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Non-existence of path space measure for local (QED)j*

By J. Löffelholz

Karl Marx University, Department of Physics/NTZ, 7010 Leipzig, Germany

(16.X.1990)

Abstract. We study the interaction of a "charged" particle with an oscillator. On the classical level
holds mx p — eA, where x, A eU. In QM we let x move on the circle S to have a proper ground state.
The imaginary time Green's functions exist, satisfy OS-like axioms and, for e # 0, are complex valued.
They define a normalized quasimeasure dX on path space Q x A. Our main result is the proof of
IAI +00, due to a theorem of Yngvason. Integrating out the oscillator variable A we find some
probability measure dp on Q (given by the effective action for the particle). Because of memory it allows
us to recover the Hamiltonian semigroup for the coupled quantum system.

1. Introduction

On a heuristic level the idea of path integral was introduced by Feynman [1].
After reformulation of QFT in terms of Euclidean Green's functions [2] its existence
became a challenge for mathematicians [3],

In particular Yngvason [4] obtained the following result: Given those Green's
functions then strong OS-positivity implies that a measure exists and must be real.
He used an argument of Fröhlich. However from QED we know that the interaction
ofcharged matter with gauge fields is given by a complex phase factor and, if& denotes
time reflection, one has combined PCQ-symmetry. To understand the crux we looked
for some caricature of electromagnetism in standard QM avoiding any troubles with
Fermions [5].

±TT
SXe

Fig. 1.

*) Seminar given at the Workshop "white noise analysis: New results and their impact on quantum
physics", ZiF Bielefeld Sept. 24-29, 1990
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Let x be the angular coordinate of a particle moving on the circle as drawn
above. The stationary states of the system are described by eigenfunctions
*P exp {i ¦ (kx)}, k e Z, of p —idjdx. Indeed imposing periodic boundary conditions

at x ±71 the momentum p defines a selfadjoint operator [6] in L2(S). When
x couples to a homogeneous magnetic field of flux $ 2nA then p acquires a shift
by a eA, where e was the charge. We claim that for a ^ Z (otherwise the effect
would be unvisible) the propagator leads to a complex-valued normalized cylinder
measure d<x>a of infinite total variation [7].

So contrary to general believe the formal substitution t -y —it does not resolve
all problems with the path integral.

2. Model

Below we consider A e M as dynamical degree of freedom describing a quantum

oscillator. On the classical level our model is given by the coupled equations of
motion

mx eE

A + ß2A ex2, r. (D

where E —À. Clearly, p mx + eA and total energy H are conserved. We will fix
m equal to one. In QM we realize

(p-eA)2H j + Iß(E,A), (2)

where Iß 1/2(E2 + ß2A2), as a Hermitean operator in the separable Hilbert space
Jf L2(S xl). Of course p e Z so that H has discrete spectrum and a proper
ground state ii. The variable x e S gives a bounded operator with norm ||x| n.
This affects the classical identity mx =p —eA. Indeed, we find the singular anomalous

commutation relations

L px — xp
(3)

/¦ E (-i)fafa
and hence

[H,x]=~{(p-eA)L+L(p-eA)}. (4)

3. Propagator

To obtain the propagator one may start from the Lagrangean [8], calculate the
action along a trajectory t ->(x(t), A(t)), tx < t < t2, and then go to imaginary time.
Because of the restriction x e S this seems to be a doubtful venture. Instead we
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rewrite

P' exp(-tH)
f-t 2\

(5)

exp\~m)'v*K'v' t>0.

P'

:e

1
tsZ

exp(-|
y/2nx

zr- 0>-- x) + iò(t)

where V exp {ie/y 2(pE)}, y ^Jß2 + e2 and M is an effective mass. Moreover we
introduced K'y exp — tly), governing the oscillator [9]. The unitary V commutes
with momentum p. So if

L2(S x R) © 3fk, (6)
/fceZ

on wave functions *P T(x, A) from some fixed sector 3dfk the operator V induces
a shift of A to Ak A —ek/y2. Using Poisson's formula [10] we get

K'JA, B), (7)

^P + 2*/, (8)

x(f) =y-2- (ß2t +e2ô) and 0 ^ <5(/) sj 2/y. Hence, for e^O, in the Schrôdinger
representation the imaginary time propagator of the model (QED), is complex-
valued. We may hardly associate a genuine stochastic process with trajectories
t -» (x(t), A(t)) on path space

Q xA= X (S xU). (9)

4. Quasimeasure

Let us renormalize the Hamiltonian so that HCl 0 and perform a unitary
transformation on L2(S x IR) which brings the ground state vector Q into the
function equal one.

