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Abstract

I present a new and efficient disconnected cluster decomposition to perform Monte Carlo
Simulations based on the Trotter-Suzuki method for 1-d quantum systems. As opposed to
the normal checkerboard world line algorithm this mapping allows one to simulate models

with interactions up to next nearest neighbours or even one-dimensional double layers. I
have used this cluster decomposition to simulate the one-dimensional t—J-J' model at

a J'U 0.5 and have investigated the sign problem in this model. At half band filling the

system is dimerised into singlet spin pahs when a 0.5 due to frustration. I believe that
the spin gap is no longer present around quarter band filling. Instead the system shows a 2kj-

spin density wave and a Akf charge density wave for low values of Jit. At higher values of
Jit the system is phase separated but there is a region where there are still holes in the particle

rich phase. At large values of Jit the system will be separated into a dimerised Heisenberg

chain and a sea of holes.

Table of Contents

I Introduction
II Path Integral Formulation and World Lines

A The Cluster Decomposition
B Measurements
C Evaluation of the Measurements
D Sources of Systematic Errors
E The Sign Problem

III Results
A Comparison with the Checkerboard Decomposition and Exactly Solvable Models
B Simulation of the t-J-J' model, a > 0

B.l Low values of J/t
B.2 Phase Separation
B.3 Finite Size Scaling
B.4 Scaling to the Tomonaga-Luttinger Liquid

C Simulation of the t-J-J' model, a < 0

IV Conclusion



Vol. 64, 1991 Troyer 701

I Introduction

The discovery of high-Tc superconductors by Bednorz and Müller [1] has probably been the

most surprising event in solid state physics in the last decade. The mechanism producing

superconductivity in these system is not yet understood. All these newly discovered

superconductors have one structure element in common. There are two-dimensional planes

of Cu02- They consist of four-fold coordinated Cu ions surrounded by four two-fold

coordinated O ions. In undoped materials there is one hole on each of the Cu sites. Doping

introduces extra holes that reside primarily on the 0 sites. However hybridisation binds

the hole strongly to the central Cu2+ ion, forming a local singlet together with the hole

already on the Cu ion [2]. An important questions is which microscopic Hamiltonian correctly

describes the various states of these materials.

Anderson [3] proposed a Hamiltonian with strong on-site Coulomb interactions among

the electrons in the partially filled band of Cu 3d levels. A simplification of this Hamiltonian

leads to the single band Hubbard model. The one-dimensional Hubbard model was solved

exactly some time ago [4,5]. Some simulations have been done on small two-dimensional

systems. In the limit U/t —> oo the Hubbard model becomes the low J/t limit of the t — J

model [6]. Zhang and Rice [2] have also derived the t — J model as an effective Hamiltonian

of a two band Hubbard model. But the t — J model is interesting not only in the limit J —> 0

where it is the large U limit of the Hubbard model but at other values of J/t as well.

At J/t 0 the one-dimensional t — J model can be solved exactly since in that case it

is the large U limit of the Hubbard model. At J/t 2 the t — J model can also be solved

exactly by a Bethe Ansatz [7]. At other values of J/t one has to use numerical methods

[8,9].

Although the copper oxide planes are two-dimensional systems much work has been done

on one-dimensional systems. They are easier to calculate than two-dimensional systems and

show a very rich phase diagram [8,9]. It is expected that two-dimensional systems should

share some properties of the one-dimensional systems. As it is difficult to simulate two-

dimensional systems an intermediary step can be taken and a next nearest neighbour

interaction added to a one-dimensional system. This introduces some effects of two-dimensional
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systems, e.g. a next nearest neighbour antiferromagnetic interaction frustrates a Heisenberg

antiferromagnet. Frustration is a typical phenomena in higher dimensional systems.

Many of the models investigated are single band models. There one uses a lattice with

one site per Cu ion. This lattice is partially filled with spin-| fermions (the holes in the

Cu 3d band). In the undoped case this band is half filled (on average one particle per site).

Doping reduces the number of particles since, as mentioned above, some of the holes in

the Cu 3d band form local singlets with holes introduced by doping. I have considered the

one-dimensional t — J — J'-model on a chain of length L, where L is a multiple of four:

H -(EE hluh^ + h.c. (1)
1 <T ±l/2

L - ~ 1 L
-* - 1

+Jj2(SiSi+i ~ Jnini+i) + aJj2(SiS>+2 - jn;ni+2).
i=i 4 ;=i 4

Here L + 1 1,L + 2 2, 5; is the spin operator and n; the particle number operator at

the site i. A; is the pseudo fermion creation operator

h;,a (1 - ni,-a)cla,

where nit-a is the number of particles at the site i with z-component of spin —a. c\a creates

a particle on site i with z-component of spin a. Due to the projector in h^„ double occupancy

is prohibited. The particles on the lattice are allowed to hop between adjacent sites. They

are submitted to a nearest neighbour Heisenberg interaction with strength J and a next

nearest neighbour Heisenberg interaction with strength J' aJ. In the limit a 0 the

model reduces to the t — J model and at half band filling to a Heisenberg linear chain with

next nearest neighbour interaction.

Many of the interesting strongly correlated quantum mechanical systems cannot be solved

exactly. As they contain strong interactions perturbation theory cannot be used either.

Therefore numerical methods have to be used. It is well known since more than twenty

years how classical systems can be simulated. Most of the methods used are based on the

Metropolis algorithm [10]. Simulating quantum mechanical systems is a more difficult task.

One problem is that the Metropolis algorithm requires the calculation of the weight of a

configuration. In a classical system the weight of a configuration in the canonical ensemble

is simply given by e~&E', where ß is the inverse temperature and E is the energy of the
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configuration. In a quantum mechanical system however the weight of a state |\t) is given

by (*|e_/3H|*), where II is the Hamiltonian of the system. Direct evaluation of this weight

requires a diagonalisation of the system. And this is exactly what one wants to avoid by

using the Monte Carlo method. One way to calculate properties of quantum mechanical

systems is of course exact diagonalisation (e.g. by Lanczos algorithm [9]). By this method

the energy of the ground state and of the first few excited states can be calculated exactly.

