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Correlation Functions of General Observables in
Dipole-Type Systems I:
Accurate Upper Bounds

By David C. Brydges1 and Georg Keller2

Dept. of Mathematics, University of Virginia
Charlottesville VA 22903, USA

(24. I. 1994)

1.1 Background and examples

This is the first of two papers in which we will prove accurate upper and lower bounds

on the decay at large separation of truncated correlation functions of very general observables.

The context includes the equilibrium statistical mechanics of dilute dipole gases at
equilibrium. We believe that it will extend to many other systems (the Kosterlitz-Thouless
phase of two-dimensional Coulomb systems, critical </>$, d > 4, for example).

There have already been a number of studies of truncated correlations for these problems

[16, 1, 2,11, 12,14, 9,15], but these methods give rather weak bounds for correlations
of observables which are composite in the sine-Gordon field. Consider the following example.

Example 1.1.1. A dipole is described by its position x in a ci-dimensional container
AcRJ and a direction given by a unit vector ê € Rd. The potential energy, including self

energy, of N dipoles, has the form

l E {tèi-d^têj-d^c&i-xj), (î.i.i)

where I is a length that characterizes the strength of the dipole and C(x — y) is the
potential energy of two charges at x,y. We shall take this to be the Coulomb energy

'Research partially supported by NSF Grant DMS-9102584.
Supported by the Swiss NSF.



44 Brydges and Keller

modified at distances of order 1 or less so that there is no singularity at x — y but C is

still positive-definite. Thus the Fourier transform has the form

C(p) ^!l, ifp^O, (1.1.2)
ap*

where \ £ C°° and decays rapidly as p2 —> oo (see Section 1.4). For example x(x)
can be e~x. We assume that the container A is a hypercube whose side has length
side(A) and impose periodic boundary conditions on C{x) at the boundary of A. We
define C(p 0) 0 to remove the zero mode.

By the sine-Gordon transformation [13, 17], which is reviewed in many places including
[3], we can write the grand canonical partition function for these dipoles at activity z > 0

and inverse temperature ß, as

Z(A):=JdßcWe-V^M), (1.1.3)

where dßc{<t>) is a Gaussian measure on the space of functions (j>{x), which can be taken
to be C°°(A) if x(p2) decays faster than any inverse power of p2.

V(A, d(j>) := -2z [ dx f da(e) cos{Jßle ¦ d<t>{x)), (1.1.4)

where da is normalized surface measure on the sphere Sd~l. A local observable, under the
sine-Gordon transformation, is mapped into a functional of (j>. For example, the density
n(x) of dipoles at x becomes

n(x) := 2z j [
da(ê) cos(v^£ê • d<t>(x)). (1.1.5)

The expectation of a product of such observables at non-coincident points, xa e A, is equal
to

(Il *0O> zfä J dpc(4)e-v<W II «(*-)• (1-1-6)

The following theorem is an immediate consequence of our general result described in
the next section.

Theorem 1.1.2. Let d > 1. Let 6 > 0, ßf > 0. There exists3 L, z(L,ßf), C(6,L,ßa)
such that for all z G [0,z(6,ß£2)}, all xux2,A with side (A) 6 {LN : N e N} and side

(A) > L ¦ \\Xl - x2|| > L,

\(n(Xl)n(x2)) - (h(x1)){h(x2))\ < C(6,L,ß£2)z2\\xi-x2\\-2^d-6\ (1.1.7)

We will see that under the same hypotheses, the same upper bound holds for very general
even functions of d(f>.

We do not show dependence on d and x-
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Let f{x\ — x2) := (left-hand side of (1.1.7)) • ||xi — iC2||2d- This paper accomplishes most
of the work required to prove that when z is small depending on ßl2, L and x\, x2, A are
as in the theorem, then there exists c > 0 such that f(xi — x2) > cz2ß2£4, but we defer
these results to the next paper.

We became interested in this type of problem because the quantum non-relativistic
Coulomb plasma at equilibrium at long distances becomes a theory of effective dipoles.
This is argued (non-rigorously) in [5] where we produce a simplified model that is claimed
to capture this failure of screening. We produce this model by approximations which
include integrating out short distance structure. The result is that the original charge
density observables become complicated even functionals of d<j> so the results of the next
section are designed to include this model. We will give the proof that there is no screening
within this approximation in the next paper.

The previous work on correlations [12, 9, 15] would at best bound \(n(xi)n(x2)) —

(h(x1))(n(x2))\ by ||a;i — x2\\~d and would give no lower bound.

Example 1.1.3. Consider the observable (9</p)4(x) := {d(j>{x) ¦ d(j>(x))2. Under the same

hypotheses as Theorem 1.1.2, we can obtain, as a corollary to the theorem in the next
section, an upper bound by O (\\xi — x2\\~2(d~6n. This will turn out to be a sharp upper
bound despite the dimension of (d(j>)4 being (Length) ~2d so that two of them would naively
decay as (Length)-4*1. One4 reason is that (d<j>)4 couples to the interaction cos(\fß£e-d<t>) to
generate a renormalized observable containing (d<j>)2. In principle by our methods one can
construct a polynomial of 4th degree in d<j>, AT4(c></>(:r)), such that the truncated expectation
of two of them will decay as ||xi — ac2J|—4d.

1.2 The main result

Our notation is almost the same as that of the previous papers [6, 8, 10, 7, 9] of this genre.
Precise definitions of our terms are provided in Section 1.4. The following discussion covers
the main points, informally.

As in the earlier papers we start with a Gaussian measure dßc{^) defined on the Sobolev

space of functions 7is(A)/{constants}. We choose an integer P > 2 and then choose s > 2

such that 7is(A) D CP(A). The measure dßc is characterized by its covariance whose
Fourier transform is

C(p) ^T for p^O, (1.2.1)
apr

X is specified further in Section 1.4. At this stage, without loss of generality, we assume
<t 1. A is a torus such that side (A) LN for some N G N.

i(d(p)i also generates (90)2 by a diagram with a tadpole.
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We consider perturbations of duc(<l>) which can be written as a polymer expansion

E^j E Ö *(*),**). (1-2-2)

disjoint

K is defined on a class of sets called complexes which are described in Section 1.4. The

argument ^^ abbreviates the collection of derivatives (9°</>(#)) for all multi-indices a with
1 < \a\ < P- * is a set of fields also specified by (x,a), 1 < |a| < P, but not necessarily
obtained as derivatives of a single field <j>. We require that K be defined for all $ in a

neighborhood of \I>* for some <j>. As a functional on C(A x {indices}), K(X, \I>) is C°°.
A derivative of order n is a signed measure on (A x {indices})xn. We require that as a

measure it be supported in (X x {indices})xn. Thus K(X, $*) is "independent of <j>(x)"

for x £ X. If K(X, ^) has these properties it is said to be regular and local.

As summarized in Section 1.4, the polymer gas (1.2.2) is an exponential relative to the
product (A o B)(X) := E A(X ~ Y)B{Y). For this reason it is denoted by Sn+k

YcX
£xp[n + K]. G is a special function on complexes independent of V. See Section 1.4.

We can think of log / dßc£xp[n + K] as a generating function eis follows: suppose

K nK + \l01 + \202 + \1\2012, (1.2.3)

where K,0\,02,0\2 are regular and local, /x, Ai,A2 £ C. Then we generate "insertions"
by derivatives with respect to Ai, X2, e.g., at p 1, with tì2 := (dx gx Jam);

Tl2\\ogjdpc£0+k{*))\p~i z^)JdßcSa+Ko{01o02 + Ol2}(A)

¦{mJdßc

Z(A)

-{mIdtlc£a+Ko0l{A)

£a+Ko02(A)\, (1.2.4)

where Z(A) := f dpc£xp[U + K](A). Define

(Of, 02|012)A;/,,C := R.H.S. of (1.2.4). (1.2.5)

(We will have hypotheses that imply Z(A) =fc 0.)

We say that K is i-type (interaction type) iff K is regular, local, even, Euclidean
invariant and real. We say 0\,02,0\2 are O-type (observable type) if they are regular,
local, even5 and â-pinned. Pinning is the important property that encodes the idea that

5Results are also easily obtained for observables which are odd, or functionals of 0 as well as UP<j>, 1 <
kl < P.
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Oä, et G {1,2, (12)}, is a local observable. 0& is a-pinned iff there exist two points xa, a G

{1,2}, such that V X, Oa(X) 0 if X - dX J xa and 012(X) 0 if X - ÔX J {xux2}.

Norms. K and Oö are required to be finite in a norm || ||c,r,H- For the precise definition
please refer to Section 1.4. To understand the content of our results it is helpful to know
that when || J\\gx,h is finite, then for all n G N0, X, <j> G Cp,

d_

dip dil>
J(X, #*) <l^G(X,^)n!

llc,r,i/i (1.2.6)

where || \\mi is the variation norm of the measure taken pointwise in X, 9*. G(X, <j>) is a

weight that specifies how rapidly J is permitted to grow when <f> (actually V<^) is large. It
is given by

G(X,d>):=exp{K E /|^|2+-/ I

I l<\a\<sJx CJSX
(1.2.7)

for some k > 0, c > 0. T(X) is a weight which becomes very large when the set X is

either large in volume or highly disconnected. It is specified by two parameters A, Q, of
which the important one is A. When A is large, T(X) grows rapidly as the volume and
"disconnectedness" of X grow. See Section 1.4. For simplicity we set Q 1,

Parameters. First there are the parameters: d > 1 (dimension of space), P N° of
derivatives on which K, Oa are permitted to depend, c a constant in the function
G(X, 4>), s index of Sobolev space ~HS(A)/{constants} in which <j> lives, % the cutoff in
the covariance. We suppose these have been chosen and we do not show how constants
depend on them. The remaining parameters are 8 € (0, 5), see Theorem 1.1.2, L € N
which specifies that side (A) LN for N G N, A, Q 1, specifying T, k specifying G,
and H. G, T and H are parameters in the norm || • ||G,r,#-

Choice of parameters. V5 e (0,|), VL > L(6), VA> A(L), Vk g {0,k(L)}, VA' >
H{L,A,k), V7-type K with H^Hcr.w < p(L,k,H), V O-type O« with ||Oä||G,r,ff < 00,
where k(L) > 0, p{L, k, H) > 0.

Theorem 1.2.1. There exists a choice of parameters as above and C(L, 6) such that for
all A with side (A) G {LN : N G N}, all xux2 G A with ||a!i - x2|| > 1 and with side

(A) > \\xi -x2\\ ¦ L:

l<Oi;02|012)AiK,c| < ||*i - z2||-2(d-*> • C(L,6)

¦jll«! -*2||-*||013||C^ + fi llO-lkr,»}. (1-2.8)
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The power ||a;i — x2\\~i could be replaced by \\xi — x2\\~r for any r > 0, fixed before the

parameters are chosen.

A similar theorem holds if 0\, 02 are odd functional of <&, but ||a;i — x2\\~2^d~6') should
be replaced by \\xi — X2II • Also observables can be permitted to depend on <j> as well as

&*<}>, 1 < |a| < P, in which case the decay becomes \\x\ — x2\\~2(d~2~6) for even observables,

ll^i — x2\\~(d~2~6) for odd observables.

Proof of Theorem 1.1.2. We deduce the result from Theorem 1.2.1 by writing

n(Xi)n(x2)e-^™ g^L-o U **<»»
CAidA2 AcA

V(A,3<t>) := V(A, d<j>) + EKn(xa)lA3Xa, (1.2.9)
a

where A is a unit block as defined in Section 1.4 and without loss of generality xa £ dA
for any A C A; if not, move A. Expand

n(e-^>-i+i) e^ e n *w.*)
A ¦

X1,...,XNCA >">

disjoint

£D+*(A), (1.2.10)

where (X\,... ,Xn) is summed over iV-tuples of disjoint connected sets that are unions of
blocks A C A, and

K{X,d<j>) := Il (e-*(A,*) - l) • (1.2.11)
AcX

Then
(n(xi)n(x2)> - (n(xi))(n(x2)) (0i; 02|012)A;/f,c, (1.2.12)

where 0„ -grl^oK, Oi2 3A89A \Xa=oK, K K^^. It is easy to prove that there is

{ßf){H) > 0 such that for ß£2 e[0, (ß£2){H)]

z^O^ \\K\\G,r,H 0(z) for G,T,H

as in Theorem 1.2.1 and that ||Oa||G,r,ff 0(z) (for ä G {1,2}), 0(z2) else. See, for
example, the proof of Lemma 5.1 in [6]. It is clear that K is /-type, Oö is O-type,
therefore all hypotheses of Theorem 1.2.1 are implied by the hypotheses of Theorem 1.1.2,
and we obtain Theorem 1.1.2 from (1.2.12) and (1.2.8).
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1.3 Bilinear Formulas, Summary of Proof

The proof of Theorem 1.2.1 is accomplished by controlling the renormalization group map
RG. RG is a map, for j € No,

(AW; K^\ (#>, CU>) -^ (Ak-+1>; tfÜ+D, 0^+1), &+») (1.3.1)

where A^ := Z,"*A, C^(p) x(p2)/(<r<V for p ^ 0, Ä-« is /-type, C#\ «€{1,2, (12)}
are O-type for all j.

RG is induced by a map T using

o£+1) liTlÄ«]^!, (1.3.2)

where r acts on / /(Alt A2) by r0f := /(0,0), raf := (3/(ÖAa)/)(0,0),
ri2/ := (a2/(aA,aA2)/)(o,o), kv) := Mjr0) + E Aöo^.
A12:=AiA2. â G {1,2, (12)}.

T is designed so that

J dfica.SD+Äü) (A«) iV-W) • e^0''* J dpc(j+i)£a+T^ (A^), (1.3.3)

where N^ is independent of A„, flj (A^) depends on /x, Aa and will be discussed below.

We iterate (1.3.3), starting with (A^^WO^C^) {A;K,Oö,,C) as in Theorem
1.2.1, N times so that A^ is a unit block. By setting p 1 and applying t12 to the
resulting identity we obtain

(Oi;02|012)A;X,c E^^^'IU
+r12 log y dßcmSa+km (AW) |„=1, (1.3.4)

which essentially reduces our task to analysis of X)r12f2; (A^^).

T is constructed as a composition of maps F, S, B, £ji, £j whose action on a local regular
polymer activity J is defined next.

