the problem as

ßj em \T2KZieB.3,m> \B_XA(ß)

+ M-l(Ul + K*lu3
\ux + K-\u_3

m eMx(ß) + M[u. (3.33)

In this way, we shall gain a factor e in the operator Mx. We view the r.h.s. of
equation (3.33) as a map from l2 to itself. To control this map, we first study the
inverse of M. For sufficiently small k, the eigenvalues of M are

-«.r0 + e - (1 - co2)2 -X±eT2 + G(k2)

-e±e-(l- co2)2 - A + G(k2) + o(e) X. (3.34)

If we consider the '+' sign, then we see that \X\ > e/4, provided

|A + (1 - (w2)2| > e/2 and \K\<eU2k0, (3.35)

with k0 sufficiently small. If we consider the '-' sign, then we see that \X\ > e/4,
provided

|A|>e/2 and |k| < e1/2Â.0, (3.36)

with kQ sufficiently small. Thus, if (3.35) and (3.36) hold, then HM-1!! <_2/e. This
means that equation (3.33) is defined in this case. Note now that the first two
terms on the r.h.s. of equation (3.33) are maps whose norms are bounded (using
(3.19) and (3.21)) by

e ¦ (2/e) ¦ G(\)eL + e ¦ (2/e) ¦ Ü(l)eL. (3.37)

and this is smaller than 1 if e is sufficiently small. Hence they are contractions and
equation (3.33) has a unique solution in this case. We have therefore shown:
There is no spectrum in the complement of the regions described by (3.35) and
(3.36), with the additional restriction (made above) that A a. -1. (In fact, the next
eigenvalue is near to -64.)

We next consider the case ey2kx > \k\ > ey2k0, where the constant kx will be
fixed later. It is useful to parametrize co and jc as follows:

co2=l + r)w, K r)k/2. (3.38)
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with n evl. A straightforward calculation shows that

(1 - (co ± jc)2)2 e(w ± k)2 + 0(r]3). (3.39)

Using 3r2/4 1 - w2, we can rewrite the matrix M + Al as

/-l-(w + k)2 + 2w2 w2-\ \ M- MMi w2-l -l-(w-k)2 +
2w2) + ü^ (3-40)

The determinant of e~'(M + Al) is

k4 - 2k2(3w2 - 1) Â:2(Â:2 + 2(1 - 3w2)), (3.41)

and this quantity is positive for all k if and only if

\w\<3~m. (3.42)

This is the celebrated Eckhaus instability. If the inequality in (3.42) is strict, then
both eigenvalues of e~'(M + Al) have the same sign (in fact, they are negative).
From (3.41) we see then that the eigenvalue closer to zero satisfies

|t| > const. A:2(l-3w2)

since the other eigenvalue is G(\) and their product is given by (3.41). In the
Theorem 3.2, we assume that \w\ <„ and therefore e~~'(M + Al) has no spectrum
for t > -G(l)k2, which means that M is invertible for A > -6(\)k2e. For A in this
region the inverse of M exists for \w\< 3~1/2, and is bounded by

0(e-,kö2(l-3w2)X (3.43)

It follows, as before in equation (3.37), that for sufficiently small e depending on
w, the operator occurring in equation (3.33) is a contraction, if A > —const. k2e.

This shows that there is no spectrum in A > — k2e, when eV2kx > \k\ > e1/2k0-

We leave to the reader the details of the proof that if (3.42) is violated, then
one can find an unstable state (for sufficiently small e).

We finally deal with the case |jc| > kxem, where we still may fix kx sufficiently
large (and then e sufficiently small). We again set jc kn/2 and co2 1 + r\w, and
we assume |w| < 3—1/2, and without loss of generality, w>0. We define v by
co 1 + nv. Then we have \v\ < 3~i>2, as well. Consider the function

g(x) (l-x2)2. (3.44)

This function is monotone on [l,00]. We shall fix kx>3~112. If kx is sufficiently
large then co + k > 1 and by the above discussion we find

(1 - (co + jc)2)2 > (1 - (1 + vn - kxr})2)2

>e(kx-v)2>e(kx-3~m)2. (3.45)
We now set

k2 \(kx-3~m)2 (3.46)

and assume A > —k2e. Then the diagonal elements of M cf. (3.32), satisfy

e - (1 - (jc ± ftj)2)2 - A - 3eF0 < -ek2 - e (3.47)
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since e — 3eT0 -e, by equation (3.14), -A-S ek2, by assumption, and

-(1 - (k ± co)2)2 <-2ek2,

by (3.45) and (3.46). Hence, if kx is sufficiently large, the inverse of M is bounded
by G(e~xk\~l) and equations (3.20) and (3.47) lead to a convergent iteration
scheme, in /2, for the solution ß of

(AK - k)ß u.