The method is restricted to systems with a small number of states and there is no direct

method to calculate the spin and charge structures from these energies. To calculate the

spin and charge structure factors one has to be able to make further assumption, e.g. that

the model scales to a Tomonaga-Luttinger liquid. Only then the critical exponents and the

spin and charge structure factors can be calculated.

Other methods are based on the Trotter-Suzuki theorem [11,12]. Using the Trotter

formula one can map the d-dimensional quantum mechanical system onto a d+l-dimensional

classical system. Then a transfer matrix method or the world line algorithm [13] can be used

to simulate the system. A disadvantage of the method which can be seen immediately is that

the dimension of the system has increased. To get information on a one (two)-dimensional

quantum mechanical system one has to simulate a two (three)-dimensional classical one. This

method can be used for much larger systems and the correlations and structure factors can

be calculated directly. However as the algorithm works at finite temperatures it is necessary

to extrapolate to ß —> oo to get the ground state properties. There can be numerical

difficulties due to a sign problem if there are fermionic degrees of freedom. This problem is

serious at low temperatures and for large lattices. A combination of both methods can be

very helpful. This was done in investigations of the t - J model [8,9]. The decompositions

of the Hamiltonian that have previously been used with the transfer matrix method or the

world line algorithm are restricted to nearest neighbour interactions. In order to simulate the

t — J—J model or other models with next nearest neighbour interactions a new decomposition

of the Hamiltonian has to be found and the algorithms have to be adapted. The algorithm

developed can then be used to simulate one-dimensional systems with arbitrary next nearest

neighbour interactions. There are also some advantages when simulating models with nearest

neighbour interactions only.
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II Path Integral Formulation and World Lines

The world line algorithm I have used to simulate the system relies on a decomposition of

the Hamiltonian into two sums i/j and H2, each of which consists of a sum of commuting

terms. I used the relation

eE(A+S) _ ec(A/2+B+A/2) _ etAl2etBeiAl2 + q/ 3)

and Suzuki's generalisation of the Trotter formula [11,12] to calculate the partition function:

Z Tr(c-^) Tr ((c-^H'+H^)M)

Tv((eA*A2)Hle-ATH2e-(AT/2)H1+0(AT3))M^

Tr((e-ATHle-ArH2)M) + 0(Ar2)

E <*l|*/l|*2A#X*"2Af|«/2|»2A#-l> - -- <«3|l/l|«3>(»3|i/2|*l) + 0(Ar2), (2)
Û.---.Ï2M

where ß is the inverse temperature (imaginary time) and At ß/M. The \ik) are a

complete orthonormal system of the states in real space,

Ui e-ArHl and U2 e~ATH\

The decomposition thus leads to a systematic error of order (At)2. The state \i,) evolves

in imaginary time (inverse temperature, called Trotter direction) according to the time evolution

operators Ui and U2. Since Hi and H2 are sums of commuting terms the time evolution

operator breaks up into a product of small cluster operators. The evaluation of the matrix

elements (i|{/i|i') reduces to solving this finite cluster problem.

A The Cluster Decomposition

The simplest decomposition of the Hamiltonian is the checkerboard decomposition (disconnected

bonds). There the Hamiltonian is split into two sums, each consisting of two-particle

terms (figure la). However this decomposition cannot be used for models with next nearest

neighbour interactions. Here I present a decomposition for one-dimensional quantum chains

with hopping and spin interactions between nearest neighbours and next nearest neighbours.
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a) Checkerboard decomposition
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c) Decomposition for a model with next neighbour and next nearest neighbour interactions:
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d) Decomposition for a double layer:
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Figure 1. Decomposition of the Hamiltonian. Next neighbour interactions are denoted by dashed
lines.next nearest neighbour interactions by wiggled lines. The ~ besides an interaction indicates, that
only half of the interaction is contained in this term.
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Figure 2. Examples of the moves used to upgrade a world line configuration.
Circles denote the sites that are affected by the move. See text for details.
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Figure 3b. An example of a world line configuration in three dimensional
representation. The imaginary time (Trotter direction) runs along the vertical axis.
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Figure 3b. An example of a world line configuration in two dimensional
representation. The imaginary time (Trotter direction) runs along the vertical axis.
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Models that can be simulated with this algorithm include the Heisenberg model, free

electrons, the t — J model, the t — J — J' model, the t — t' — J model, etc.. The decomposition

of the Hamiltonian is best shown by arranging the sites on a double layer (see figure 1 b,c).

The Hamiltonian is split into two sums of 4-particle terms. The interactions in the odd

numbered squares are collected in one term and the interactions of the even numbered terms

in the second term. One sees immediately that the same algorithm can be used to simulate

a double layer (figure ld).

In the case of the t — J — J' model the Hamiltonian (1) is split into the two sums:

Hi e #(¦•)> H2 E H(>h

l<i<L/2 \<i<L/2

where

H(i) ~l E(öÄ2i-iÄ2t + M.-^.+i + -h\l+ih2i+2 + h.c.) (3)

+-^(S2i-iS2t - -n2i-in2i) + J(S2,S2l+i - -n2ln2i+l)

A — (S2i+iS2i+2 — - 7*21+1 "2.+2)

1 ~ - 1

+aJ(S2i-iS2i+i - -n2i-in2i+i) + aJ(S2iS2i+2) - -n2tn2t+2).

The evaluation of the weight of a configuration is thus reduced to solving a 4-particle

system in the subspaces of constant spin and particle number. This was done numerically

(see Appendix).