T: £a+™=pLil*£a+J. (1.3.5)

Pl,\ is convolution in field space by a Gaussian measure d/iz,,i> to be further described
below. We shall need the first and second derivatives !F^ and J^ defined by

&M ¦¦= J^=o^[AJ]

T^lJuH := ^t^t-U=o^[AiJi + A2J2]. (1.3.6)
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They are given more explicitly by

^2)[J2,J%] Pi,i* (Ji o Ja) - (aìj.1 * Ji) o (Mi>1 * J2), (1.3.7)

see Section 6.

S is rescaling defined by

S : S[J](X, *) := J(LdX, 9L). (1.3.8)

We define (ôa^)L(a;) := L1'^2-^^ (f This defines (¥*)L and (tf)£ in an obvious way.

Z? reorganizes a polymer expansion on (scale l)-polymers into a polymer expansion on
(scale Z.)-polymers. Thus it is defined by

B: SxpLpL + B[J]](X) Expip! + J](X)
V (/-scale)-polymers X. (1.3.9)

?i and £xpi aie defined as were Exp £xp^ and D Dj but with (scale /)-cells (see
Section 1.4) replacing (scale l)-cells. We shall need B^ and B^> defined as first and second

derivatives of / 0 in analogy to T^1 above. They are given by (see Section 4),

BM[J](U) := E J(X)
X:X=U

&2)[JuJ2Ì(U) := E Ji(Xi)J2(X2), (1.3.10)
Xi,X2

where X\ U X2 U, ÂinÂ2 ¥" <t>, Xi f~) X2 <f>, U is a. (scale /)-polymer and for any
(scale l)-polymer X, X is the smallest (scale Z,)-polymer such that X D X.

The operations £j, £jj remove relevant operators from polymer activities and are
designed so that

£# : £n+-'=en*^£a+r*W (1.3.11)

with # / or // together with: il/[J] is a field independent polymer activity chosen such

that
£l[J](X,V 0)=0, VA', (1.3.12)

fi//[J] is a polymer activity of the form

n„[J](A,**) ~Sa jjz{d<j,)2{z). (1.3.13)

8a G R can be chosen so that certain low-dimensional parts6 of J are cancelled on small
sets (a class of polymers defined in Section 1.4).

6£n is applied to J := Si[K">], which is analytic in /*, Xa. ba is chosen to cancel (d<j>)2 in tqJ; hence Sa

is independent of AQ, analytic in fi.
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The n^(AW) in (1.3.3), (1.3.4) is given by

fi^(Aü)) fi/[tfü)](Aü)) (1.3.14)

fi//[J] in (1.3.11) with J £i[K®] is absorbed into a shift in the covariance Cü) -> SC^
and change of normalization of dpco) in (1.3.3). This is why there is N® in (1.3.3). Then
the covariance Cl,ì of the Gaussian measure piti in T is chosen so that when a^+l^ :=

5CÖ)(p)-Cw(p) +^.
Then T := To S oßo£n o£/ satisfies (1.3.3) sis can easily be verified.

(1.3.15)

The main difference in this procedure compared with earlier versions, e.g., [6, 8,10, 7, 9]

is that £j is designed so that £j[J](X, 0) is identically zero for all X, not just ö(/2) on
small sets. This gives some neater formulas and is not much more difficult to handle (but
we could carry out the procedure with the original type of extraction as well).

From these formulais straightforward calculations permit us to calculate the image
T[K^], T := T o S o B o £u o £/, to order 0(p2, pXa, A2 The corresponding formulas will
be useful in our next paper in which we obtain lower bounds so we summarize them here.
Given any analytic J J(/x, AQ), e.g., 7 T[K^], we define p., Xa independent coefficients

(J)p, (J)* by
J ß(J), + EW)« + 0(ß2,pXa, A2).

The next proposition refers to a linear projection 72.^ discussed in Section 3. It projects
a polymer activity J(X, *) onto a new polymer activity with no parts of dimension less

than or equal to d.

We find, by easy calculations, that

Proposition 1.3.1.

{T[K^])# JFW[(J)#], # pova,
(T[kM))n ^[(JU+^[{J)u{J)2),

where, upon defining 60(-,$>) := 0(-,\P)
satisfies

O(-,0) and 8K{-,V) := K(;V) - K(-,0), J

(j)a(-,*)
(J)12(-,*)

SoB^oTl^iSK^i;^)]
S oBW[60W (¦,*)]
SoB^[60^(;^)]

-5oßW

+SoB®

Ü),E (SOf\Xu *) ¦ 0^(X2,0) + (O, ~ 02))

XjnXiït

60[Ì)(;*),80<Ì\;V)}.
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Proposition 1.3.2.
T12fi^(A0'>) E Tì2U>l[k^){X),

Xc\0)

where r12 a^L-o, and

u,[K^](X) := ^'(A'.OJ + ^A.O^^O)
-A:A2 E O(f\xl,0)O^(X2,0)

XXUX2=X

+0(p2,pXa,X2a).

See Section 5.3.

The first step in proving Theorem 1.2.1 is to repeat the arguments of [6, 8, 10, 7, 9] to
establish a crude bound

||T[#%+1< 0{Ld)\\KV>\\i,

i
where || ¦ ||j := || - \\G(s),r,H an<l G® ls determined by k,V> /c^2~2n with k,T,H as in

o
Theorem 1.2.1. We use this crude estimate in conjunction with good bounds on bilinear
approximations to get better bounds. For example, starting with 0£'+1' := TaT[k^]p^i
and expanding about p 0, we obtain

\\0<i*%» < ll(T[ifO>])„||,.+,

By choosing a large p contour and using the crude estimate we see that the second term
is 0(||i^^'||j||0^'||;). Easy estimates on the explicit formula for the first term show that
||(T[jK"ü>])a||i+1 < 0{L~d)\\0^\\j. Since we choose ||i<:(0)||o small after fixing L and since
this will imply that ||Ä"^||j is small compared to L~d, the second term is negligible in
comparison with the bound on the first term. This type of argument, introduced in [7],
also permits all 0(p2,pXa,X2) terms in Proposition 1.3.2 to be ignored and reduces upper
(and lower) bounds to calculations within the bilinear approximations.

The introduction of the bilinear A1A2O12 into the generating function is an important
ingredient in the success of this procedure. Good estimates on correlations of more observables

would require higher order terms but we see no obstacles other than notational ones.
It would also be possible to analyze other types of observables, e.g. odd functionals, or
perhaps functionals of 4> or d"^ for some \a\ ^ 1. The only new issue, other than changing
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some dimensions, would be whether perturbation theory couples the observable to new
operators of lower dimension than the original observable (see Example 1.1.3).

Organization: Sections 2-4 introduce the operations £/, £//, B. This is largely
already in previous papers but we have been more complete. Section 5 gives bounds on
the composition S o B o £u o £j. Section 6 covers the T operation. Section 7 puts it all
together to get our main results. We have begun each section with a synopsis and generally
the synopsis is enough to obtain a good understanding of the rest of the paper.

1.4 Appendix on Notation

The order of topics is (with some cross references):

• Objects connected with geometry in Rd, particularly polymers;

• functions on polymers, polymer activities;

• functions on Rd, particularly fields;

• functionals of fields;

• notation connected with observables;

• parameters and constants.

• Norms on Rd:

1x1 := max IxJ;
i

d

11*11 (XXJ •

• Cells: To each point â G Zd we associate a d-cell a which is the open hypercube
centered on à

a := ix G Rd : \x - &\ < - j

A (d — l)-cell is an open face of a d-cell. Similarly there are (d — 2)-cells,... ,1-cells,
0-cells where 1-cells are edges of ti-cells and 0-cells are vertices.

• escale cells: Given £ G N, we can replace Z by £Z in the above construction. The
resulting r-cells, r 0,..., d are by definition ü-scale cells. Cells are 1-scale unless

we state to the contrary.
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• Complexes: A complex X is an empty or non-empty union of cells.

• Blocks, (A): The closure of a ti-cell is called a block. We generally denote blocks by
the letter A.

• Complex Activity: A C-valued function J(X) defined on all complexes X is, by
definition, a Complex Activity.

• Some special Complex Activities, (1, ?):

ion := I1 ifx 0

I 0 otherwise.

n,ys J 1 if X is a cell
1 0 otherwise.

• Circle Product, (o): Let J\ and J2 be complex activities, we define a commutative
product

(J, o J2)(X) := E Ji(Y)MX - Y).
YcX

Under this product the set of complex activities forms an algebra with identity 1(X)
(defined above).

• The Exponential, (£J): Let J(X) be any complex activity such that J(0) 0. Define

£\X) £xp[J]{X) := \{X) + J(X) + ^Jo J(X) + ¦¦¦.

This series terminates after a finite number of terms determined by X.

• Polymers, X: X is a polymer if either X 0 or X is a union of blocks. We denote

polymers by X,Y, The reader should assume these letters represent polymers
unless informed otherwise.

|X|:=|{A: ACI}|.
• Some special polymers: A := {x G Rd : |a;| < iside(A)}, where side(A) LN for

parameters L,NëN. All fields (see below) will be continuous functions on A with
periodic boundary conditions on dA. Therefore we refer to A as a torus.

• Rescaled A, (A^) : We set, for j G {0,1,..., logj, side(A)},

A« := L-'dA<°>; A<°> := A

We give the remaining notation for the case A^=0' A except for the discussion of
pinning of observables where the generalization involves more than replacing A by A^
everywhere.
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• Special polymers (continued), small sets, (5): We say X is a small set, X G S iff

\X\ < 2d and X is connected.

• The overlap graph Given a set {X\,..., Xn} of polymers, the overlap graph is the
graph whose vertices are 1, ...,n and whose lines are those pairs {i,j} such that
XiHXj^H).

• Polymer Activities, (J(X), K{X)): A complex activity J(X) is said to be a polymer
activity iff J(0) 0 and J(X) 0 whenever X is not a polymer.

• Fields \P: Fix an integer P > 1. Let p := (pi,...,pp) where 1 < p < P and

Pj G {1,..., d). Let |/x| := p. tyß(x) is a collection, indexed by pi, of C(A) functions,
which are periodic on A. We write

$(£) := Vp{x) where £ := (x;p)

* := (**(*)),

where p and [/i| range over all their domains. The point of this notation is partly
explained by considering the special \I/'s defined by: let <j> G CP(A) be periodic. Then
define

¥*(0:=9„,-"MO«O when £ («;/*)•

Given p, we define Jdp{£)f(£) := fdx E /»0e)-
/•>I=P

• Norms on fields:

'1*11

l*,.||

dist($)

max max II $J
p-.i<P<P r.\,4=p

Ml

max | "^(x) |

x€A

infJ|*-*Ì
HS(A) is a Sobolev space, s s(P,d) is chosen sufficiently large that Hs D CP(A).

• Functionals on Fields: K is regular iff (a) K /f(X, *) is a polymer activity, (b)
K is C°° with respect to ^ G O(A), viewed as a Banach space with supremum norm
(see below).

• Functional Derivatives: Since we require existence of (Fréchet) derivatives with
respect to typ, the derivatives of a regular K(X, ty) are regular Borei measures on (Ax
indices)** where # the number of derivatives. Let n (n\,... ,np), nP G No,
signify np derivatives with respect ot (vPM(x)), \p\ p, x G A, p I,...,P. We

write
D(n)K{x, *; 6,i, • • •, 6,», ;••-,; ÌP,u ¦¦¦, 6>P)



56 Brydges and Keller

for the regular Borei measure which is formally

and
p

\n\ := JI np.
p=i

• Weak Equality, Let K^ and K2 be regular. We say

Kl=K2 -^ KX(X, **) K2{X, **)

for all X and all <j> G 7is(A) (periodic).

• Local: K(X, \T/) is local iff (a) it is regular, (b) V n, D(n)K(X, ty) is supported (sis

regards the x part of the measure) in (X)xlnL

• Even: K(X,V) K(X,-V), VX.

• Euclidean Invariance: For all E G 10(d) with E(Zd) Zd we set xE Ex mod
periodicity of A. Then for any polymer X, Xe := {xe ¦ x G X} is a polymer. E
decomposes into a translation and R G 0(d). We define

(*£)„„...,„>£) := iW, • • • *^*4_*(*)-
A regular polymer activity K is said to the Euclidean Invariant iff K(Xe, *e)
Jf(X,$)VX, VS.

• Large Field Regulators, (G,g): A Zarge field regulator g(X,<j>) is a function defined
for all polymers and all <f> G 7is(A) such that g(X, <f>) > 0 VX. Further properties are
imposed and listed at the beginning of each section. The following specific regulator

GK(X, 4) := exp [ k E / I9"'*!2 + - / \d<t>\2

obeys

• Lemma 1.4.1. [[9],Appendix A] If s > s0(d),c > co(d), then Vk > 0

(a) GK(X,4) > GK(X',4) VIDI'
(b) GrK\\JXJtA>Y[Gll(XJ,4>)

where t := sup \{j : .X^ 9 x}|
leA

(c) GK>1, G»(X,0) 1.
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[The parameters c and s can be set so that this regulator is consistent with all
conditions imposed in the rest of the paper.]

• Large Set Regulators, (7, T): A large set regulator 7(X) is a function defined on all
polymers X such that *y(X) > 0. The following specific large set regulator T appears
throughout:

T(X) := Am0A(X), some A > 1,

where

6A(X):= inf T[eA(\b\),
trees r on X ber

where ronl means that r is a tree graph whose vertices are the centers of blocks

Ain X, whose edges are denoted by b G t. If b xy, then \b\ := \x — y\. 6A is a
function on No such that

0,4(0) Mi) 1,

eA(s) ¦ A-* <eA(^}) <eA(s)A~'

for some Q > 1, where {x} := smallest integer larger than or equal to x. The
following lemma is easy to prove:

• Lemma 1.4.2. Let dist(X,Y) := inf{|x - y\ : xGX, y e Y}. Then

(0 r > 1;

(ii) r(iuY) < rpnr(Y)6u(dist(x,y)).

• h and h: These will be used to measure radii of analyticity of functionals of \P. We
set h := (/11,..., hp), hp > 0 Vp 1,..., P. hn := J] hp. When hp h, Vp, we

p
write h instead of h.