Then for any t0 ^ tx < t2 < • • • ^ t„ the iteration of the propagator defines a

normalized complex-valued measure dX„(xA,yB) on the space X7 01 „ (S x R).
For n 1 we obtain

dkx dp(xA) ¦ Ps(xA, yB) dy dB, (10)

where e r, —10 and dp =Ci2 • dx dA is the measure on S x IR defining the new
scalar product in the "physical" Hilbert space. Its extension to some a-additive
measure on Q x A yields a nontrivial problem. Unfortunately we cannot use [11].
But the simple structure of our model allows us to control the total variation of d/.„
in the limit n y oo, directly.
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We return to the situation of a particle x moving on the circle S in presence of
magnetic flux O. The evolution operator

r*=Î,-ï ~ =- Zexp\ik(y-x)--(k-oi)2\, t>0, (11)
kez 27i 2 2n&z [ 2 J

satisfies R'0.\= exp I —— j • 1, where a e<bj2n and the Chapman equation. Via

the Kolmogorov construction we find a normalized cylinder measure dwa on Q. We
claim that for given e > 0

\Rl(x,y)\dy>l. (12)
E(X'

Yx(s) exp —
s

Equality holds if and only if a e Z. By inspection the QM amplitude
(cosx, Rl sinx) is not real. We remark that Rea(x,y) coincides with Jacobi's theta
function [12] at z (y— x)+iea and imaginary time parameter. Using the fact
that the value of the integral does not depend on x e S we get

Lemma.

K |(5 x S") YMn, «=0,1,2,... (13)

For large n the total variation of dœx diverges. Conversely, let us fix t > 0, so that
e tjn \ + 0 if n tends to infinity. Then from Yx(e) ^ exp (ea2/2) and translation
invariance we conclude that on a finite time interval the total variation stays
bounded. We easily check Daletzki's condition. We observe the symmetry
d&n ' © (d(ox)*. Complex conjugation is equivalent to changing a by —a. How
our lemma can be applied to the full propagator?

For small e > 0 one may substitute P\xA,yB) by R\(x,y) • Ksy(A, B), with
a e • (A + B)/2. In the case n 1 for the total variation of dX on X J=0, (S x R)
we obtain approximately

Ye,A + B)/2(B)-d(py(A,B), (14)

where d<py denotes the oscillator measure. Finally we combine the above estimate
with e ¦ (A + B)/2 $ Z, for a.e. (A, B) e U2, and the fact that dq>y was normalized.
Similarly we proceed when n 2, 3,... Hence dX acquires unbounded total
variation. We shortly write \X\ +oo.

5. OS-axioms

If e 0 the Hamiltonian is the sum of P2/2m and Iß. Its ground state is given
by the vector l®Slß e L2(S x R), where Q.ß stands for the oscillator vacuum.

At imaginary time we have a two-dimensional Markov process / -» (x(t), A(t))
on the large probability space

0x^,^x31,^0®^). (15)
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The measure dm^, for a 0, describes free Brownian motion in the circle S and d<pß

governs an Ornstein-Uhlenbeck process. The moments factorize. Using x e S and
the fact that dq>ß is Gaussian we easily derive the estimate

\<x(Si)x(s2) ¦ ¦ ¦ x(sm) • ¦ ¦ A(tn))0\ ^ «m|Sp O6)

valid for m,n =0,1,2,.... Of course for odd m or n this vanishes. As an exercise
let us calculate the correlation function of dw0. Expanding/(x) =x in a Fourier
series on — 7t, n) we get

(x(Sl)x(s2)\ £ k-2-exp(-ek2l2), (17)
k^O

where e \s2 — sx |. In the limit e \ + 0 we recover the variance of the normalized
Lebesque measure dx/2n on S.