Within each time interval At there is one application of the evolution operator Ui and

one of the evolution operator U2. This leads to a graphical representation of the above

sum (2) on a two-dimensional double layer, where the applications of the time evolution

operator on a square are marked by shaded cubes (figure 3a). The occupation on each time

slice corresponds to one of the states \ik) in the sum for Z. As the time evolution operator

conserves particle number and total magnetisation we can connect the occupied sites on

neighbouring Trotter slices and get a representation of the configuration {|'4)} in terms of

world lines. The sum over all configurations {\ik)} with non zero weight thus corresponds

to the sum over all possible world line configurations. There are two kinds of world lines
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(black and gray) representing up and down spins that follow the imaginary time evolution

of the spins as shown in figure 3. The time evolution operators act independently on every

elementary square. Hopping or spin flips can occur only within shaded cubes but not within

unshaded ones. The configurations can as well be drawn on a two-dimensional lattice by

arranging the sites on a straight line and not in a double layer (figure 3b).

The Metropolis algorithm may then be used to upgrade a world line configuration. The

only possible moves to upgrade the configuration are those that do not break world lines as

otherwise the weight of the new configuration is zero. I have employed four types of moves

(see figure 2): 1) moves around an unshaded square, where one world line is moved from one

side of the square to the other or 2) two world lines of opposite spin are interchanged; 3)

moves along a bond to the left or right of an unshaded square, where the particle is shifted

along that bond or 4) two particles with opposite spin are interchanged. The moves that are

shown in figure 2 are examples of these moves. The sites that are affected by the move are

marked with a gray circle. The occupation of the other site is arbitrary. It has influence on

the weight of the configuration but not on the move itself. The move just exchanges particles

on the affected sites. After the exchange new world lines can be drawn in any case as the

particle number and magnetisation are conserved within each of the cubes.

These moves conserve the total particle number and magnetisation as well as the winding

number of the world lines. When one knows that the ground state is a spin singlet the z-

component of the total spin can be chosen to be zero. If the spin of the ground state

is nonzero or if one wants to do calculations at higher temperatures one has to include a

global move which changes the spin of a particle (colour of a world line). This move allows

fluctuations in the spin and in the square of the total magnetisation < M2 >, which is zero

only if one simulates in the subspace of zero total magnetisation. However this move is very

expensive in CPU time since it is global while the other moves are local.

B Measurements

I have measured the energy and the charge and spin correlation function of the system. The

energy can be be decomposed into two parts, Ei and E2. To get an estimate for the energy
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one has to evaluate the sum

(Ei) Z'1 • Tr (Hie~ßH)

Z'1 • Tr (jffl(e-(Ar/2)ffle-ArH2e-(Ar/2)H1)M^ + q^^
Z~l • Tr (F1(e-AT//le-AT//2)M) + 0(At2)

Y R ¦ iiâMM + Q(At2)Z. ^,.2....,2m (^l^l^) +U^T )'
n,l2,-..,l2M

where the weight Pì,,ì2,...,ì2M of the configuration (|ii), \i2), ¦ ¦ ¦, |Ì2m)) is given by

(*i|^i|*2m)---(*2|^2|h)
'^ l2M E,„i2 ,-2M(èl|^|Ì2M)...<Ì2|t/2Kl)- U

In the same way I get

/EM _ \P p (H\H2U2\ii) 2.

«li*2i—,«2M > ' ' '

And for the total energy

(E) (Ei) + (E2)

_ V p ((J3\UiHi\i2) (i2\U2H2\ii)\ 2

.'1,.2,...,,2M V (*3|t/l|*2> (l2\U2\ll) J

As the trace is cyclic it does not matter on which Trotter slice I perform the measurements.

Averaging over all Trotter slices improves the statistics. The charge-charge correlations are

estimated through:

(n:nj) Z~l ¦ Tr (ninje~ßH)

Z-1 ¦ Tr (ntn,(e-(AT/2^e-A^e-(AT/2»^)M) + 0(At2)

Z-1 ¦ Tr (e-(AT/2^n,nJe-(AT/2»^f/2(f/it/2)M-1) + 0(At2)
ninj nin3 TT \TT (TT TT \M-l\ rVA,-2\Z-1 • Tr ((Ui'-^l + ^lUl)U2(UlU2)M-i) + 0(At2

v- p (i2\Uintn3 + ntn3Ui\ii) 2
~ M iuh i2M 2(i2\Ui\n)

+ l '

and the spin-spin correlations in the same way through

'i} ' .-.Am ™-"" mui\h) + }-
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The charge and spin structure factors are defined as the Fourier transforms of the real space

correlations:

sch(q) EeW*(n''.T + 'Hl)(re»+*,T +nt+x,i),
X

X

Here rej,t,Wj,j are the particle number operators for particles with spin up (down) at the

lattice site j. Due to translation invariance and the cyclicity of the trace measurements can

be done at any Trotter slice. Averaging over all these measurements again improves the

statistics.

A problem that arises here is that the Metropolis algorithm requires the weights P,lil2 ,2M

(4) to be non negative. If the weights of the configuration are not all positive one has to

rewrite the measurement:

in) £.pA grj£l£g? (s-°)
v ;

ExPi Eri« (S)

Here P; is the weight of a configuration and Oj the value of the observable Ö in that

configuration. S-; is the sign of the weight P- of the configuration. Now the weights |Pj| arc

positive. But one has to measure the average value of (S ¦ O) and the average sign (S).

By splitting the measurement into the sum over all configurations with positive weight and

average value (0)+ and the sum over all configurations with negative weight and average

value (0)_ one can measure the quantities as described above and calculate the total value

from

A small average sign leads to numerical problems due to cancellation in the third term on

the right hand side.

C Evaluation of the Measurements

In this section I want to sketch the way I performed my simulations. As the measurements

take a lot of time (especially the measurements of the structure factors) it is not useful to do

measurements after each local upgrade. The spacing between two upgrades was chosen to be

larger than the autocorrelation time. More measurements do not improve the statistics very
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much as they are not independent. It is better to use the CPU time to do more upgrades

than to do more measurements. As the error on the sign is important and measuring the

sign takes nearly no CPU time it was measured after every upgrade nevertheless. This

results in an improvement of the statistics without using much CPU time. The average and

variance of a sample of about 1000 measurements was stored on disk. Separate measurements

were done for configurations with negative and positive weight. Following Furukawa and

Imada [14] I interpret my measurements as coming from Ns independent simulations with

Na measurements.