• Norms on K(X, \T/): for any polymer activity J(X)
|| J||, := sup E J(X)l(X).

A ADA

For any regular polymer activity, K(X, ty),

\\D(n)K(X,V)\\ := var D(n)K(X, $),
where var is the variation norm of the measure.

\\(D(n)K(X)\\s ¦.= Y,^v(9(X,4))~1\\D(n)K(X,^)lA\\,

where &. (Au AN) and lA(£i> • • • ,£|n|) 1 •*=*•& (x^/ii) with x{ G Ai; *

l,...,|n|.
\\D{n)K\\,„ := ||(||.D(n)tf(.)UI|r

Sup E l(X)\\D(n)K(X)\\g
A XDA

\\K\\gnM := Y,hn\\D(n)K\\9,7.
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We write ||Ä"||9,7)fc when h (h,...,h).

• K.(g,*i,h) := Banach spaces of all regular local polymer activities K with the norm
\\K\\g„,h < oo.

• /-type: A polymer activity K(X, ty) is said to be I-type (I for interaction) iff K is

regular, local, even, Euclidean invariant, and real.

• O-type: See below, under notation for observables.

• Pinning: A polymer activity K(X) is said to be pinned at j/i,..., yr e A ~ (J dA if
A

K(X)^O^XByi, VX, Vi l,...,r.

• a-pinning: a G {1,2}, ö G {1,2,(12)}. Similarly ya G {yuy2} where yuy2 G A ~

IIJ9A and j/i2 (yi,y2). -K"ä(X) is said to be â-pinned iff Zfö is pinned at y6 for

some yuy2.

After j iterations of the Renormalization Group: Kg(X) is defined on X C A^\
Given X\, x2 G A'0) ~ [J dA we say Ä^ is pinned iff /Q is ö-pinned at yä := x^ :=

A
L~jxä.

• For Ai, A2 G C, set A(i2j := A]A2, and if F is a sufficiently differentiable function of
Ai, A2, then

t0F := F(Aj 0, A2 0)

raF := (£-f) (Ai 0, A2 0)

T»F (ä£kF)(A'=0'A2=°)

• O-type: A polymer activity Kä is O-type (O for observable) iff Ka is regular, local,
even, ä-pinned.

• Parameters: Choose and fix once and for all

(a) d > 1

P>2
c > co(d) (in GK)

s > m&x.{s0(d), s(P,d)}

(b) n > e (will appear in large set regulators).

(c) x G C°°[0,oo) such that (1) 0 < X < 1; (2) for x > 0, £x(x) < -£x(a;)(l "
X(*)); (3) J?°d**"|(Ê)mx(a!)| < oo, Vn,m > 0.
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[This x is the high momentum cutoff in the covariance

O(p)=x(p2)/(p^)l^o(p).

A possible choice is x(x) e~x.]

See below for conventions concerning constants.

Choose xi, x2 G Rd ~ (J 9A with |xi — x2| > 1 (without loss of generality).
A

• Additional parameters set in the proof.

LG {2,3,...}
A, Q in T

k in GK

H (specific instance of h in || ||c,r,fc)

J G N0 defined by LJ < |x, - x2\ < LJ+1.

N G N, N > J + l), determines A A(0), side (A) LN (thus N large enough
so that xa G A<°>).

• Constants: Constants occurring in the proof are denoted by C(-) where • is a list of

parameters which must be fixed before C(-) can be considered "constant." We do

not include in this list parameters occurring under (a), (b), and (c) above.

2 Extraction I (£j)

The purpose of this section is to define and study the operation K —» £i[K] discussed in
Section 1.3. See Lemmas 2.1 and 2.2.

Lemma 2.1. Let if bea regular polymer activity on A. Assume that there are g,l/,h,
with a7 > e, such that

Then there exists a regular polymer activity fi/[ZsT] satisfying

ea,li<i(x) sa+K(X, V 0), V X C A. (2.2)

fi/[K] has the following additional properties:

(a) fi/[AT] is analytic in K on C/f7(0) C K.(g,~j,h).

(b) «*fi/[UT]=0.

(c) K(-, * 0) G R =*• üi[K\ G R.
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(d) If K is invariant, then so is fi/[ÜT].

Proof. Under the hypotheses of the lemma, the convergence of the Mayer expansion for
£n+K (X, ty 0) is an immediate consequence of Theorem 3.4 in [4]; indeed (cf. (3.10a) in
[4])

Qx := Ei?sup
d>o d\ AcX

\
\dE |üT(r,* o)|-|y|

YcX
Vy3A /

< 0a < E i^P [ E \\D(0)K(Y) ||, - \Y\d)
d>o d- aca \YdA J

< EJfSupfE \\D(0)K(Y)\\g-y(Y).SMp{a-^\Y\d))
d>o d\ aca Vi^a \y\

v ')
< ||^IUA-E^e-dj-(log(a7))-'i<l, VX CA,

where the last inequality follows from ^ < ed, from a7 > e and (2.1). Therefore, we define

fi/[Ä] by the Mayer series

fi/[X](X) :=EA E fn^(^* 0)i-*c(Xi,...,Xn) (2.3)
n>l n- Xlt...rXncX V=l /

(where *c(Xi,..., Xn) G R is defined in [4]). Qi[K](4) 0, 5*fi/[X] 0, and so fi/[Ä"] is
a regular polymer activity; by its very definition fi/[X] obeys (2.2); and finally, properties
(a), (c), and (d) are easily inferred from (2.3).

Lemma 2.2. Let K be a regular polymer activity on A obeying the assumptions in Lemma
2.1. Then there exists a unique regular polymer activity £i[K] such that

£n+K(X) =en<WW£a+e'W(X). (2.4)

£i[K] also satisfies

(a) £j[K] is analytic in K on U^(0) C K(g,i,h).

(b) £/[X](X,#=0) 0.

(c) K G R => £i[K] G R.

(d) If K is local, resp. even, resp. invariant, then also £i[K] is so.
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Proof. In order to prove (2.4) (and simultaneously (a)-(d)), we use induction in |X|.

|X| 0: According to our conventions, if we want £j[K] to be a polymer activity we
need to define £j[K](<j>) := 0. Luckily, this definition is consistent with (2.4) at X 4 and
with (a)-(d).

|X| > 0: The induction hypothesis is that we have found a unique regular £j[K] on all
polymers Y with |Y| < |X| such that (2.4) and (a)-(d) hold on all these Vs. Induction
step: Since £a+r'W(X) 1 + £,[K](X) + ¦ ¦ ¦, where the omitted terms, indicated by • • •,
Eire (by the induction hypothesis) well under control, there is evidently a unique regular
£i[K](X) suchthat

£o+et\K)(X) e-U,\K\(X)s°+*(X);
hence (2.4) holds at X. At the same time this argument tells us that £j[K](X) obeys
(a)-(d) because fi/[X] satisfies (a)-(d) in Lemma 2.1.

3 Localization, Extraction II (Ör\ 7&\ Sn)

3.1 Summary

The first purpose of this chapter is to construct, for each r G |N0, linear complementary
projections Ö-r\ "R.^ defined on any polymer activity J such that £M[J](X,V>*) is the
integral over x G X of a polynomial in derivatives of <j>(x). £'r)[J](X) vanishes ifX is not
a small set; £'r)[J] has scaling dimension less than or equal to r. /^[J] under rescaling,
x H-> x/L, decreases in norm as X~r~5 or better. These properties are summarized in
Theorem 3.1.1 below.

We have given the construction of C^ and 1Z^ in some detail because previous
discussions, e.g. [3], contain "errors of omission." The main point is that the remainder 72.^

is constructed by integrating derivatives of fields along paths: to construct 72.'r' [J] (X, V>)

such that (1) dependence on ip is localized in the set X (2) lattice Euclidean invariance is

preserved requires some care. Furthermore, the projection properties of £(r' and TiS^ are
new results.

The second purpose of this chapter is to define an extraction £u with the properties
that

£a+K(A, il>*) en"[,<KA^)£D+('"m(A,il>'1'),

where C^[£U[K\] 0, and fi//(A,V) E C(d)[K]{X,il>). In particular, if K is lattice
XcA

Euclidean invariant and has no field independent part (because of the £j extraction), then
fi//(A,y><*) \8a SK(d4)2(x)ddx for some 8a.

In order to read the rest of the paper the essential parts of this chapter are given in
Theorem 3.1.1 and Section 3.4, where £//, fi// are defined and their important properties
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are listed.

Theorem 3.1.1. For each r G ^N0 there exist linear projections Ör\ 7ÓTÌ : K.(gt,f,h)
—* K.(gt,i,h) for all e > 0, 7, h > 0 such that

(i) £«, 7e<r> are complementary projections: £M + ftW /^ ^W^M 7e«£M 0.

(ii) Given J G K.(gt,~/,h) there exist coefficients ^[^(X) such that

£<r>[J](X,V*) E E aM[J](X)/ddx^^(x)---a^^(x),

oM[/](X) 0 if X is not a small set,

where7 1 < \iix \ < |/i21 < • • • < l/i^ | and the sum is over all /* with

(iii) Suppose J(X) 0 whenever X <£ 5. For all e > 0, 7, h > 0, £ > 1,

W^MiL^, < C(r)£->-l lì + —^J \\J\\at,-r,H

where

ht:=h-(H,H-\...,H-p+1).

(iv) If / is lattice Euclidean invariant, then so are £(r)[J] and ~RSt)[J].

3.2 Localization (Cr, 7tr)

We localize a polymer activity which is a polynomial in the fields by "moving" the fields
to a common point which is then averaged over X, the support of the polymer activity.
The difference between the polymer activity and its localized form is written in terms of
integrals along paths joining the positions of the fields to the common point. These paths
are chosen carefully so that

(1) the localization operation is a projection;

(2) the formula for the difference is Euclidean invariant and still supported in the same
set X.

7The m 0 term, being equal to a^[J](X)|X|, is included in the sum over m.



Brydges and Keller 63

We now turn to the construction of these paths although only one endpoint of the path
plays a role in the localized polymer activity which will be the first topic.

Construction of paths on small sets: For each small set X, and for each pair {a, ß} of
cells in X, consider the set of continuous paths lying inside X connecting the centers â, ß of
a and/?. The minimal length paths of this set of paths are polygonal; let 7;({a, ß};X), i
1,..., n(X, a, ß) be the set of them. Next, for each pair of points {x, y} in X we define

the polygonal path 7;({x,y};X) := [x,a(x)\ U ^({a(x), a(y)}; X) U [a(y),y], where a(x)
is the cell containing x and where [x, y] is the straight line connecting x to y.

Definition 3.2.1. For each small set X and each pair of points x, y G X, let 7x>a:,y(t), * G

[0,1], be the parametrized and piecewise differentiable chain8

7x,*,y := (n(X,a(x),a(y)))-1 E 7x,*,y,i(*)
i=l,...,n(X^»(i))«(y))

where

(a) {-ïx,x,y,i(t) ¦ t£[0,1]} 7i(R y}; X);

(b) 7x,i,y,i(* 0) x, 7x,*,j,,i(* 1) y,

(c) if, for given t, 7x,x,y,i(*) is within a linear segment of 7;({x, y};X), then the velocity
ItXwWI is given by

l7x,*,y,i(*)| length of 7>({«, v}\X).

We note that according to this definition

7^,y(*) 7x^(1 - *)• (3.2.1)

Definition 3.2.2. We say that the regular polymer activity M is a local monomial of
degree deg(M) m > 1 if there are pi,... ,pm G N with 1 < pi < p2 < ¦•¦ < pm such
that

M(X,*) { /*"<*€>*&> •¦¦*<«. *eS, (3.2.2)
I 0, X £ 5,

where £ (£i> • • •, £m) with l/ijl pi} and where the x-part of the support of the regular
Borei measure dM(X, £) obeys

x - supp (ÌM(X, C) C (X)m, X G S. (3.2.3)

A chain is a formal sum of parametrized paths.
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The dimension of M, dim(M), is defined as

dim(M):=E^-l+prV (3.2.4)

A local monomial M of degree 0 is by definition a ^"-independent polymer activity
supported on small sets; moreover, dim(M) := 0.

n

Any polymer activity P which has the form P E M-> each Mr a local monomial, is
r=l

called a local polynomial.

Definition 3.2.3. The local monomials M,M' are called equivalent, M ~ M', iff

(a) deg(M) deg(M') m,

(b) if m > 1 (M* has pf,...,p#) : p; p[, Vi.

We will write Em for an equivalence class of local monomials of degree m.

Fix Em; assume that Mi G Em, i G /, |/| < oo; then M := E01«-^«' »i £ C,
is/

belongs to E1», as well, and, if m > 1, then dM y. OjdMj. Every local polynomial
ie/

JW EaiMi' M' - (Mi)>e/'> can thus be written P E E(-^vl')£m where (ffo-)^
>e/' m>0 £^,

E M[a\ G £m. If we have another decomposition of Pya as Pm1 Pm" — E a"M",
iel' iëi"

then obviously E EC^Oß» E E(-^")ß»- However, since
m>0 £„ m>0 £m

EEME„=0=*M£„,=0, V£m,

we see that (Ziv[»)£m (i\l»)iBm- Moreover, M 0 =*- dM 0.

Definition 3.2.4. Let M be a local monomial. We define the localizing operator L by

L[M] := M, if deg(M) 0; (3.2.5)

'
0, if deg(M) > 1 A X i S,

]jriJxddzM(X,*olx^.)(t 0))
L[M](X,V) :-- (3.2.6)

J dM(X,i)^Jxddztypl(z)---typm(z),
if deg(M) > 1 A X G S.
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Corollary 3.2.5. (a) L[M] is a regular, local polymer activity, supported on small sets;
in particular, L[M] is a local monomial.

(b) If M G Em and M E OjMj, Mt G Em, a* G C, then L[M] E *ìL[Mì\.
iel iel

Definition 3.2.6. Let P be a local polynomial. Decompose P Pm> Eai-^«'- Define
»€/'

LM'[P}--=J2<-L[M[\. (3.2.7)
>e/'

Corollary 3.2.7. Let M', M" be any two decompositions of P. Then L^[P] Lm»[P]-

Proof. Use Corollary 3.2.5(b) and the remarks after Definition 3.2.3:

lm>[p] E«;-i[mj=EE E «I'iM
ie/' m>0 £„ •€/'

EE^
m>0 £^,

E «i-K
ie/'

EE^K^kJ
m>0 £^,

EE£[(W«.l - IM'[n
m>0 £^,

Definition 3.2.8. Let P be a local polynomial, and let M be any decomposition of P.
Then

L\P] := LM[P}. (3.2.8)

Corollary 3.2.9. (a) L[P] is a regular, local polymer activity supported on small sets;

L[P] is a local polynomial.