This shows that there is no spectrum in X>-k2e when |jc| >kxem. This
completes the proof of Theorem 3.2.

We now show that in the region |jc| < k0ev2, there is no spectrum above
zero. This will then show the stability of the stationary solution and complete the

proof of Theorem 3.1. The method of proof is easy, because by the results of
Theorem 3.2, we can apply ordinary perturbation theory (cf. [K]).

By definition, we can expand AK in powers of jc, and we have

4

AK 2 A(m)Km, (3.48)
m=0

and by analytic perturbation theory in jc we get for the smallest eigenvalue XK an

expansion

XK £ A(m)jc'". (3.49)
171=0

If we denote by eU) the coefficients of the expansion of the eigenvector, then the
first few coefficients satisfy the equations

yW» A(,V0), (3.50)

XX + Awe({)) A(,V> + Xem, (3.51)

^(o)e(2) + Awew + Amem A(o)e(2) + A(.)e(.) + A(2)e((.) (3 52)

Note now that A(0) 0 and em dxS(x). We have

A(1V0), e^) (e(°), A(0)e(1)) + (e((l), ^(1)e(0))

0 + 0. (3.53)

The notation (•, •) stands for the scalar product in L2. The first zero above is a

consequence of the symmetry of /l(l)), and the second follows by observing that
Aw has an odd number of derivatives and S„ S_„. Therefore, A(1) 0, and we
get

A(2) (o/
cou ((^(0). ^(1,^(1)) + (^(0). ^(2)^(0)))- (3-54)

^<? e

The term (e(0), /l(0)e(1)) is absent because Am is symmetric. A simple calculation
shows

(c(0), yl(2)e(0)) 2(1 - 3w2)S2x + o(e), (3.55)
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and from

A^em -A^em (3.56)

we deduce

ew -(A^)-lAme^ + pem, (3.57)

where the value of p is irrelevant for what follows. We have to show that _4(0) is

invertible, but since it has a potentially degenerate eigenvalue, we only show that
the equation

A(0)ß u (3.58)

has a unique solution provided we require ßx ß_x. Then the problem (3.58) is

really a special case of our previous analysis: For \n\ # 1, we view (3.58) as the
fixed point problem (3.22),

eBn,x(ß) + un

e — (1 — rt ft) — el0

and the operator on the r.h.s. of (3.59) is a contraction. Now if ßx ß_x, then
the matrix M of (3.32) becomes multiplication by

X e - (1 - w2)2 - £7;, - eT2) (3.60)

so that we can write the n 1 component of (3.58) as

ßx=X-l(cT.2ß3 + eBXA(ß) + ux)

XXc2T-2K-iBxx(ß) + eBXA(ß)) + X~\u, + K^u3). (3.61)

Again, the operator on the r.h.s. is a contraction and thus the proof of
invertibility of _4((,) is complete.

We now compute the second derivative of AK, showing that it has a negative
sign. We have

(e(o)) AweW) _(e(0)) AW(AW)yiAwewy (3.62)

We use (3.58) with u=Awew. We find, for this u,

ux -4r)wSx + o(r)), (3.63)

and for \n\ >1,
un G(n4Sn), (3.64)

so that _,
uxe _4nwe 'Sx

Pi l-co2-6S2 \ + w2 '

and finally,

16S2xw2
~

1 - w2 '
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»»-dr^H+rTTal. <3.«)

We now easily get the final identity:

\S\\ 16»v2

(e((V(0))\ lW
This quantity is negative if |w| <3~1/2, and e is sufficiently small. We see again
the appearance of the Eckhaus instability.

We can now complete the proof of Theorem 3.1. Near jc 0, we see from
Theorem 3.2 that perturbation theory holds. Then (3.65) implies that for
sufficiently small |jc|, the spectrum lies below zero. This dictates a (possibly
smaller) choice of k0 in the proof of Theorem 3.2. Now Theorem 3.2 applies for
sufficiently small e (depending on this k0 and the value of co). Since we have
already shown that there is no spectrum in the region D of Fig. 1, the assertion of
the theorem follows.
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