Let me denote the mean value of the i-th. measurements of the observable X in the j-th
simulation by Xj,i and the sign at the time of that measurement by Sj,i. Let

*t - N+ ^ *•><•

3 i*withS,-,;=+l

XJ
J twithSj(t —1

x3
l N«

"m" E Xj,;- Sj,:.
s 1 1

Xf and XJ are the average values of the measurements at positive respectively negative

sign. Nf and NJ are the number of measurements at positive respectively negative sign.

The average sign then is
1 N°

Si: TT E Sj,i
JVa i=i

The straightforward way to estimate the average value of the observable and the statistical

error is by calculating estimates for the averages at positive and negative sign and an estimate

for the average sign:

y, _ Ej l NfXf _ Ej,l,ij,.=+ 1 Xjtj
+ "" E^iNf E,,,,5j„=+1i

Tfi.j=lNjXj _
Ej,i,»,,, -1 X3,>

K
i "¦

S' WTrSj
iVs

3 1

AX'+ E(x; - x'+)2
3 1
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AX'_ _1_

K

AS" —
Ns

N.

3=1

-£(Sj - S')2

Using formula (5) estimates for the observable and the statistical error can be obtained:

A' 1 (x'.x' + x\~x'-
2 V + S'

AA' ï\ AX-:{l + j-^ + AX'2{l-j-^ + X'+-X_
S'2

AS'2.

Another method, proposed by Furukawa and Imada [14], is calculating an estimate of the

observable from the results of each of the Ns simulations and averaging over all of the

simulations thereafter:

A E fa where
3=1

A ¦ — -^-
3 - s,

The statistical error is then estimated by

-fa E(^ - ^)2
j=i

Due to correlations in the measurement of X3 and Sj the statistical fluctuations are smaller

than before. However these correlations introduce a systematic error. Now I do not calculate

(Xj)/(Sj), but (Xj/Sj) which is not the same when the two variables are correlated. Let

me denote the expectation value of the average sign Sj by S and of the observable Xj by

X. The difference to the expectation value is denoted by 8X3 X3 — X and 6S3 Sj — S.

Then the systematic error is the expectation value

1 .A r,:u — Ji. O -j.

1_(X + 6X3)S-X(S + 6S3)
5( S + SSj " '

1 SXj'S -X6Sj
S^ ~S + 6Sj '

* fa(-f-((f

(6)

(SXjS - X6S3)
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In obtaining the last line I have used the fact that the averages (6Sj) and (&X3) vanish and

only terms of even order remain. When SSj/S << 1 the second order terms are the leading

ones. To get an estimate for the error one has to find a relation between Xj and S3 (SX3

and SSj). Denote the expectation value of the measurements at positive sign with X+ and

of the measurements at negative sign with X_. Let X& + ~ and X0 —^—-. Then

the expectation value of Xj, given an average sign Sj, is just

Xj \((1 + Sj)X+ - (1 - Sj)X-) XA + S3X0

The expectation value of 6X3, given a value of 6Sj, then is

6Xj X3 — X (Xa + S3Xq) — (X& + SX0) — SS3X0

Inserting these relations into equation (6) leads to

ASA « ^-6Sj(SSjX0-S-(XA+-SX0))SSj))

jsWs])
XA AS2

* S 52 '

where AS2 (SS2) is the variance of the sign. Of course when X& is smaller than the

estimated statistical errors on X'+ and X'_ these errors have to be taken into account to

get reliable estimates for the systematic error. When the size of the simulations is taken

large enough, such that AS2 « S the systematic error is much smaller than the statistical

error. Particularly in measuring the correlation functions near the phase boundary this

procedure results in smaller statistical errors than the direct method of interpreting all the

data as coming from one simulation and estimating the errors with the straight forward

method. The error on the charge fluctuations is typically reduced by a factor two to three.

Sometimes it is even reduced by an order of magnitude.

D Sources of Systematic Errors

There are some sources of systematic errors in the algorithm. First there is the 0(At2)-

correction that arises from the path integral formulation. It is of the order ß(Ar)2arJst
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with 0 < r < 5 < 3. This error can be eliminated by extrapolating to At 0 at fixed values

of J, ß and a. I have carried out most of my calculations at Art 0.25. This introduces an

error of about 0.4% on the energies. The correction on the structure factors is much smaller.

It is smaller than the statistical error bars.

The restriction to the subspace of zero winding number is not a source of errors but just

a boundary effect. The boundary conditions imposed on a finite size lattice do not influence

the thermodynamic limit.

All the models I have investigated have a S't/(2)-symmetry. Therefore the expectation

value of the total magnetisation (Mz) is equal to zero. The square of the total magnetisation

(Mz) however is not always zero. In order to achieve ergodicity one has to introduce the

global move described above, which flips the spin of a particle. But when the ground state

is a spin singlet and the temperature is smaller than the gap to a state of higher spin the

square of the total magnetisation is nearly zero. Then the global move may be omitted

without introducing a large systematic error.

At half band filling and a 1/2 the ground state is dimerised due to frustration [15]

and is a spin singlet. However one cannot be sure that the ground state is a spin singlet

for all values of the parameters. For the Hubbard model in the limit U/t —> oo Ogata and

Shiba [16] have shown that for even number of particles the ground state is a spin singlet

for a system with periodic or antiperiodic boundary conditions, except for systems with in
(n is an integer) particles and periodic boundary conditions where the ground state is a spin

triplet. The same holds for the t — J model at small values of J/t. When J/t > 2 the ground

state is a spin singlet for all boundary conditions. Omission of the global move introduces

only small systematic errors at low temperatures [8]. I expect that the omission of the global

move will not change the qualitative picture. At large negative values of a the ground state

need not be a spin singlet. In this parameter region one has to include the global move to

get reliable results. At small values of a however the ground state should still be a spin

singlet.

All the calculations were carried out at finite temperature and without the global move.