(b) L is a linear operator.

(c) P is even/real/invariant =>• so is L[P],
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If m deg(M) equals 0, then L[M] M; if m > 1, however, we have, for X G S,

M(X,*)-L[M](X,*) ^^^{M(X,*o7XiZi()(r l))

-M(X,*o7X|2i(.)(r 0))}

w\l^zf«dtd\M^°^{t)) (3-2-9)

m

EM(,)(^*(i)).
i=i

where9 *» a (*(£),..., ®(6_,), ^(x,), ¥(&.,),..., *($.)), and

M«(X,*«) ^\jxddz £ dt J dM(X,Z)Y,(ix^m»

II *p,(7x,*(*)) J ¦ ö„*w (7*,*(*)) • (3-2.10)

Define now, for X G 5, Af(i)(X, *) by

M«(X,tf) := JdM(X,^-^-ilxddzJoldtY,(ix^i(t)),

Il **(?*..*(*))] • **,« (7^,„(*)) • (3.2.11)
r±i j

In passing from (3.2.10) to (3.2.11) we have replaced d„'I,Mj by *^,i/; these are only equal
when \P \P*, which is the reason for the appearance of in Corollary 3.2.11 below.

It follows that MW(X, •) is a bounded linear functional on C((Xm)x (index space)).
Hence, by the Riesz representation theorem, there exists a regular Borei measure a\M^'{X,^),
supported in Xm, such that

M«(X,*)=/dM«(X,£') ¥(£)¦••*(£), (3.2.12)

and where £' (£[,... ,Ç'm), having \(i'e\ < \p'e+1\, is obtained from

(&,...,6-1, (Xi;(ft,^)), &+l> •••.£»»)

by a permutation tv G Sm to put the arguments in the order imposed in Definition 3.2.2.

AfW(X, V) thus is a local monomial, of deg(Mw) m and dim(AfW) dim(M) + 1.

Finally, we define the local polynomial R[M] by

(0, X $ S or deg(M) 0

R[M)(X, *) := g mW(X) v)i x e 5 and deg(M) > L (3.2.13)

9For 7 a chain, 7 := Ea^, we define JJ, f{i(t))dt := La* /0 f(fi(t))dt.
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Corollary 3.2.10. (a) If M G Em and M E «iM, Mi e £m and m G C, then

P[M] E«ì-R[Mì].
iel

iel

(b) M even/real/invariant =>¦ P[M] enjoys the same properties.

Just as we did for L, we now define Pim[-P] aQd show that Corollary 3.2.10(a) implies
Rm'[P] =Rm"[P}; hence

R[P] := RM[P] E a*Ä[Wi]. (3.2.14)
»6/

Corollary 3.2.11. (a) R[P] is a local polynomial.

(b) R is linear.

(c) M=L[M]+R[M].

Definition 3.2.12. The localization operator, £r, r G ^2, on local polynomials is defined

as follows. For a local monomial M
[r-dim(Af)]

£r[M]:= E ^[Ä*[W]]. (3-2.15)

where, for x G R, [x] := max{z € Z : z < x} (and hence £r[M] 0, if dim(M) > r); and
for the general local polynomial P

Cr[P] := £^[P] E«^r[M;]; (3.2.16)
ie/

as indicated (and as readily checked) £rM)[P] £rM„[J3]J and so the definition (3.2.16)
does make sense.

Corollary 3.2.13. (a) £r[P] is a regular, local polymer activity supported on small sets;

£r[P] is a local polynomial.

(b) £r is a linear operator.

(c) If P is even/real/invariant, then the same holds for £r[P]-

Definition 3.2.14. M will be called localized if there is a local monomial M' with
M X[M']; similarly for localized polynomials.
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Lemma 3.2.15. If M is localized, then L[M] M and M« 0, 1 < i < m. Thus

R[M\ 0.

Proof. If M is localized, then M has the form (X G S)

M(X,*)= E A1(X,M)-/^x^l(x).--^(x), (3.2.17)

as can be seen in (3.2.6). This immediately implies M L[M], so let's turn to the second

assertion.

Fix X &S. From (3.2.17) and (3.2.11) we infer that (ji (/n,... ,ßm))

M«(X, /) E mMXp) ¦ F(X, f,n, u), (3.2.18)
1>JL |-*l

where

F(XJ,p,u) j^dtj^zdfxdx^t)),,

¦/«H-Ä-Lta.")«*!-*. (7x,^(t), • ¦ • ,7^,a:W) • (3.2.19)

Performing the change of variables t' := 1 — t, x' := z, z' :— x on (3.2.19), and using
(3.2.1) we see that F(X,f,p,v) -F(X,f,ii,v).

Proposition 3.2.16. The localization operator £r is a projection operator, i.e.,

(£,.)2 Cr. (3.2.20)

Proof. Use equations (3.2.15), (3.2.16), together with Lemma 3.2.15 and the linearity of
L,R. G

Remark. According to our conventions in Section 1.4 we restricted ourselves to fields \&M

with \n\ < P. When defining AfW(X, V) in terms of M«(X, *«) (cf. (3.2.9)-(3.2.11)) we
have of course to assume that ¥,,,.,„ still belongs to our set of 'J/'s, i.e., that |^| + 1 < P.
As a result, the remainder R[M] can only be defined if pm < P — 1 (cf. (3.2.2)).

It follows from (3.2.15) and Corollary 3.2.11(c) that, for r > dim(M),

[r-dim(M)]

(l-£r)[M] M-L[M]- E L[Rk[M]]
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|r-dim(M)]

R[M]-L[R[M]}- E L[Rk[M})

[r-dim(A/)]

R2[M]-L[R2[M}}- E •••
t=3

P1+lr-dim(M)l[M]. (3.2.21)

Definition 3.2.17. For re^we define H? on local monomials as

7L.fMl - J Rì+lr~dMM)]lMÌ, r > dim(M)^lM] - \ M, r < dim(M),
(3-2"22)

and extend to local polynomials by

7er[P]:=E«i^r[M]. (3-2.23)
iel

Note that (3.2.23) is in fact independent of the decomposition of P. Clearly, Tir is

a linear operator, 7?.r[P] is a regular local polymer activity supported on small sets, and

^[P] is even, resp. real, resp. invariant, whenever P has such properties.

Due to (3.2.21)-(3.2.23) and the linearity of (1 - £r) we obtain

Corollary 3.2.18. For any local polynomial P

(1 - Cr)[P]=Hr[P]; (3.2.24)

moreover, due to Lemma 3.2.15,

£r7er TlrCr 0. (3.2.25)

3.3 Bounds on 11

Proposition 3.3.1. Let M be a local monomial of degree deg(M) and dimension dim(M)
with measure dM(X, £). Define

he:=h- (td'2, £-d'2-\..., rd/2-p+1) (3.3.1)

||dAf ||7 := sup E 7P0 Var(AM(X)). (3.3.2)
A XdA
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Then, for any e > 0, 7, h > 0, £ > 1, and r > 0,

l + ^^-J /ideg(M)||dM||7, (3.3.3)

where C depends only on r, d, deg(M), dim(M), and D := dim(M) if r < dim(M), r + 1

if r — dim(M) G N0, r + 5 otherwise.

Proof. For n (m,..., np), n, G No, we put

dim(n) :=YtnA-+j-l\,

IIJ|U,hin := ||D(n)J||,,7h», \\J\\g,y,H.,D~ E IMUa-
n:dim(n)=D

By construction of 7^, (D(n, f 7er[M])(X, * 0) 0, V n with dim(n) < D, therefore,
by Lemma 4.3 of [6],

l|7MM]|U,7,h, < CD (l + jU ||7er[M]||ft,7,h/;D, (3.3.4)

where q d + 2P — 2. By the construction of IZr, "R^[M] is a sum of monomials of
dimension D, therefore (cf. (3.3.2))

cJ\ + ^\ E WDMKMWyK
V m J n:dim(n)=D

£-°CD(l + ^) E KDWKrimjP. (3-3-5)
\ en I n:dim(n)=D

By the definition of 7^, (3.2.22), (3.2.13), ||/>(n)7er[Af]||7 < C||dM||7. Since |n| deg(Af),
we obtain (3.3.3) by combining these estimates with (3.3.5).

Definition 3.3.2. Let K be a regular, local polymer activity. Then, the regular polymer
activity TV [AT] and the local polynomial Tf,[K] are defined, for s' G No, by

TAK](X,V) := EJj(^) W*)U (3-3-6)

T$[K]{X,9) := T,'[K](X,V) • 1(X € S). (3.3.7)

The next proposition is similar in proof to Lemma 4.3 of [6],



Brydges and Keller 71

Proposition 3.3.3. Let J be any regular polymer activity. Then, for all e > 0, 7,/i >
0, a G (0,1] and s' > 0,

||(1 - Ts,)[J]\\g^a.h < 3 • </+7(S' + 1)! (l + -|y ||J||S„7,A. (3.3.8)

Proof. It is easy to verify that D(n)(l - /V)[J] (1 - Tj-\n\)[D(n)J], where Ts> := 0 if
s' < 0. For s' > |n|,

(1 - T,_w) [D(n)/] l ät^-L^ - (D(n)/)(,(s'-|n|)! \dt;
where (P),(tf) := P(**),

|m|=s'+l

We take the || ||ft?7 norm of both sides using ||(P)t||9 2 \\F\\gt,

|IÏ*fo)| < y|m - n|!(CsM)lm-l(l - t2)-lm-nl^(i-t2)

and ye g^g^is), obtaining

ml,P(n)(l-rs,)[J]||ff<)7 < E -r\\D(m)J\\gt„
m>n "¦

|m[=s'+l

CsVm"n| tl. (l-t^-Ha-*2)-!"1-»!/2V^fê)
'

7>! (*'-|n|)!
We estimate the integral by 2(|m — n|!)~1 using 1 —t2 < l — t, s'— |n| |m — n| — 1. Then
aPPly E (a'l)n *° both sides obtaining

|n|<*'

E (ah)»\\D(n)(l -Ts-)[/]IU
n:|n|<s'

< 2 E E ^r(lm - "IO" * (%)lm
nl

(«Mn| HAMjil,7.
m:|m|=»'+l (,n<in n- \Ve/ J

We use (|m - n|!)~s < (|m - n|!)-1 J (s1 + 1)! and the binomial theorem to continue with

<2^f(^TÏy.a^(l + ^-Y+ E ÄmP(m)J|U,7
\ V / m:|m|=s'-r-l

< 2y/(s' + l)\a^ (l + -ß^°+ ||J|U,7,A.
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We combine this estimate with

E (ahr\\D(n)(l-T,)[J]\\gt,y E (^)n|l-D(n)J||S(,7
n:|n|>s' n:|n|>s'

< as'+1||/||s„7iÄ

to obtain the result of the Proposition.

Definition 3.3.4. Let AT be a regular, local polymer activity. We define, for r G ^, the
localized part of dimension r, £'r'[X], of K by

C^[K}-Cr[Tf2r/d]{K}}. (3.3.9)

The remainder of dimension > r, TZ^[K], of K is defined by

nV[K) := (l - Tf2r/d]) [K] + Tlr[Tf2r/d][K}}. (3.3.10)

Corollary 3.3.5. £<r) and Tl^ obey

(l-£(r))[A]=7e(r)[/<r] (3.3.11)

(£(r>)2 £(r) (3.3.12)

£MftM 72.M£(r) 0 (3.3.13)

Proof. Use (3.3.9), (3.3.10), and (3.2.24) to verify (3.3.11). (3.3.12) follows from

£,.[7^[£r[7^[.]]]] (£r)2[T?[.]]

and from (3.2.20). Use (3.3.9), (3.3.10), and (3.2.25) to prove (3.3.13). D

Proposition 3.3.6. Let J be a regular, local polymer activity such that J(X) 0

whenever X ^ S. Let h< be as in (3.3.1). Then, for r G ^, there exists C(r) such that for
all e > 0, 7, h > 0 and £ > 1

/ ,i+p-ir \ C(r)

W&MW*«*, < rr"ï • C(r). f 1 + -^j • || J|U,7,„. (3.3.14)

If e.g., J is even and r G jN0 PI N, d > 2, then the factor ^~r~5 improves to £_r_1.
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Proof. According to (3.3.10), and because (h<)7 h ¦ £ 5+1"^ < h • £~? for £ > 1 and since

Tf[J] TS,[J], we have

l|K('V]ILT,b, < ll(i-T|2r/dl)[J]||9(^^
+ ll^r[Tifr/d![J]]||9(l7,hr (3.3.15)

Due to (3.3.8) we get

||(l-Tl2r/,,)[J]||s^ < £-Ì(l2r/^).C'(r)
[2r/d\+l

ew,
yfi-h

1 + -^T -||JIU,ä- (3-3.16)

It is easy to check that, for r G ^, f [Ç] + l) > r+f ; obviously, for r G f-N0, f [^1] + l)
r + |. Next, we decompose TS. «[J] into inequivalent (cf. Definition 3.2.3) monomials

to each of which we apply (3.3.3). By the triangle inequality we obtain

/ fd-2+2P\C (r)

\\Kr[Tf2r/d][J]]\\gi,yiilt < r-1 • C"(r) • (l + —^J • || J||Sf,7,Ä. (3.3.17)

This, together with (3.3.15) and (3.3.16) leads to (3.3.14). G

3.4 Extraction II (£//)

In this section, k will stand for a regular, local polymer activity which is analytic in
p, Ài, À2 in a neighborhood of 0, and toÂ is supposed to be even.

Definition 3.4.1. Assume that P > 2. The regular, local, even polymer activities W//[AT],

f2//[AT] are defined by
wu[k] := CW[t0K] (cf. (3.3.9)) (3.4.1)

and

Sl„[k](X) := E w//[#](n (3.4.2)
VcX

Obviously, w//[AT] and fi//[Ä] are analytic in p, X\,X2 around 0.