We denote x=x(0) and u — dx(t)jdt. Then by the Feynman-Kac formula
— <x • u(e) >0 for small e becomes equal to the divergent expression

±(x£l, p2(x(A)) +00. (18)

Because of x e S also in the interacting case the existence of Green's functions is
rather trivial. But, as we learned above, their time derivatives are singular at
coinciding arguments [13].

Theorem I. The moments ^x(si)x(s2) ¦ ¦ ¦ x(sm) ¦ ¦ ¦ A(tn)}, where m,n
0, 1,2,... of the cylinder measure dX on Q x A exist and are

(i) integrable,
(ii) time translation invariant,
(iii) OS-positive,
(iv) complex for e # 0. (19)

Proof. Within the famous reconstruction theorem of Osterwalder and
Schrader (iii) is a consequence of QM D. We would like to check it looking just at
the Green's functions of our model. The idea is simple.

The propagator which defines dcoa satisfies R^(x, y)* Rsx(y, x), where x, y e S
and s^O. So for any bounded function f=f(x(s)) we get

/|,-0/öfo)a=exp(-5a2) • |¥||2^0, (20)
e

where *P R^f e L2(S). We also check the inequality for cylinder functions say

f=f(x(si),..., x(sn)) with sits2,... ,s„ in U+. Strong OS-positivity requires it to
hold for any exponential function measurable with respect to

Z+=d\Jz\ (21)

We observe that it(LuE+) £, where S_ is the image of Z+ under reflection 0.
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This generalizes to the cylinder measure dk. What about Yngvason's result? He
proved that the above conditions are not compatible with the existence of dk as a

finite measure. So the upper bound

1-4*1 )x(s2) ¦ ¦ • x(sm) ¦ ¦ ¦ A(t„)\ d(a0® dcpß (22)

QxA

on the Green's functions, for all m, n 0, 1, 2,..., implies Z 0. Indeed the free

measure dco0®d(pß is ergodic and hence [14] JA cannot be the perturbation by some
phase factor.

6. White noise

We remark that

exp ii ¦ £ kjX(s,)\\ A(t{) ¦ ¦ ¦ A(tn)\ (23)

for ki,k2,... ,km e Z, has an integral representation with respect to the measure
dx (g) dr\(u, A), where ; -» u(t) e R for e 0 was white noise [ 15]. More precisely, let
us consider the operator

C Gl>2\ A ""Icfa (24)
" A — ie

— ie 1

G1/2

in Z> L2(U)@L2(U). Above A ß2- d2/dt2 and G/?(-, •) will denote the kernel of
its inverse A"1. One easily shows that C defines the covariance of the desired

cylinder measure on U x A. Of course the restriction of dr\ to 21 should coincide
with dq>y. To avoid confusion we introduce another symbol ^-}> for expectation
with respect to dn. We find

(u(b)A(a)})=-ie(b,Gya), (25)

(((u(b)A(a))2)) =-2e2- (b, Gya)2 + lb,
] ^^ bXa, Gya), (26)

etc. Provided \e\2 < ß2/2, the last expression becomes non-negative. We claim that C
is a sectorial operator [16] in D with half opening angle arctg (e/ß). There is a

striking analogy to the path space measure for the bosonized massless Schwinger
model (QED)2 [17], Formally dt] is given by

e-*2dz®d(py\z u + ieA. (27)

Of course the variable z was nothing but the imaginary time counter part of the
canonical momentum p mx + eA, where m is fixed to one.

Let t -* £,(t) e R be one-dimensional Brownian motion mastering at time zero
the slalom £(0) e(-n, n). This defines a Markov process on (X, S, dv), where X is

the space of trajectories and H the a -algebra generated by cylinder sets.
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dv=dx® e~u2>2 du, x £(0), (28)

is an averaged conditional Wiener measure. If we close — n, n) to the circle and
consider the real line as covering space [18] of S we may identify periodic sets

n-\M)= u {^eX:^(t)-2nleM}, (29)
/eZ

for Borei M in S and t # 0, with elements of E. In other words n was the canonical
projection from R onto S R/Z. The lift 7t_1 in a natural way induces a measure
isomorphism. All that generalizes to the coupled system.