To get information on the ground state properties an extrapolation to zero temperature

(ß —> oo) has to be done. This is difficult since increasing the lattice size leads to an
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configuration: sign of the weightfor small Ax
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Figure 4a. Local configurations and their sign for different values of a. The two
configurations shown in the first row are identical, but there are two ways to
connect the sites with worldlines. This has no influence on the calculation, only on
the way the configurations are drawn.
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Figure 4b. Periodic configuration
with negative overall weight if a > 0.
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Figure 4c. Periodic configuration
with negative overall weight if a < 0.
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Figure 5. Average sign for different values of the parameters and lattice size, a) Dependence on Jit for
14,12 or 6 particles on a lattice of size 24 and for 4 particles on a lattice of size 40. b) Dependence on a
for 12 particles on 24 sites (p=0.5), J/t=2.5 and 6 particles on 24 sites (p=0.25), J/t=3.0 c) Dependence on
the inverse temperature ß for quarter band filling and J/t=2.0 The solid line is a fit of the values for ß>6
to an exponential decrease d) Dependence on the lattice size. Here Jlt=2.0 and p=0.25 Again the solid
line is a fit to an exponential decrease.
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exponential decay of the sign, giving rise to numerical problems. I have done most of my

calculations at an inverse temperature of ßt 15. Measurements of the structure factors

and real space correlations at lower temperatures give the same results within the error bars.

E The Sign Problem

As mentioned above a small average sign leads to numerical problems in measuring the

averages of physical quantities. They arise from the cancellation of terms in the right hand

side of equation (5). The sign problem is severe as the average sign decreases exponentially

with growing lattice size L and inverse temperature ß. This can easily be seen by the

following argument. Assume that for a given lattice the probability for a configuration with

positive weight is p+ and for a configuration with negative weight p_. The average sign

will then be (<S) p+ — p_. Now one doubles the size of the lattice in either direction.

If the lattice is large enough the configurations in the two halves are independent and the

new probabilities are p'+ p+p+ + P-P- and p'_ 2p+p_. The average sign now is (S)'

p'+ — p'_ (p+ — pAj2 (<S)2. One sees that the sign decreases exponentially with growing

lattice size. This is in accordance with my measurements (figure 5 c,d). There are only small

regions of the parameters where one can do Monte Carlo simulations.

In order to get more insight into the sign problem I have looked at the lowest order

configurations with a negative weight. In the t — J model there is no sign problem [8]. There

the crossing of world lines of opposite spin is the only local configuration with negative

weight. But these crossings have to occur in pairs, which gives a positive overall weight. In

the t — J — J' model the situation is different. If J' > 0 then the crossing of two world lines

shown in in the first row of figure 4a has a negative weight, while the same configuration

in the t — J model has positive weight. Now we can write down a periodic configuration

with negative overall weight (figure 4b). When J' < 0 there is a different source of the

sign problem. Now the crossing of two world lines that are two lattice sites apart with no

world line in between (figure 4a, second row) has positive weight while in the t — J model

this configuration has negative weight. In the first case the configuration will have a high

acceptance rate in the regions where there is a dense particle rich phase. I expect the sign

to be small near half band filling and in the phase separated regime. In the second case one
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needs a hole to generate a configuration with negative weight. There will be no sign problem

in the case of half band filling. In the region of high density one expects a large sign, while

in the region around p 2/3 one expects the sign problem to be severe. In the low density

region the sign should be larger again.

These qualitative arguments are in good agreement with my measurements. For positive

J/t I have been able to perform calculations for small J/t up to the density p 7/12. I have

been able to simulate in the region of phase separation for densities p < 0.25 only. Even

there it is very hard to get quantitative results. In figure 5a I have plotted the dependence

of the sign on J/t for several band fillings. For J'/t < 0 it is possible to simulate in the high

and low density regions. When the absolute value of J'/t is much larger than J/t we have

a large next nearest neighbour Heisenberg coupling and only a very small nearest neighbour

interaction. The acceptance rate for the above configurations is then very small and there

should be no sign problem. Figure 5b shows the dependence of the average sign on a for

two parameter regions.

Ill Results

A Comparison with the Checkerboard Decomposition and Ex¬

actly Solvable Models

I have compared the results of my algorithm with exact calculations and the checkerboard

decomposition for some exactly solvable systems. I have simulated the Heisenberg model,

free electrons and the supersymmetric t — J model( see figures 6a,b,c). My simulations agree

favourably with results of Assaad and Würtz [8] obtained with the checkerboard decomposition

and with the exact ground state energies. The small deviations from the ground state

energies can be explained as finite temperature and boundary effects.

One sees that the (AT)2-correction is much smaller than with the checkerboard

decomposition. Given a tolerance for the systematic error (produced by a finite value of Ar) a

higher value of At may be chosen. This results in smaller lattices. The acceptance rate

grows as a function of At. A higher acceptance rate results in shorter autocorrelation times
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and therefore shorter simulations. As expected from the Feynman path integral formulation,

the extrapolation to At 0 is independent of the special type of decomposition. Another

advantage of the method is that it can be used for models with next nearest neighbour

interactions and double layers.

I have also compared the method with exact results by Majumdar and Ghosh [15] for

the antiferromagnetic Heisenberg model with next nearest neighbour interaction (figure 6d).

The results are in good agreement for a < 0. The deviations, less than one percent, are

smaller than the temperature. They can be explained as finite temperature and boundary

effects. At this band filling it is not possible to simulate the region a > 0 due to the sign

problem.

B Simulation of the t — J — J1 model, a > 0

Here I describe the results of my calculations and compare them to the t — J model. The

results for the t — J model are taken from Assaad and Würtz [8].