Corollary 3.4.2. If ToÂ is real, resp. invariant, then the same holds for u>u[k], Qn[K].
Moreover, C^[un[k}} w„[K\. r0K( ¦, tf 0) 0 =» w7/[Ä]( •, V 0) 0/7[Â]( •, <P

0) =0.

Proof. Use (3.3.9), the. fact that Tf preserves reality/invariance, and Corollary 3.2.13(c) to
check the first part. The second part follows from (3.3.12). The third part is

obvious. G
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Lemma 3.4.3. There exists a unique, regular, local polymer activity £77[Â] such that for

allXc A
£D+ii(X) ea"[k]WSa+£'»[k\X). (3.4.3)

£7/[Â] enjoys the following properties:

(a) £//[X] is analytic in À; in particular, it is analytic in p, Ài,À2 in a neighborhood of
0.

(b) If k is even, then £7/[AT] is also even. If r^k is /-type, then so is To£'n[k]. If räk
are O-type, then so are Ta£'u[k}.

(c) If K( ¦, * 0) 0, then £'„[k}( ¦, * 0) 0.

(d) T0£'n[k]=£'n[T0k}.

(e) If K is even and obeys K( •, * 0) 0, then

T2[£'n{k)\ T2[K] - u„[k\, (3.4.4)

and therefore
C^[T0£'n[k]} 0. (3.4.5)

Proof, (a)-(d): cf. proof of Lemma 2.2 and use Corollary 3.4.2.

(e): Act with T2 on (3.4.3); use evenness of K, fi/7 and of £'u and K( ¦ ,* 0)

nn( ¦, * 0) £'u( ¦, * 0) 0; employ (3.4.2) and induction in |X| to obtain (3.4.4).
(3.4.5) follows from (3.4.4) and from (3.4.1) and Corollary 3.4.2. G

Definition 3.4.4. The regular, local polymer activity £n[k] is defined as (cf. (3.3.10))

£u[k\ := (1 - T0)£'u[k] + n^[r0£'n[k}}. (3.4.6)

Lemma 3.4.5.

(a) £u[k] is analytic in A; in particular, £77[Ä] is analytic in /x, Ài, A2 in a neighborhood
of 0.

(b) If k is even, then £n[k] is so.

(c) If t0A" is /-type, then so is T0£n[k]. r0f//[Â] £u[t0K].

(d) tô£/7[A] Tâ£'j][k\; hence, if rak are O-type, then so are Ta£u[K].
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(e) K( •, * 0) 0 =*• £n[k}( ¦, * 0) 0.

(f) If K is even with K( •, * 0) 0, then

£„[*¦]=£,,[#]. (3.4.7)

Proof. For (a)-(e) use Lemma 3.4.3. (f) is verified by applying (3.3.11) and (3.4.5) to
(3.4.6). G

Remark. It is possible to find for any r (assuming P sufficiently large) a pair of polymer
activities w7/, £'u such that (3.4.3) holds with £(r'[T0£/7] 0 and w77 a local polynomial.
The definition of £jj (3.4.6) carries over directly to this more general case. Hence, instead
of taking r d as we did, we could have chosen r > d which, however, would have resulted
in "oversubtractions," i.e., in extractions which are technically not really necessary for the

purposes of this paper.

4 Extraction and Reblocking Lemmas (B)

In this section we have collected some basic estimates used to control the extraction of small
sets and reblocking of polymer expansions. Similar results have appeared in [6, 8, 10, 7, 9].

In particular, the simplifications arising from the use of analyticity originate in [7].

Notation. The polymers and complexes in this section are assumed to be unions of cells

associated with a lattice of lattice constant 1 or /, distinguished with the epithet 1-scale

or /-scale when both are in use. The default is 1-scale. The norms refer to large set

regulators 7,7-,,7l given by

7(X) := al*l0a(X), a > 1;

7„(X) := rfWl(X), r? > 1.

7/, is not 7, with n L, but instead denotes the /-scale version of 7; its argument is only
permitted to be an /-scale polymer X

7i(X) := aWiBaJ.(X),

where | \L := N° of /-scale blocks in X and #<,,/,(X) measures the length of the tree graph
on scale /. The large field regulators g(X,(j>),f(X,<j>) in this section can be arbitrary
functions defined on polymers such that

g(X,(t>)>g(Y<j>), if XDY;
(ff(UX^)r > Y[9(Xj,4), where r := sup|{j : Xj 3 x}|;

X

<7(x,^>o, vxU,
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and the same properties are supposed to hold for f(X, <f>).

Definition 4.1. Let J\,...,JP be polymer activities. Define, for non-negative integers

ri,r2,.,., rp, a new polymer activity

v[jr,---,^]W:=^--— e niU(*a (4-1)

where </<" r>)(X) {(X,,,,... ,Xi,n;X2,,,... ,X2,r2;... ;XP,U... ,Xp,Tp) such that (a), (b),
(c)} where

(a) UXkJ X.

(b) The overlap graph on (X14,..., Xp,rp) is connected.

(c) Further restrictions on which sets can overlap, to be described below.

(d) If rj 0, for some j with 1 < j < p, then we interpret V J[',..., Jp'\ as

V ^/[',..., J;ii, Jj'+i, 7p'J.

Easy consequences of (4.1) are:

V[J°] 0, V[J] J. (4.2)

Proposition 4.2. Let J, w be any polymer activities, and let £[J] be defined10 by

n(x) := Ew(y)- (4-4)
YcX

Then

£[J]=£[J,R\=Y,V[Jr,Rs], (4.5)
r,s>0

where

P(X) := e-"m - 1, (4.6)

and condition (c) in Definition 4.1 is that the J-polymers Xltl,..., Xi>r are disjoint and
the P-polymers X2ji,... ,X2,S are distinct (i.e., X2j ^ X2>t if j ^ k).

This proposition is implicitly within [8, 6] so we sketch the proof.

105[J] depends on w as well but we do not make this explicit.
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Sketch of Proof. Following [6], Section 2,

e-°w n e"w(r)= ntt+w)
roc rex

oo 1 N

E]k e n««).
jv=ojv- n Kwcxj=i

where (Yi,..., Y#) are distinct polymers. Therefore

e-nW.fc+,(x) E2.^ E E
W,A/ Jy • m • ü,...,Vi»cX Zi,...,Z«oX
N M

¦ Y\R(Yj)X\J(Zk), (4.7)
;=1 *=1

where (Z\,...,Zm) are disjoint polymers. Now we perform the sum over (YJ,... Yjv;

Zi,...,Zm) subject to the constraint that components with connected overlap graph of
(UYj) U (UZk) be Xi,...,Xp, and then sum over (Xi,...,Xp) and P. Comparing the
result with (4.3) we obtain

^W E^ E Ùmili J(zk), (4.8)
r,» r- s-Y,,...,Y.;Z,,...,Zr j=l Jfc=l

where the sum is over all (Yj,..., Zr) such that the union is X and the overlap graph is

connected: the sum over X\,...,Xp and P becomes the polymer expansion for £0+£W_

Equation (4.8) is the same as the claims (4.5) and (4.6) of the proposition. G

Proposition 4.4. Let £ [J, R] be as in (4.5). Given n > 1 there exist constants C4.i, C4.2 > 0

such that u

II J\\s,i,H, \\Rbn* ^ C4.i (4-9)

(i)
\\£[J,Rihr,y„H < C4.2{\\J\Uh + HPIIma}, (4.10)

where g, f, 7 are arbitrary regulators, h > 0,

r := sup |{X : X 3 x, P(X) ^ 0}|. (4.11)

(ii) The map 7,ü h £[J,R] is analytic as a map from K(g,~j,h) x K.(f,^,h) —»

fc(gfTi7r!,h) on a neighborhood of the balls || J||ff,7,A, ||P||/,7,/, < C4.1.

We omit the proof: the bound (4.10) is a simple variation on Lemma 5.1 in [6]. The
essential point in the proof is that at most r P-polymers can overlap with a given cube

nIn Section 5 we are going to assume that C4.1 < 1 in order to avoid distinguishing among several cases.
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A and at most one J-polymer can simultaneously contain the same A. Therefore the
worst growth in <j> that can occur within any given cube A is less than g(A, 4)fT(A, <j>), as

claimed by the choice of regulator on the left-hand side of (4.10). The large set regulator
7(X) has to become a little weaker 7 —» 7, to control the combinatorics of the sum over
all ways in which the overlaps of the R and J polymers in £[J, R] can occur.

To prove the analyticity, replace J and R by J + aJ\ and R + ßR\ respectively and
note that C4.1 can be chosen so that the sum on the right-hand side of (4.5) is uniformly
convergent for |a|, \ß\ sufficiently small. Each term under the sum is analytic in a, ß,
therefore the sum is analytic in a, ß. This implies £[J, R] is analytic in J and R.

From the formula (4.5) and Proposition 4.4 we immediately deduce

Corollary 4.5. Suppose that, for p, Xa in a neighborhood of zero, J and R are analytic
in p,Xa and J G K(g,^,h), R G K(f, 7, h). Expand

J p-Jp + Y,Xä-Jä + 0(p2,pXa,X20)
ä

R p-Rp + Y)Xs-Rö + 0(p2,pXa,X20). (4.12)
a

Then

£[J,R}(X) p-(Jp + Rp)(X) + J2**V* + W0

+AiA2 • E Pi(Xi)P2(X2) + E (/i(X,)P2(X2) + (1^2))
X,uXi=X XiUX2=X
X,nX2^ XinXrft
X^Xl

+0(p2,pXa,X2a). (4.13)

Definition 4.6.

(i) For X any 1-scale polymer we define X := smallest /-scale polymer containing X.

(ii) For J any polymer activity defined on 1-scale polymers, let B[J] be defined on /-scale
polymer U by

00 -1 r
*W0==E3£II-TO. (4.14)

'=1 nj,(iOi=i
where gr(U) := {(Xi,..., X,.) : UX, =77, Xj n Xj <j> if i / j, the overlap graph on
(Xi,..., Xr) is connected}.
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(iii) With J, U as in (ii), let BF>[J)(U) be the r 1 term in (4.14), namely

B^[J](U):= E AX). (4.15)
XJ(=U

(iv) If J\,J2 are /-scale polymer activities, then (cf. (4.14))

bp>[JuWV)**EUMXs)- (4-16)
9l(lO>'=1

Because of the pairwise exclusion (i.e., X{ (~l Xj <f>, for i ^ j) enforced by gT(U), the

sum over r in (4.14) runs at most up to r \U\i. Therefore:

(a) J is regular/local/even/analytic in p, Xa in a neighborhood of zero =$• also for B[J].

(b) t0B[J] B[tqJ]. t0J is /-type/xa/ are O-type => also for T0B[J]/TäB[J].

The B is defined so that whenever X is an £-scale complex for £ 1 and /,
£°.+-'(X)=£Di+BM(X), (4.17)

where Gt(X) 1 if X is an /-scale cell, zero otherwise.

Proposition 4.7. Given n > 1, a regulator 7 with a > j/** and a polymer activity
J G £(<;, 7,, /1), then there exist C4.z(L) > 0 and C4.4 > 0 such that12

(i)
IIJIU* < C4.3(L) =» ||ß[J]IU,Ä < C4.4 • /d • ||/||9,7„h, (4.18)

(ii) # : K(g,iv,h) —> K(g,^i,h) is analytic on a neighborhood of {/ : ||/||9,7„h <
C4.3(/)}.

Given »7 > 1, a regulator 7 with a > i/2^ and J, Ji, J2 G /C(#, 7,, h), then

(iii)

I^WU* < fl^VU* • { ^ l£X e 5) - °
(4.19)

(iv) if J is pinned at y, then

I^MU* < V^WJIU* • { J/ le-!" £ 5) ° ^
12In Section 5 we will assume, for the sake of simplicity, that C4^{L) < C4.1.
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(v) if Ji is pinned at y\, J2 pinned at y2, then

\\bv\ju jau* < r+i) (n vaJ) • {f ' 'it " *2' -4X <4-21>

The proof of this proposition requires the following lemma, a slight generalization of
Lemma 3.2 in [6].

Lemma 4.8. Let n > 1 and a > i)^\ and recall that / > 2d. For all polymers X

7£(X)<^)7,W-{^ lXx% (4.22)

Proof of Proposition 4.7. We begin with (iii): for any functional derivative, denoted
by subscript n, we have, by (4.15),

||D(n)^[J]|U < sup E E 7i(*)l|£>(n)J(X)||9,
*L UHALX:X=V

where A/, is an /-scale block; by Lemma 4.8,

< »T'sup E l,(X)\\D(n)J(X)\\g
Ai X:XoAL

< /+'sup E E 7„(*)P(n)J(X)||9
A£ AcAlXdA

< ^+I/dsup E lv(X)\\D(n)J(X)\\g rf+1 Ld\\D(n)J\\g^.
A XdA

If J vanishes on small sets, then by Lemma 4.8 we can have an additional factor of a"1 on
the right-hand side. Summing both sides over n times hn proves (iii). The proof of (iv),
(v) is similar (in (v) we use L > 2d). For part (i), note that, by the same arguments as in
the proof of Lemma 5.1 of [6], the terms with r > 2 in (4.14) are bounded by 0(||/||9,7ll>ft),
so (iii) =$¦ (i). Part (ii) follows from (4.14) also. Q

Proof of Lemma 4.8. (a) X G 5: Then X, X are connected, |X| < 2d, hence 7/,(X)
oM < oW < ^(«r1)1*1 < n(2i\(x).

(b) X ^ S, X connected: Induction hypothesis: 7t(Y) < rf2 ^(Y), V Y connected
with |Y| < |X|. Induction step: since X connected, |X| > 2d and / > 2d, there exists an
/-scale block AL with \AL n X| > 2; therefore we can write X Xi U X2 where Xi,X2
are connected, |X] n AL| > 1, |X2nA/J > 1, Xi n X2= </>; obviously |Xi|, |X2| < |X| (so

we may apply the induction hypothesis), and |Xi| + |X2| > |X| + 1, thus 7l(X) a'xl <
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a-'al^W*'! a-17i,(Xi)7/.(X2) < a-ln^2\(XMX2) a-y2"+1>7,(X). This implies
the inductive hypothesis for |X|, but note that it is also the bound (4.22).