Theorem II.

dk dx®dr\ |„-i(Sxa). (30)

We emphasize that dk is translation invariant whereas the measure dx ® dn was not
[19]. The above redefinition allows us to calculate expectation values as

<exp {i(kx)} ¦ A(t)}, for k e Z. Integrating over x e S we obtain ô(k) and then we
are left with a Gaussian. For non-integer k everything becomes more tricky. But
"Gott kümmert sich nicht um unsre mathematischen Schwierigkeiten. Er integriert
empirisch" [20].

7. Memory

As hidden in the title we have an alternative resolution to the problem of
existence of a path space measure for (QED),. We claim that in the mixed
representation where x and E are diagonal the QM propagator
P' exp — tH), t ^ 0, is positivity preserving [21].

Indeed given any bounded f(x, E) ^ 0, because of Q(x, E) ^ 0, the vector
*P =/ • Q is also represented by a non-negative function in the physical Hilbert
space L2(S x R). We now apply the factors V, K'y, V* and exp { — t(p2/2M)} step
by step. V shifts the variable x to x +eE/y2, V* conversely. With the other two
operators there is no trouble. Hence PtxV(x, E) ^ 0. In particular this will be true
for any *P (g ® 1) • Q with g(x) ^ 0, x e S. By induction

(Q, g ® 1 e-^-^Hg2® 1 • • • g„ ® 1 • Q) ^ 0, (31)

provided gj(x) ^0 for all j 1, 2,. n. Let Ji denote the Abelian algebra of
those bounded multiplication operators F g ® 1, |F|| < oo, acting in L2(S x R). It
is the completion of

,jf0 {F eikx ®\:keZ) (32)

in norm and not maximal [22]. Instead we observe that the vacuum Q.= l®Qy
is cyclic for the algebra fi%0 generated by P',t^0, and the elements of Ji0. Of
course âS0 is dense in the algebra SS 3S(L2(S x R)) of all bounded operators.
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We claim that

y¥(t)=P'(eikx®l)Çl, (33)

t ^ 0, span #ek except in the case when k 0. But the vacuum sector N of
L2(S x U) is spanned by the vectors *¥(t) F*P'Ffì, t ^ 0, with any F eJt0
different from the unit element. This has a nice consequence.

Theorem III. The triple

L2(S x R), Jta, {/", t > 0} (34)

together with the vacuum Q builds a generalized positive semigroup structure. Hence
the above QM amplitude define the Fourier transform of a probability measure dp on
Q.

Proof. See Klein's theorem [23] D. One can show that dp is OS-positive.
Given 0 ^ r, < t2 ^ • • • < t„ and k} e Z we find

exp ii £ kjxU^l dn b(k) • expj - \ ffi M* Al, (35)

where

Here hj are the indicator functions of time intervals 0 < s < tj, j 1, 2,..., n in R+
and k stands shortly for the sum of all k/s. The diagonal elements of the matrix xij
yield a modified function / -» x(f), t ^ 0, satisfying

e2
z(s + t) x(s) + t(0 ô(s) ô(t). (37)

y

Let us introduce L2(Q) with scalar product given by the measure dp. and denote R
the projection operator onto the subspace L2(Q+ of functions which are measurable

with respect to Z+.
Then [24]

Jf L2(g+)/kerl^, (38)

where W + (_R0i?)1/2, can be identified with the physical Hilber space. Since dp
violates the Markov property Jf is larger than L2(S). Indeed we find an isometry
J: Jf -» Jt so that

(39)
c(f, fc2) • exp {&(* + y

~2 ¦ eô(t)E)}Sl,
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where E was the canonical conjugate to A. For details see [25]. On the classical level
the elimination of the "unvisible" oscillator leads to the following integro-differen-
tial equation

mx(t) - e2 } x(t) + y ¦ Cß(s, t)x(s) ds I. (40)

Above —ß2Cß(-, ¦) stands for the periodic Green's function of the hyperbolic
operator ß2 + d2/dt2 on (tu t2) [26]. Of course one may choose other boundary
conditions as well.
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