B.l Low values of J/t

In the limit J/t —> 0 the t — J model is the large-t/ limit of the Hubbard model. When

J J1 0 the hopping term produces a Ak; charge density wave (k; pft/2). As there

is no spin interaction the state is degenerate in the spin degrees of freedom. Introducing a

small spin interaction J lifts this degeneracy and produces a 2kj spin density wave. This is

exactly what is expected since the t — J models scales to a Luttinger liquid in the limit of

small J/t. It is also confirmed by results of Ogata et al. [9] and Assaad and Würtz [8]. In the

t — J — J' model I see the same structures at low values of J/t. There is a peak in the charge

structure factor at q Akf (figures 7a, 8a) and a peak at q 2kj in the spin structure factor

(figures 7b, 8b, 9b). They correspond to a Ak; charge density wave and a 2kj spin density

wave. These density waves can also be seen in the real space correlations (figure 7c,d). The

spin and charge structures at a density of p 7/12 (14 particles on 24 sites) show the same

features as the structures at lower densities. It is not possible to simulate at higher densities

due to the sign problem.

The t — J model loses this Hubbard like character at higher values of J/t. The spin
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interaction is in competition with the hopping term as it favours antiferromagnetic alignment

of particles on nearest neighbour sites. The particles will tend to form nearest neighbour

pairs. The Ak; charge peak vanishes and is replaced by a peak at q 2k;. The 2k; spin peak

vanishes also and there is a maximum at q tt in the spin structure factor, corresponding

to antiferromagnetic alignment of spins on nearest neighbour sites.

In the t — J — J' model (J' J/2) there are similar changes at higher values of J/t. At

quarter band filling the 2k; spin density wave and the Ak; charge density wave correspond

to the structure î • j î • J. • (arrows denote up and down spins, dots denote holes).

This structure is also favoured by the antiferromagnetic next nearest neighbour coupling J'.

Therefore J' enhances this structure. When increasing J/t it does not break down as soon

as in the t — J model. Even at J/t 2.5 where there is no Ak; charge peak in the t — J

model any more, it is still more pronounced than the 2k; charge structure (figures 7a,b). At

even higher values of J/t these structures vanish nevertheless and we see the same behaviour

as at lower densities (J/t 3 in figures 7a,b). The same behaviour can be observed at the

slightly higher band filling of p 7/12.

At J/t 2.5 and quarter band filling I have looked at the dependence of the charge and

spin structures on the relative strength of the next nearest neighbour coupling a J'/J
(figure 11). In the t — J model (a 0) there is no Ak; charge peak and no 2k; spin peak at

this value of J/t. Instead there is a 2k; peak in the charge structure factor and a maximum

at q ir in the spin structure factor. With growing a these structures change continuously

to the structures of the t — J — J' model with J1 J/2. A Ak; charge density wave and

a 2k; spin density wave is formed and these structures become more dominant at higher

values of a. At small negative values of a the 2k; charge density wave is enhanced and the

Ak; contribution suppressed.

At lower densities the Ak; charge and 2k; spin structures are not enhanced as much by

the next nearest neighbour coupling. They vanish at much smaller values of J/t (figures

8a,b; 9). But due to the next nearest neighbour interaction the particles tend to align

antiferromagnetically on nearest neighbour and next nearest neighbour sites. This results in

a maximum in the spin structure factor not at q it but at lower values of q (figures 8b,

9b). With growing J/t the maximum moves to higher wave vectors q, corresponding to a
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higher proportion of nearest neighbour pairs.

At a certain density dependent value of J/t one can see the onset of phase separation.

B.2 Phase Separation

According to results of Ogata [17] phase separation occurs at J/t 3.4 for p 0.5 and

J/t 2.2 for p 0.25. At quarter band filling I am not able to observe the phase separation

due to sign problem, but at lower densities I can simulate in the region of phase separation.

At a band filling of p 0.25 and J/t 2.0 the system is not yet phase separated, but at

J/t 2.5 the onset of phase separation can be seen. The long wavelength charge structures

grow rapidly in this region. The same can be observed at a band filling of p 0.1 between

J/t 1.5 and J/t 2.0. These observation are consistent with the values for the phase

separation obtained by Ogata.

It is of interest to investigate the nature of the phase separated state. In the limit

J/t —» oo the system will be separated into a dimerised chain of electrons and a sea of holes.

But the system does not look like this in the region near phase separation. In the t — V

model the system is separated in an island of particles and a sea of holes immediately after

phase separation. In the t — J model there is a small region at low densities where the

particle rich phase can be caricatured as a gas of nearest neighbour singlet pairs. When J/l
becomes larger than 3.5 the system is totally phase separated into a Heisenberg chain and a

sea of holes.

In the t — J — J' model I have been able to simulate in the phase separated region at

low densities (p < 0.25) only. Near the phase transition the system is not 3'et totally phase

separated, but the particle rich phase can be caricatured as a gas of nearest neighbour and

next nearest neighbour singlet pairs. I have done a least square fit of the spin structure

factor to the structure factor of such a gas:

SIX a ¦ 2p(l - cos(q)) + b ¦ 2p(l - co$(q/2)). (7)

The first term on the right hand side is the spin structure factor of a gas of nearest neighbour

bound pairs and the second term the structure factor of a gas of next nearest neighbour pairs.

The fit is included in the spin structure factor in figures 8b, 9b (for p 0.25, J/t 3.0 and
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p 0.1, J/t 3.5) and in the real space spin correlation in figure 8d (p 0.25, J/t 3.0).

With growing J/t nearest neighbour pairs are preferred over next nearest neighbour ones.

This results in a shift to the right of the maximum in the spin structure factor (figure 8b,9b).

It is consistent with the expectation of a dimerised Heisenberg chain in the limit J/t —» oo.

The fact that the system is not yet fully phase separated can be seen from figure 8c, where

I have shown the real space charge correlation and compared them to the charge correlations

of a totally phase separated system. There are still holes in the particle rich phase. This is

also evident from the charge structure factors (figure 8b,9b). If the particle rich phase were

a Heisenberg chain without holes the charge structure factor would be zero at q it. The

nonzero charge structure factor at q it (see figure 8a,9a) arises from local modulations of

the charge density (it corresponds to the structure particle — hole — particle — hole).

At p 0.25 and J/t 3.0 I have again investigated the dependence of the structure

factors on the relative strength of the next nearest neighbour coupling a (figure 12). At

a 0 the t — J — J' model is just the t — J model and the system can be caricatured as a

gas of singlet bound pairs. With growing J' aJ more and more next nearest neighbour

pairs are formed. Again the structure factors evolve continuously and there is no indication

of any phase transition.