(c) X £ S, X disconnected: this case is reduced to the cases (a), (b) as in [6]. G

From Definition 4.6 the following is immediate.

Corollary 4.9. If J is analytic in p, A„ for p, A„ in a neighborhood of zero, and if we

expand J p ¦ Jp + E Àô • Jä + 0(p2, pXa, A2), then
ä

B[J\ p-B^[Jp] + EA*-tf(1VJ
a

+ AiA2.ß<2>[J,,J2]

+ 0(p2,pXa,X2a). (4.23)

5 The RG step. Part I: Bounds on
Extraction/Reblocking/Rescaling

5.1 Survey of results

For the benefit of the reader we start with

5.1.1 A brief recapitulation of relevant notation/conventions

For given "rescaling length" /, / G {2,3,...}, given "separation parameter" J, J G N0
such that LJ < |xi — x2| < //+1 where xi,x2 are the points where the observables are
pinned at, and given finite volume cutoff N, N G N such that N > (J + 1), the d-torus
A<°) is defined by A'0) := [=g-, ^. The j-times (0 < j < N) rescaled volume A^
is A^ := \~L2 ' L

2
' 1 and x^O := L"'iQ do, by assumption, not lie on unit block

boundaries (because we make this hypothesis for xj® xa).

For measuring the size of polymer activities on A^) we will rely on the specific large
field regulators Gs and G^\

G6(X,4) := expUJ E ll^llx + JlWIlÜ), «>0> (5.1.1)

G«) := GKÜ), (5.1.2)
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and on the large set regulator rp,

r„(x) := p-|x|r(x) p~m ¦ AmeA(X), a>i, (5.1.3)

(0A(X) has been defined in Section 1.4, and we write

rp(X) (Ar,)m-0A(X) (5.1.4)

(so that Ar A).

The parameters d (dimension), P (# of fields \P/,), c (the constant in Gs), s (the
"Sobolev index"), and the purely technical parameter n (to appear as Tv, T^, T^, Tv-i)
should be considered to be fixed once and for all. We impose only that

d>l, P>2,
and

c>co(d), s>s0(d,P) (5.1.5)

ensuring that G obeys properties listed in Lemma 1.4.1 and for technical reasons

n > e. (5.1.6)

Our convention concerning "constants" is: Any dependence on parameters other than
the fixed d, P, c, s, n will be indicated explicitly.

5.1.2 Results

For K, O polymer activities on A, and C a covariance, we write (0)\j-k,Ci

(0W := fel-'/^Wr^OKA,*') (5.1.7)

ZMk,c := Jdpc(<p)£a+K(A,^),

for the expectation of O w.r.t. the interaction K. Also, the truncated expectation of
ö\,ö2 "subject to the connected part Oi2", denoted by (Oi;02\Oi2)\-tK,c, is defined by

(On 02\012)a,k,c := (0, o 02 + Ol2)s;K,c - f[ (00)K,K,c (5.1.8)

The objective of Section 5 is to prove the following main result which summarizes Proposition

5.5.5 and Theorem 5.5.9.

Theorem 5.1.1. Let «^) > 0, e > 0, and assume that /, A, H are large enough13. Let
K^) be an /-type polymer activity on Aü) whose norm ||Ä'^)||Gü>,r,# is small enough, and

let C?a be O-type polymer activities on A^ (pinned at xa') with
l|04)|lGü),r,fl < °°- Let c(i) be a covariance on 7is(Aü))/{constants}. Then, for 0 < j <
N-Ï:

13For more precision, see Theorem 5.5.9.
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(i) There exist /-type resp. O-type polymer activities SK^ resp. SOa on A^+1) (where
SKV' is defined by SK^ := (rescaling) o (reblocking) o (extractionll)
o (extractionI)[K^]) and there is a covariance SC^ on Ws(A^+1))/{constants} such

that, if ZA(j).KQ)tC(S) =^ 0,

(Op'; oFlC^Wcfl.cO) (SOP; 502ü)|50^)Aa+„.Sifü),sco-) + n#(A<»), (5.1.9)

where îîjj is a polymer activity on A^) pinned at Xj and x2

(ii) Let (G^Gt)i-i be the large field regulator (5.5.15) (see below) on Aü+1). For any
8 > 0, if / is large enough, we have

l|Ä/:ü)||(GÜ)G,)L_1,r,.1,2// < L-ì+6\\KM\\G(J)XtH

ÏÏSOJiXcifio^r^H < L-d+é\\o?\\cifi,r,H

\\SOg\G(3)Gt)L_urru2H < ho^Wem,r,H + f[ H^IUr,//}
L"™-1*, 0<j<J-2J L-w j J-l
Z-d+*, J <j <N-1.

In Section 5.2 we list, for easy reference, those hypotheses (on A, L, ||X^)||Gü),r,//> • • •) which
are assumed to hold in Sections 5.3-5.5 where Theorem 5.1.1 (and much more) is proven.

5.2 Hypotheses needed in Sections 5.3-5.5

In all of Sections 5.3-5.5, the hypotheses (l)-(4) below will tacitly be assumed to hold; in
particular, except from the statement of our main result (Theorem 5.5.9) they won't be

mentioned in the statement of our lemmas, corollaries.

(1)

/>max{3,2d}. (5.2.1)

(2)

A>ma.x{r)2d+\Ld+i}. (5.2.2)

(3) K® is an /-type polymer activity on A*7' whose norm ||ä""'||gW rj/ ls "small enough."
By this we mean that there exists an upper bound 77P^) such that

ll*raIU,r,» < \uB«\ (5.2.3)

^<C„m:=min{«r,i(t^i),|le-,
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Cu Ç^L±{L2d+i .Cm(l))-i\ (5.2.4)
^5.2 L-5.5 J

The constant er has been defined in (2.1). The other constants may be looked up
according to their subscripts.

(4) Oo7 are O-type polymer activities on A^) (pinned at xa with finite norm, i.e.,

H^'lUr// < CO.

Definition 5.2.1. The regular, local, even polymer activity K^ is defined by

k^ := p ¦ XO) + £ as • of, for //, A„ G C. (5.2.5)

Remark. As mentioned in Section 4, we will assume w.l.g. that the constants C4.1 and
C4.3(/) obey

C43(L) < C4.1 < 1. (5.2.6)

5.3 Extraction I (£/)

5.3.1 Existence

Recall the definition of K^ (5.2.5) and of the upper bound UB<J) in (5.2.3,5.2.4). The
triangle inequality tells us that, if

H*ï^-. |A*I<
UBU)/5

Ili^lUrV '

O|-||0ij)||GU,,r,//'

11^12 llGù),r,//

we have ||Ä"Ü)||GCfl,r.Ä < \UB^\ Because of our hypothesis (5.2.3) on K^\ the disk of p's
specified by (5.3.1) contains the point p 1. According to (5.2.4) we have UB^ < er, er
defined in (2.1), and obviously Ar > e (cf. (5.1.6) and (5.2.2)). Hence we may apply
Lemmas 2.1 and 2.2 to the regular, local, even polymer activity X«) and obtain

Lemma 5.3.1. For p,Xa as in (5.3.1) the polymer activities fi^X^'] and £i[k^] exist,
are regular, local, even, and analytic in p,Xa. Moreover

(a) 7oft/[Xü)] 0/[/iXW] and T0£,[k^} £i[pK^\; these polymer activities are, for

p G R, of /-type (cf. Section 1.4).
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(b) T«n7[XÜ)] and Ta£i[K^] are of O-type (cf. Section 1.4).

Proof. Properties (a), (b) for ilj follow from (2.3) and from the fact that r0X^) pK^
is /-type for real p, and that t&K^ 0$ is O-type. And now we use induction in |X| to
check (a), (b) for f/. d

Definition 5.3.2. The regular, local, even polymer activity w7[X^)] is recursively defined

by
u>i\K®]{X) := n/[X^](X) - E "i[KU)](Y). (5.3.2)

YcX

Combining (2.3) and (5.3.2) one sees that W/[X^'] has the Mayer expansion

u,7[X^](X) E -, E (f[k^(Xr,^ 0))^c(X1,...,Xn). (5.3.3)
„>1 n! Xu...,Xn: \r=l /

UXT=X

5.3.2 Bounds

Lemma 5.3.3. For p, A„ as in (5.3.1) w/[X^)] is analytic in p, Xa and obeys

W/[X«](X) p.K^(X,0)+Y,Xäö^(X,0)
â

-AiA2 E OP(X1,0)020)(X2,0)
x,ux2=x
xxr\Xi^

+0(p2,pXa,X2a), (5.3.4)

ll"/[X«]||9,r„h < C5.i • ||XÜ)||GÜ),r,//, Vff > 1, h > 0.14 (5.3.5)

Proof. (5.3.4) is obtained from (5.3.3).

Concerning (5.3.5) we first note that r,(uXr) < ]^[r,(Xr) if the overlap graph on
r

(Xi,..., Xn) is connected, because Fv has a parameter Ar, > 1 (cf. (5.2.2)). Now, for any
g > l, h > o,

IM*ü)]||9,r„h ||D(0)W/[XC>]|U

suPEr,(X)|u;/[XÜ)](X)|<E^,
A X^A n>l

4g > 1 means: g(X, <j>) > 1, infg(X, (j>) 1. W.l.g. we assume that C\i > 1.
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where

/n ^-supE E fni^ü)(^r,* o)|-r,(xr))-|*c(x1,...,x„)|,
uXr=X

where we used (5.3.3), the fact that ^c(Xi,... ,X„) 0 unless the overlap graph on
(Xi,..., X„) is connected, and the submultiplicativity of T, mentioned before. The proof
of Theorem 3.4 in [Bl] reveals that /„ < -Qn with

Q E^«pfEI^0)(^* o)|-r,(x)-|X|d)

< ll^°')l|G0),r,//-E(fog'7)"d<i
d>o z

because, according to (5.3.1), \\kü)\\G(j)rH < ±UB& with UB^ < jOogrç- l)/log77 (cf.

(5.2.4)); cf. also the proof of Lemma 2.1.

Lemma 5.3.4. For £I[k^'1] we have

£/[XW](X,#) p (K®(X,9) - X0)(X,0)) + Y/Xä(OJi)(X, ¥) - OJP{X,0))
a

-A,A2 E {(O(/)(Xi,*)-Op)(X„0))O2W(X2,0)
XXUX2=X
X^Xrft

+(1^2)} + 0(p2,pXa,X2a), (5.3.6)

\\£i[kU)}\\Goi^,H < Q.2||XW||G«,r,//- (5-3.7)

Proof. (2.4) and Proposition 4.2 imply that £,[K^} £[K^\R], R(X) :=
e-»,{KO)](x) _ (534) shows that

R(X) -(r.h.s.(5.3A)) + A,A20^(X, 0)O20)(X,0) +0(p2,pXa, A2),

which, together with Corollary 4.5, yields (5.3.6).

As regards (5.3.7), we proceed as follows: Because of (5.3.5), and because

l|xü)IU,r,* ^ \ubU) $ 1
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(cf. (5.2.4)) we can estimate, for any g > 1, h > 0,

ll%r„h sup£r,(X)|£^(ü,7[JrG>](X))*|
A XoA *>1 K-

< supEE(W)lw/[*œ]™^
XdA k>l

< EA(ll«/^0)]IU,h)i
*>1 K-

< G5.i-eC5'.||XW||Go),r,7/. (5.3.8)

Hence, (5.2.3,5.2.4) tells us that ||P||Gc>),r ,h ^ Gu; since (5.2.3,5.2.4) also implies that
||X^)||Gü)r jj < C4.1, we can apply Proposition 4.4 and (5.3.8) to get

\\£i[kU)]\\Go^,H \\£[ku\R}\\Gunr,r^
< C4.2{l + C5.i-ec-}-||XW||GÜ),ri//.

D

5.4 Extraction II (£//)

5.4.1 Existence

Combining Lemma 5.3.1 with Corollary 3.4.2 and Lemma 3.4.5 (and the fact that
£i[K^](-, * 0) 0) and (3.4.3), we arrive at

Lemma 5.4.1. Let p, Xa be as in (5.3.1); under this condition, the polymer activities
f2//[£/[X^)]] and £jj[£j[k^]] exist and are regular, local, and even, and they are analytic
in p, Xa. Furthermore

(a)
n„[£i[KV>]](., 0) £n[£j[k^}](; 0) 0. (5.4.1)

(b) ilu[£i[k^]\ Çln[£,[pK^)\ and Ttfn[Si[K®\\ £u[£i[ß ¦ Ä"ü)]]l these polymer
activities are of /-type, if p G R.

(c) Tâ£,i[£i[k^}} are O-type.

(d)
^a+f,[Ä0)]:i.cn//[f/.!Ä0>]l^o+C//[£/[*ö>ii- (5.4.2)
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By Definition 3.4.1, if X G S then

W77[£7[XÜ>]](X, *) Jx ddz<Sp(z)^^(z) • u$(X) (5.4.3)

«#(*) := i^i J[D(n (2,0))£,[KV>]](X, ¥ 0; (x,p), (y, u)). (5.4.4)

Therefore

nn[£,[KV)]](AV), **) - 2 j • *<^(A) • jT ddzdp4(z)dv4(z),
AcAü)

where

-*<TÜ)(A):=2E^°2(n
VDA

Invariance of £j[K^] (cf. Lemma 5.3.1) implies that

Ar«(A) Rp,pR,M%(AE)

for all lattice symmetries Z? (cf. Section 1.4), and hence

«<7$(A) «ffW • 6^, 6aU) indep. of A.

Collecting everything we thus have

Corollary 5.4.2.

Çln[£,[K^]](A^\ «*) -ì • 5a« • jfa
d"z(Ö„fl2(z), (5.4.5)

with
Sa® -^ E E u$(Y)> any fixed A c a0)' (5-4-6)

" p,v YdA
Yes

where w« has been given in (5.4.4).

5.4.2 Bounds

Lemma 5.4.3. For p as in (5.3.1), u>u[£i[k^]] is analytic in p and satisfies

w//[£/[X«]] p ¦ £«[üfW - #«(., * 0)] + 0(/x2), (5.4.7)

and, for any e > 0,

||rf/[X<>'>]]||Gr>I>7/ < C5.3 (l + ^) • |/i| ¦ ||X«||GÜ),r,//. (5.4.8)
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Moreover,

|5«r«|<C5.4-^-||XW||GÙ)rH. (5.4.9)

Proof. Analyticity in p of w77[f7[X^')]] has already been noticed in Lemma 5.4.1. And
Eqn. (5.4.7) follows from (3.4.1), Lemma 5.3.1(a) and (5.3.6).

Apply Lemma 4.1 of [6] to w77[£7[X^)]]. As a result, one obtains (5.4.8) (use also

(5.3.7)).

(5.4.9) is an immediate consequence of (5.4.6) and of (5.3.7). O

Lemma 5.4.4. For p, Xa as in (5.3.1)

Sn[Si[K^]](X,9) /i-7e(d)[X«(X,¥)-Xü)(X,0)]
+ Ea*-(g£)(X*)-o£)(x,o))

a

-AiA2 E {(0r°(*i.*)
XiUX-i=X
X,nX2^0

-O<?)(Xl,0))O2J)(X2,0) + (1^2)}
+ö(p2,pXa,X2a). (5.4.10)

Define t(S) by (cf. (4.11))

t(S) := max max |{X G S : X B x}\, (5.4.11)
N,i xeAü)

and assume that e > 0, H, UB^ obey

G4.1 V « • H2

Then

\\£n{£ï[kV)}}\\G0)Gi < C5.5 • \\k^\\G(1),r,H

2-C™.UBU)<(1 + l£LY\ (5.4.12)

-rHII^IUr,// • G5, - (l + p^) "
• (l + ^) - (5.4.13)

Proof. By (3.4.6), £//[£/[X«]] is a function of £'u[£j[k^]\ which, according to (3.4.1)-
(3.4.3) and (4.3)-(4.6), is a power series in £/[X^'] and

R := ^„mmi _ 1).
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We begin by analyzing R.

R is independent of Aa, thus by (5.4.7),

R -(r.h.s(5A.7)) + ö(p2). (5.4.14)

As a prerequisite to bound R we need

Corollary 5.4.5. If K\,K2 are regular polymer activities, then, for any J7i, <72,7ij72ih,

IIM2lU,™,h < IIX, II^l • HXîlL^h. (5.4.15)

Proof of Corollary. Use the definition of the norm (cf. Section 1.4). G

Thanks to (5.4.15) and because {Tvip < Tvi, (Gsp Gs/2, we get

\\r\\g,ks)xv2,h < E h (ll«//fóMHG^^.»)*
t>iK-

so that (5.4.8), the bound £ < e* and \p\ ¦ ||XÜ>||GÜ)r/, < ^ (cf- 5-3.1)) give

< e - Ciu (l + Ig) • IMIIIXO),!^^ • g { (l + I§) ^ • CTBÖ)}'

which, together with the conditions (5.4.12) and C4.1 < 1 implying that { } < 5, yields

2 • eC5.3 (l + ^Pj ¦ \p\ ¦ ||X0)||GÙ,XH. (5.4.16)<

Next, we take a look at £77[£7[X«]] £[£,[K^],R]. Due to (5.4.14), (5.3.6), and

Corollary 4.5, we find

£//[£/[Xü)]](X,10 p-(l-Öd))[KW(X,V)-KM(X,0)]
+ EAô-(oy)(x,*)-o«(x,o))

-AiA2 E {(OfHXuV)
XtUX2=X
X1nX2^t

- Op'(Xi,0))O20)(X2,0) + (1 «-» 2)}

+0(/i2,/iAtt,A2); (5.4.17)

combined with (3.4.6) and Theorem 3.1.1, part (i), this yields (5.4.10).
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(5.3.7), the standard bound \\k^\\G0)XM < \UB^ (cf. (5.3.1)) and (5.2.4) guarantee
that ll^/fX^llGoir,// < C4.j. (5.4.16), (5.3.1), and (5.4.12) imply that for any r <

t(S), \\R\\Gt/r,r-2,H < C4.1. Thus we may apply Proposition 4.4 and get

\\£nl£ilKU)ìì\\cifiG„rn„H

< G4.2 lc,.2\\kU)\\cU),r,H + 2eG5.3 • (l + ^Pj • |/*| ¦ IIX^IW,//}

< C5.5 • {||X^||GÙ),r,// + (l + ^f) • H • H^Ugco«*} • (5-4.18)

Abbreviate £'u[£i[k^}} by £7/. Write t0£'u Tof// • 1(X G 5) +t<>£77 • 1(X $ S). Using
(3.4.6) and (3.3.10) we have £77 (1 - T0)£'n + t0£'j, ¦ 1(X 4 S) + Rw{r0£'n • 1(X G S));
hence, using Theorem 3.1.1(iii) with 1 1, en kV> + e, we obtain

ll^/7l|Gü)G„r3,// < ll^/zllcoicr,,//

+\\ro£'I1\\cO)G,x^H \1 + C(d).[l +
c \C(d)

V'" \ w V (^> + e)*i/,

Combining this with (5.4.18) we arrive at (5.4.13).

5.5 Reblocking, Rescaling (S)

In this section we assume that j < N.

5.5.1 Existence

Definition 5.5.1. Let J be a regular polymer activity defined on /-scale polymers. The
1-scale regular polymer activity S[J] is defined by

S[J}(X,*)-J(XL,*i), (5.5.1)

where XL := LdX, (¥£)„(x) := L-^l-^p(L~lx).

Corollary 5.5.2.

(a) J is local/real/even/invariant iff S[J] is so.

(b) J is pinned at z iff S[J] is pinned at L~xz.
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(c) For any g,-y,h,
\\S[J]Ly,H Mnn*» (5-5-2)

where 7/, has been defined in Section 4, hi in (3.3.1), and gi is given by

gL(xLAi):=g(X,4)

Definition 5.5.3. For p, Xa as in (5.3.1) we define the regular, local, even polymer activity
S~KU) on AÜ+1) by

S~KU) :=SoBo£uo£,[kV>), (5.5.3)

where the reblocking operation B (resp. some of its properties) has been described in
Definition 4.6 (resp.
in p,Xa and we set

0)Definition 4.6 (resp. in Proposition 4.7 and in Corollary 4.9). Evidently, SK is analytic

In addition,

SK® := To-S^V]
Söf := râSX°\=1. (5.5.4)

nü) := (n7-r-n//o£/)[xü)]
n« := ibfi°Vi, n^ :== Tâfi<>\=1. (5.5.5)

Corollary 5.5.4. SX^ is /-type; SO^ are O-type, pinned at /-^+1)xä.

Recall the notation set up in (5.1.7) and (5.1.8).

Proposition 5.5.5. Let C® be a covariance on 7{s(A^))/{constants}. Define SC^ on
Hs(A0+1))/{constants} by

Jdpsca(cl>)SlFi(AU+1),**)

f dpc0) (^)en»^'lÄÜ)KAÜ)'**)p(A«, **)
(5.5.6)

/d/ic0)(^)en"rf'l*ü)KAÜ).**>

Assume that •Zaü);äü),cü) ^ 0. Then we have

(Op'; O2ü)|0r2)>A<Wccn (SOP; SO^SO®)^.^ ,scCfl

+n#(A»). (5.5.7)
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Proof. Because, by hypothesis, ^aü);/cü),Gü) 7^ 0 it is immediate that, for |A„| small enough,

f dpcv)(4)£a+m(A®,<$*) at p := 1 is nonzero and at least C(2) in A„. Consequently,

(O^OPlO&M.^cv ri2log (J dpCIJ)(4)£a+k(S>(A^M))

Now recall that £a+*<s>±em£°+^oC,\m (cf (555^ ^A), and (3.4.3), (3.4.7)), and that
£o+eIiae,[kV>\ so^Bae.,iat.,\m\ (see (4.17)). Using aiso that &) fi/ + fi// o £j, where fi/
is ^-independent and fi// o £7 is Aa-independent, and (5.5.6), (5.5.3,5.5.5) we finally get
(5.5.7). G

Corollary 5.5.6. Assume the covariance C^' on 7is(A^))/{constants} is given by

C«(x, y) C<J\x - y) := |A«>|-i £ e*<*-»>J^)
p6(A«)*

where x > 0 is as specified in Section 1.4, and cr^' > 0. Then,

p2 • <tW '

SCw(x - y) |A^'+1)1-1 jp(l-y) _
x(p2/^2)

p6(a0+1))'

PÏ0

p2 ¦ ((7Ü) + 8aU) x(p2/L2)) '

(5.5.8)

(5.5.9)

Proof. Use (5.5.6) and Corollary 5.4.2.

5.5.2 Bounds

Lemma 5.5.7. For p,Xa as in (5.3.1)

S~KU) /x.5oB(1)[pW[Xü)(-,*)-Xü)(.,0)]]
+ EAa-5oP«[O^(.,*)-0y)(-,O)]

+AiA2 <

•>U),

-SoflW

1Ü)

E (Oi°W.*)
XinA-2=-
Xin^2^0

0W,O))02w(X2,O) + (l«-»2)
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+ S o £<2>[(0iü)(-, vp) - Oi0)(-,0)), (02W(-, V) - O2ü)(-,0))]

+0(p2,pXa,X2a). (5.5.10)

If e > 0, H, UB^ satisfy e.g., the conditions (5.4.12) and

and if k^\ H obey
kW • H2 > 1, (5.5.12)

then there exists Cs.y(L) such that

IIS^Ü) 11(^)^,1^,2// < G5.7(/), (5.5.13)

where the large field regulator (G^'Ge)7-i is defined in accordance with (5.5.2), i.e., such
that

((GwG<)t-.)i G0)G£. (5.5.14)

Remarks. (1) It is easy to check that (cf. (5.1.1), (5.1.2))

(G^G()L-.(X,4>)

exp
((«W + e) | E ^""U^lß + ~\\d<!>\\lx\)

- (5.5.15)

(2) The regulators (G^Gc)L-i (Gkü)+£)/,-1 and T,-i are weaker than GKü)+e and T. The

fact that SK can be usefully bounded w.r.t. the stronger norm
IK ' )ll(Gö)Gt) _!,r _!,2// wm De employed later on to control the result of the fluctuation
integral w.r.t. the weaker, but sought-for, norm ||( • )||G ^,//.

(3) We assume w.l.g. that G5.7(/) > 1.

Proof. Use (5.5.3), (4.23), and (5.4.10) to check (5.5.10). The bound (5.5.13) emerges in
the following way: By (5.5.3), (5.5.2), and (5.5.14), and because / > 4 implies 2H/, < H,
we have

l|5X0)||(GÜ)Ge)t_,,Vl,2W < ||S[f//[^/[XW]]]||Go)G(,(Vl)l,//.

Because of (5.4.13), (5.3.1), (5.2.3,5.2.4), and (5.5.11), (5.5.12), we conclude that (r.h.s.
(5.4.13) < Ci3(L). Hence we may apply Proposition 4.7(i), with n i—» if and 7 t-t Tv-i
(note that Ar _, > (rf)2 due to (5.2.2)), to continue with

< C4.4 • Ld ¦ C43(L). G
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Lemma 5.5.8. For p, A„ as in (5.3.1), write

S~KU) p ¦ skf + E a* • skf + 0(p2, pXa, A2).
a

If kW, /J, / obey
«w • /r2 > /d+2p-2, (5.5.16)

then (recall that / G N0 has been defined by LJ < |xi — x2| < LJ+1)

\\Sk?\\{GaGt)L_lXrli2H < G5.g-/^-||xW||GÜ,,r,//; (5.5.17)

\\Sk^\\{Ga)Gt)L_urv_lt2H < G5.8-Z-*-||0W||GU,,r,77; (5-5.18)

H^r2)|l(G(flGe)I-1,r,_1)2// < G5.8 • {||0#||Go),r,// + ft IIG^IIGü),r,//j

C Z-2<H, if 0 < i < J-2
¦I L~2d, ifj J-l (5.5.19)

1 L'd, ifJ<j<N-l.
[In the last equation a stronger decay can be obtained by choosing A larger in T.]

Proof. (1) We begin with the proof of (5.5.17). The explicit formula for SK^ can be

looked up in (5.5.10). Write AK& := X<»(-, *) - X^(-,0) and AK^ := AK® ¦ 1(X G

S), AKJp := AK^-AKf. With this notation, with (5.5.2) and the linearity of Rfä, B™

we have

\\SKp ll(Gü)G,.)i_1,r^i,2//

< E ^rM[ak}PMg<j>g.^)i*B' (5-5-20)
ß=S,C

(la) ß C term in (5.5.20): Due to (3.3.10) we have R^[AK^} AXf; now, apply
(4.19) (with 7 1-» r„-i), and recall that Ar^ > Ld+i (cf. (5.2.2)), that G^Gt > G® and
that 2H/, < H to get

||S(1)(Ä(d)[AXy)]]||GÖ)Gf,(Vl)ii2HL < /+1 • L-i • IIAX^H^.r,//.

We continue with HAX^Hj,^ < \\AK^\\9iy<h, and with ||AXÜ)||9-,7,A < 2\\KW\\jnth for any
g1 > 1 with g'(-,<t> 0) 1.

(lb) /3 5 term in (5.5.20): Apply (4.19) and Gü)Ge > G®, 2HL < H< with £ := //4,
to obtain

\\B^[R^[AK^}}\\GQ)GUr hmL < ^+l-Ld.\\R^[AK^}\\G(JlrJi(.
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Use Theorem 3.1.1, part (iii), and (5.5.16) and ||AX^ ||Gü),r,// < 2||Xk)||GG)ir]77 to arrive
at (5.5.17).

(2) Proof of (5.5.18): We use the same notation as before. Then, according to (5.5.10),
(5.5.2), and (4.20),

l|5"xf ||(GolGï)L_1>Vl)277 < /+I • ||AO«||GM,r,H,-

Apply Lemma 4.3 of [6] to proceed

/ fd+2P-2 \ d

< ft" ¦ G • 1 + ^r^) IIAOW||GÜ,,r,H<;>d,
Kü).H2j

and use (5.5.16) to obtain (5.5.18).