B.3 Finite Size Scaling

I have done a finite size scaling analysis at p 0.25 and J/t 2.5, which is in the phase

separated region (figure 10). The maximum in the spin structure factor gets more pronounced

with growing lattice size. Therefore I expect it to be present in the thermodynamic limit. The

charge structure peak at small wavelengths remains as well. The maximum at q 7r in the

charge structure factor does not scale to zero but remains finite. I conclude that the above

description of the ground state near the phase separation is valid in the thermodynamic

limit. A lattice size of L 24 seems to be sufficient to get a qualitative picture of the

structure factors. For quantitative results one has to go to larger lattices, but a lattice size

of L 24 seems to be sufficient to see the qualitative structure. To get reliable values for the

long range correlations one has to simulate lattices much larger than the correlation distance

considered. A larger lattice size results in longer autocorrelation time for the Monte Carlo
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process and in a smaller sign. This makes it very hard to get any quantitative results such

as the critical exponents from the Monte Carlo data.

B.4 Scaling to the Tomonaga-Luttinger Liquid

The Hubbard model and the t — J model at J/t —> 0 and J/t 2 scale to the Tomonaga

Luttinger fixedpoint. As the structure factors vary continuously with J/t and a J'/J
one can expect that the t — J — J' model scales to the same fixedpoint if there is no phase

boundary and no spin gap opens. In my simulations I see no indication of such a phenomena.

In a Tomonaga-Luttinger liquid the real space correlations show a power law decay. The

critical exponents may be calculated from a dimensionless Kp:

(n(r)n(O)) ~ A0r~2 + Aj cos(2kfr) r"'1^'"' + A2 cos(Akfr) r_4Afa

(Sz(r)Sz(0)) ~ B0 r~2 + Bi cos(2kfr) r-(1+A'fa

where r » 1. Logarithmic corrections have been omitted in the above equations. In the

U —* oo Hubbard model Kp 0.5 independent of the band filling. The same holds in

the J/t —> 0 limit of the t — J model. My results are consistent with these relations. They

indicate an increase of Kp with J/t. Phase separation occurs when the compressibility vc/Kp

goes to zero [9]. Beyond phase separation the system is no longer a Tomonaga-Luttinger

liquid. The increase of the 2k; spin structure and Ak; charge structure with growing J' at

quarter band filling and J/t 2.5 (figure 11) indicates that there Kp decreases with the next

nearest neighbour coupling J'. These observations as well as the values of J/t where phase

separation occurs are consistent with calculations of Kp from the energies of the ground state

and the first few excited states, done by Ogata [17].

C Simulation of the t — J — J1 model, a < 0

At negative a one has to be very careful when omitting the global move as the ground state

need not be not a spin singlet at large negative values of a. At small absolute values of a

however one can still expect to get qualitatively correct results. At half band filling I have

compared my results to the exact results of Majumdar and Ghosh [15] for a lattice of eight

sites. As mentioned above the energies are consistent with their results. They have also
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shown that the ground state is a spin singlet for — 1 < a < 1. Therefore the global move

may be omitted. My calculations show that the peak in the spin structure factor at q it

gets more pronounced with growing negative a, compared to the Heisenberg model (a 0).

This is what one expects since the ferromagnetic next nearest neighbour coupling favours

the structure of alternating spins.

IV Conclusion

I have investigated the one-dimensional t — J — J' model with the quantum Monte Carlo

world line algorithm. Due to frustration there is a minus sign problem which makes simulations

impossible in parameter regions with large frustration. As the average sign decreases

exponentially with growing lattice size it is difficult to obtain information on the thermodynamic

limit (lattice size L —> oo) and on the ground state properties (inverse temperature

ß —> co). A small average sign leads to cancellations. However there are some regions

where simulations can be done and qualitative information obtained. As the sign problem

arises in very small systems (e.g. four sites and small ß at half band filling) this is a good

model to investigate the sign problem. Measurements of the sign confirm that it decreases

exponentially with the lattice size.

The t — J — J' model (J/t > 0, J' J/2) cannot be simulated at half band filling due to

the sign problem. At this filling the ground state is dimerised into singlet singlet pairs and

there is a spin gap [15]. At the densities where I could carry out my simulations there is no

indication of a spin gap any more, but there might still be a spin gap at higher densities.

Around quarter band filling the system can be simulated for low values of J/t. The spin

and charge structure show qualitatively the same behaviour as in the t — J model. They

seem to change continuously with J/t and a J'/J. It is reasonable to expect that the

model scales to the Tomonaga-Luttinger fixedpoint. At lower band fillings the system shows

the same behaviour. There it is possible to simulate in the phase separated region as well.

In the limit J/t —> oo the system is separated into a dimerised Heisenberg chain and a sea

of holes. At lower values of J/t it is not yet fully phase separated but, similar to the t — J

model, the particle rich phase still contains some holes. It can be caricatured as a gas of



730 Troyer H.P.A.

nearest neighbour and next nearest neighbour singlet pairs. This description still holds for

J/t > 3.5 where the t — J model is already completely phase separated.

In order to simulate the t — J — J' model I have looked for a new decomposition of the

Hamiltonian. This decomposition can then be used with the transfer matrix method or the

world line algorithm. It allows simulations of one-dimensional systems with nearest neighbour

and next nearest neighbour interactions. When one includes next nearest neighbour

interactions the system may be frustrated, giving rise to a minus sign problem. This

decomposition into four particle terms is also of advantage when simulating systems with nearest

neighbour interactions only. The exact solution of a four particle system, in comparison with

the two particle system in the checkerboard decomposition, results in a smaller systematic

error arising from the Trotter decomposition. Furthermore the decomposition can be used

to simulate one-dimensional double layers.
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Appendix: The Matrix Elements.

The matrices Hi, H2, Ui, U2 are in block-diagonal form. They consist of identical blocks H^
respectively exp(Hi). The matrix H(i) again splits into smaller matrices in the subspaces

of constant particle number and magnetisation. The diagonalisation of these matrices was

done numerically and the matrix elements stored in a file that was read by the simulation

programme. The advantage then is that one does not have to change the programme to

simulate a different model, but has to change the file of matrix elements only.



Vol. 64, 1991 Troyer 731

I got the matrix elements of Hu) from the relations

-th\hk+i |<T,0) -l|0,<7)

-th\hk+i \cr,±a) 0

-th\hk+i |0,0) 0

J(SlSi+i-\ninl+i) \a,-a) \\a, -a) + \\ - a, a)

J(SiSi+i -\ntnt+l) \o,a) 0

J(SiSi+i - \riin%+i) |(7,0) 0

J(SiSi+i - \nini+l) |0,ct) 0

J(StS^i-\ninl+i) |0,0) 0

aJ(SiSi+i - \n,n,+i) \a,-,-o) f \a, -, -a) + f \ - a, -,a)

aJ(SiSi+2-\nini+2) \cr, -,a) 0

-aJ(SiSl+2 - \n,nl+2) |cr, -, 0) 0

-aJ(SiSi+2 - \ntn%+2) |0, -, cr) 0

-aJ(SiSl+2 - \ntnt+2) [0, -, 0) 0.

The ket |.,.) describes the states on the sites i and i+1 and the ket |.,-,-) the states on

the sites i, i + 1 and i + 2. A 0 denotes an empty site, a • any state and a a a particle

with z-component of spin a. The matrix is block diagonal and the invariant subspaces arc

the subspaces with constant particle number n and constant spin. In the following the ket

|.,.,.,.) denotes the state on four neighbouring sites in the chain. The calculations were done

separately in each of the following subspaces:

• n 0 or n 4, Sz ±2

This case is trivial as the subspaces are one-dimensional and the energy of these states

is zero.

• n 1, Sz ±1 or n 3, Sz ±f
In this case I used the basis

{|<7,0, 0,0), |0, <7, 0,0), |0,0,a,0), |0,0, 0, a)} respectively

{|0, <7, a, cr),\a, 0, a, cr), \a, o, 0, o), \a, a, a, 0)}
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and the matrix is
/ 0 0 0 \

•I o -t 0

0 -t 0

V o o -I o ;
• n 2, spin triplet

In this case no spin flip can occur. I used the basis

{\ff,ff',O,O),\ff,O,ff',O),\ff,0,0,ff'),\O,ff,ff',0),\0,ff,0,ff'),\0,0,ff,ff')},

where the two spins a and ct' are in triplet state. The matrix is

/ 0 -i 0 0 0 0\
-t 0

0

0

0 0

\0 0 0 0 -< 0 /
• n 2, spin singlet

In this case I take the same basis as before, but now the two spins are in singlet state.

The matrix is

t
2

t
2

0 0

I
2

0 0
2

0

t
2

0 0
2

0

t
2

t
2

0

(~i -I 0 0 0 0 \
-t -aj t

2

*

2
0 0

0 t
2

0 0 t
2

0

0 t
2

0 -J t
2

0

0 0
2

t
2 -aJ -t

I o 0 0 0 -t -J-
2 1

• n 3,Sz ±\
In this case the matrix is the biggest one, of size 12 x 12. I used the basis

{ W, a, -o, 0), |<7, -<r, a, 0), | - a, a, a, 0),

|<T, ff, 0, -ff), |<7, -ff, 0, ff), | - ff, ff, 0, ff),

\ff, 0, ff, -ff), \ff, 0, -o-, ff) | - CT, 0, CT, ct)

|0, ff, ff, -ff), |0, CT, -CT, CT) |0, -CT, CT, CT) }
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and the matrix is

/ -Jß
2

J
2

aJ
2

-t
2

0 0 0 0 0 0 0 o \
J
2

-3J
4

J
4

0 -t
2

0 0 0 0 0 0 0

aj_
2

J
4

la
4

0 0 -t
2

0 0 0 0 0 0

-t
2

0 0 -aj
2

aJ
2

0 -I 0 0 0 0 0

0
2

0 aJ
2

-Ji/
4

J
4

0 -t 0 0 0 0

0 0 -f
2

0
4

-J
4

0 0 -t 0 0 0

0 0 0 -t 0 0 -J
4 I

4
0 -t

2
0 0

0 0 0 0 -i 0 J
4

-Jl/
4

aJ
2

0
2

0

0 0 0 0 0 -t 0 oJ
2

-aJ
2

0 0 -t
2

0 0 0 0 0 0
2

0 0 -Jl/
4

J
4

al
2

0 0 0 0 0 0 0
2

0 J
4

-3J
4

J
2

0 0 0 0 0 0 0 0 -t
2

aJ
2

J
2 2 1

where p. a + 1 and v 2a + 1.

• n 452 ±l

Here I used the basis

{\ff,ff,ff,-ff),\ff,ff,-cr,ff),\ff,-ff,ff,ff),\ -ct,ct,ct,ct)}.

The matrix is
/ J(2a+1)

4
j
4

C.J
2

0

j
4

J(2a+3)
4

J
2

aj
2

aJ
2

J
2

J(2q+3)
4

J
4

V o oJ
2

J
4

J(2q+1)
4

• n A Sz 0

I used the basis

{Jo-, CT, -CT, -CT), |<7, -CT, CT, -ff), \ff, -CT, -CT, Cr),

I -<T,ff,ff,-ff),\ -ff,ff,-ff,ff),\ -CT,-CT,CT,ct)}.
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The matrix is

J(2g+1)
2

J
2

J
2

-J

Sui
2

J
4

aJ J J(2g+1)
2 4 2

aJ
2

V o 0 at

j
4

aJ
2

aJ
2

J
4

J(2a+1)
2

J
4

o \

aJ
2

J
2

J(2a+1)
2

The matrices for U2 and #2^2 are the same as for Ui and HiUi- The matrix elements

for two spins are easily calculated from the singlet and triplet matrix elements.
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