(3) Proof of (5.5.19): Notation as before. Use (5.5.10), (5.5.2) to see that

|5X;;2;||(GÜ)G()L_„r 277 < ||P(1)[AOW]||G0),(r Ä

+ < 5(D E AOW(Xi)-O^(X2,0)
x,ux2=-
X^Xity

+ (1 ~ 2)

G0),(r_,)L,H*

+ ||B(2)[AOP,A020')]||Go-,,(r.l)L,H< (5.5.21)

(3a) 0 < j < J - 2: Then \x^' - x^| > LJ~> > L2 > 4L > 2d; hence AO^(X G 5)
0, E A0ü)(X,) • 0(i)(X2,0) 0, and upon application of (4.20), (4.21) we get

XiUX2=XeS
X^Xiïb

< ^•(^-'{llAO&'lU.r.H,
+{||AO(/)||GÜ),r>H, + (1 «- 2)} + T] ||AO«||GÜ),r,HJ

•

a=l J

And now we apply once more Lemma 4.3 of [6] (to generate a decay factor L~d), and
(5.2.2) provides us with an additional (in principle arbitrarily strong) decay factor from
(Ar _,)_1 so that (5.5.19) can be established.

(3b) j J - 1: Since |xü) - xf\ > L > 2d the pW-terms on the r.h.s. of (5.5.21)
can be bounded as before. When estimating the Paterni, however, (4.21) yields only a
factor 1 (instead of (^4r _,)_1); this loss is compensated by applying Lemma 4.3 of [6] to
both factors in ]J ||AOü)||gü>x,h,.

<*=1,2

(3c) J < j < N — 1: Proceed as in (3a); but instead of the factor (Ar _, )_1 we only get

1 because |xj" — x2\ is too small. G
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Without loss of generality we will assume that

2 • G5.3 < 4Cs6 (5.5.22)

(cf. (5.4.8), (5.4.13) and (5.4.12), (5.5.11)). Define C5.9(L) by (cf. (5.5.11))

C5.g(Z) := 2 • 4C"/C4,(L). (5.5.23)

We now collect the results of Lemmas 5.5.7, 5.5.8. For the sake of clarity of our
statement we will, for the first time in this section, explicitly state the hypotheses (l)-(4)
of Section 5.2.

Theorem 5.5.9. Assume that L,A,H,n^,e,UB^ and ||XW||Gü),r,//, IIGa'llcüJ.r,// satisfy
the conditions15

(a)

(b)

(c)

(d)

and

(e)

(f)

L>2d+1, (5.5.24)

A>raax{rfi+\Ld^},

(ll^)llG0),r,//)i < UB® < G5.o(Z), (5.5.25)

l|GÌ;)||Go),r,// < 00, Va,

KV). H2 > Ld+2P~2, (5.5.26)

C59(Z) • UB® < min jl,~ j (5.5.27)

where C5.o(Z), C$.9(L) have been defined in (5.2.4), (5.5.23).

Then the /-type polymer activity SK® and the O-type polymer activities SUÌ (cf.
(5.5.4)) obey the bounds

ll^ü)ll(Gü)G(Vl,Vl,2// < G5.io-/^-||XW||GÜ),r,77; (5.5.28)

l|50W||(GW _iiW < 05.,o-Z-d.||OW||G«,r,//; (5.5.29)

15We wish to remind the reader that conditions (a)-(d) (or, rather, the somewhat weaker forms (l)-(4) in
Section 5.2.) have so far always been assumed to hold, but according to our rules we didn't mention them
explicitly.
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;l^0Ü)ll(Ga)G()l.1,r,.„2// < G5.io-{||Og)||Ga,,r,/7+n IIG^IU.r,//

/2<H, 0<j<J-2
L~2d, j J-l
L-d, J<j<N-l.

(5.5.30)

Proof. First of all: Note that (5.5.24) =^> (5.2.1); (5.5.25) =>• (5.2.3,5.2.4) because UB^ <
\; hence the hypotheses in Section 5.2 hold; (5.5.24) and (5.5.26) => (5.5.12); (5.5.27) =4-

(5.4.12) and (5.5.11); hence we may apply Lemmas 5.5.7 and 5.5.8.

We will write ||XW|| instead of \\K^\\G(j)X>H, and similarly for \\0^\\.

Define 80 := | ||XÜ)||-J, 8a := f M^jli. Due to (5.5.25) and 77SW < \, we have 80 >
WW

(the important point is that 80 is strictly larger than 1, uniformly in ||X^)||; the precise
value of the lower bound for So, here is irrelevant). Thus, the curve Cs0 := {p G C : \p\
So} enclosed the points 0 and 1 and is, by (5.5.25), contained in the disk (5.3.1); moreover,

1
max
nectss

ß

/i-1 <1 +
S0

(<-)
is bounded from above, uniformly in ||X^'||. Evidently, for Ai 0 the curve Cs2 {A2 G

C : |A2| 62} is contained in the set (5.3.1), and similarly for C^.

(1) Proof of (5.5.28): Because -J_ « Ì (l + -J-) (and thus ^ I + i + -^), and

since SkU) obeys 5X°\=Aq=0 0 (cf. (5.5.10)) and Skf ^S~KU)\p=K=o (cf. Lemma

5.5.8), we have the following contour integral representation for SK^:

5X0) ^ (2«)-1/ -^T5X0\=o
>ch p

- ^^r'lJ^sK-y (5.5.31)

Applying Lemmas 5.5.7 and 5.5.8 we obtain

l|sxü>||(G0)Gf)iiJVi]2// < C5.8-Z-5||XÜ)||

+ Cr0.7(L) -(So)'2max
nech p-M

which, together with (5.5.25) (implying that ||XÜ>||* - C5.7(L) < L~i), leads to (5.5.28).

(2) Proof of (5.5.29) for a 1: Again by ^ Ì + ^,
dA] 1 dp o~r^0)iSOf (2,i)-2j gLf JH-SK

Jch (Ai)2 Jcl0 /t-1
Skf + (2,iY2i gLf ^(-^WJch (A1)2 Jch p2 \p-lj |A2=0, (5.5.32)
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and now we employ once more Lemmas 5.5.7 and 5.5.8 and (5.5.25).

(3) Proof of (5.5.30): Apart from the fact that the contours Csa now have to be chosen

more carefully, the proof is completely analogous to (1), (2); hence we content ourselves

with pointing out a possible choice of circles Csa (G^ stays the same as before). Set

lho(/)|l
b* := 5

XX» I

(3a) 7>i, 7^ > (&12)2: Then we define the radii 6\, 82 by (8a)
1 := ba.

(3b) (fcu)è > 61,62 : Here we set («„J"1 := (612)*-

(3c) bi > (bl2)l >b2:^ (Ol)"1 := 6,, (8,1 := max{7)2, bf).

(3d) b2 > (b12)h > 7,i :=? (S2)~l := b2, (6,)'1 := max{6,,£}.

This choice of 8a is useful because it (and (5.5.25)) guarantee that

(i) Ai, A2 with |A„| 8a belong to the set (5.3.1),

(ii) «T1 • %l < const • ||X<>>||-i(HOg|| + EI IIG^ID- n
a

As a conclusion we see that the bounds (5.5.28)-(5.5.30) have been obtained by

~ U) ~ (J)
(i) a careful estimate on the leading order contributions SKß 5XÖ (cf. (5.5.31),

(5.5.32)) which are first order, resp. zeroth order in K^\ as given in Lemma 5.5.8;

(ii) a rather simple estimate on the higher order remainder (represented by the contour
integrals in (5.5.31), (5.5.32)) for which only a suitable choice of contours, the
undetailed "nonperturbative" bound (5.5.13) and a sufficiently small ||Xk')||Go-)>r.,// were
needed.

6 The RG step. Part II: Fluctuation integral (J7)

6.1 Summary

For a relevant collection of notation/conventions, the reader is referred to Section 5.1. In
order to avoid misunderstandings, however, one important remark has to be added: In
contrast to Sections 2-5, in Sections 6 and 7 the momentum space 77V cutoff function x
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(cf. Section 1.4) will enter the game. \ has been chosen once and for all and dependence
of "constants" on \ wiU n°t be indicated explicitly (just as we did so far and continue to
do with d, P, c, s, rj).

Making use of the results of Section 5, that is of Proposition 5.5.5 and Theorem 5.5.9,
the main goal of this chapter is to prove the

Theorem 6.1.1. Assume that L,A,H are large enough16 and that k^I > 0 is small
enough. Let X^) be an /-type polymer activity on A^' whose norm ||Xk)||G r77 is

small enough, and let O^ be O-type polymer activities on A^' (pinned at Z_7xä) with
IIG^Hc^r,// < oo. Let j obey 0 < j < N - 1; and let, for £ j,j + 1, Cw be the

covariance on 7-i!s(A^))/{constants} whose Fourier transform, C^(p), is given by C^(p)
xijP1)I(^ -P2)5 P ¥" 0. Assume that a^ > ì and that \o® — <r^'+1)| is small enough. Under
these conditions we find:

(i) There are /-type, resp. O-type, polymer activities X^+1', resp. 0^+ ' on A^+1) such

that, if ZaüJjjjö))Ctì 7^ 0,

(Op'; O2ü)|OÜ)>AC«;/f0),GÖ, (Op+1); OaÜ+1)|Og+1)>Att«)lK<K«lCtfH)

where fi^ is a polymer activity on A^') pinned at L~^x\,L~^x2; moreover,
^A0+l);/fÜ+l),GÜ+l) 7^ 0.

(ii) Assume that e > 0(H~2.(||XÜ)||G ùvr,//)*)- Then, for any 8 > 0, if Z is large enough,

Zb'+1) and o£+1) obey the bounds

llX^llc^r,// < L-i+'-llÄ^JIc^.H
UO^Hc^r,// < Z-^.||OÜ)||Gj[ü),r,//

WO^Wg^vm < {l|GS;2)l|GKÜ),r,//+ni|OÜ)||G^),r,//}

r z-^-j, o<j< j-2
J L-^6, j J-l
[ L'M, J < j < N - 1.

The contents of Sections 6.1-6.5 are mostly independent of the previous sections, and a

vague familiarity with Sections 2-5 is sufficient to understand Section 6. In Sections 6.1-6.5

we assume that j < N, and that C"), C^+1) are as in Theorem 6.1.1, i.e., for £ j,j + 1,

C<0(*-y):=|A<V £ e^^^I. (6.1.1)
pg(aW)« aW-P2

PÏ0
16Cf. Theorem 6.5.4 for more details.
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6.2 Deforming the covariance

Definition 6.2.1. For given <rü) and 8a^\ we set (cf. Corollary 5.5.6)

aU+D .- aU) +«^0). (6.2.1)

For £ G [1,Z] we define the covariance CJP on 7is(Aü+1))/{constants} by

where 7r could be "any" function with 7r(l) 1 and 7r(Z) 0; for the sake of simplicity
we choose it to be linear, i.e., tt(£) := (Z — £)/(L — 1).

Corollary 6.2.2. CP SC<J\ cf C^+1\ If oXi) > 0 and o-k'+1) > 0, then Öp > 0, V/.

Proof. The first two identities are obvious (cf. (6.1.1) and Corollary 5.5.6). To prove
CP > 0: Use 0 < x < 1 (cf. Section 1.4); if 8a& < 0, then Sa^/a^V < 0; if 8a^> > 0,

then O-0+!) aU) + 8a<J) > Sa®, thus (^) < 1. D

Definition 6.2.3. For 1 < £ < £' < L we put

C%:=CP-CP. (6.2.3)

Corollary 6.2.4. If Z > 2, <t^'+1) > 0 and |^| < \, then

dpi > 0. (6.2.4)

Proof. The idea is to show that jjCfp < 0 which implies that C$ - // dt'-fedp > 0.

Since

-i
±CP(P) (a^{l-«(£).^(l-X(x))

rx(x)-|l-7rW^Ty|-r3T^T
2 /2 r *~m ^ 1 6o® x(x) • (1 - x(x))

L2
' ' "" ' " "

¦*£
the above hypotheses, and the condition that x'(x) < — ~x(x) ' (1 — x(x)) for x > 0 (cf.
Section 1.4), lead to the result we sought. O
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Definition 6.2.5. The symbol pg\ is defined by

(pP4 * F){V) := / dpcu (<j,)F(^ + ¥). (6.2.5)
J t1,t

Definition 6.2.6. For £ G [1,Z] we define the large field regulator (Gs)i/i by

(G6)t/L(X,4>) := exp
U { ± (£j \\d»</>\\2x + i|||^||Ü j (6.2.6)

This definition is consistent with the definition of (G()i-\ given in (5.5.14) (cf. (5.5.15).

Evidently, for £ Z we have

(G,), Gs. (6.2.7)

Lemma 6.2.7. Assume that <r^+1) > \, |^| < \. Let s > 2, c> 0, Z > 2. Then there

are C6.i(Z) > 0, /cmax(Z) > 0 such that for all n with 0 < k < «max(Z) and all £,£' with
1 <£<£'< L:

(tä*(GK)e/i)(X,<t,)-rc"VW
< (GK)e,L(X, 4) ¦ (£')«c"wm, V X C A«+1), <j>. (6.2.8)

Proof. (6.2.8) follows if we can prove that

d

d£ ((/$ * (GK)t/L)(X, </>) ¦ fM-W) > 0 (6.2.9)

for some suitable function v(k) (which, as we claim, can be chosen to be linear homogeneous
in k); and (6.2.9) in turn is true if

((GK)e/L(X,4))'1 ¦ ||A% + | + v{k)£ |X|
} (GK)t/L(X, 4) > 0, VX,^, (6.2. 10)

where

^-/A^^-,)jl5 6

6^(x)6(^(j/)'
The l.h.s. of (6.2.10) is a sum of ^-dependent and of (/»-independent terms, and we want
to achieve the inequality (6.2.10) for both types of terms separately.
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(a) The ^-independent terms: They are given by the l.h.s. of the next inequality and
can be bounded as

2

where

\a% log((GK)e/L)(X, « +«>- b.(D ¦ (|X| + M) + ^|X|,

b.(L) := £ sup
1<|/j|<s it

W)2§-eCP(x 0)

using |ÖX| < 2d|X| we thus can set v(k) C6.i(Z) • k in order to arrive at (6.2.10).

(b) The (^-dependent terms: Those originating from §i(Gk)i/l are of order k, and can
be used to dominate, for small enough k, the remaining ^-dependent terms (which are of
order k2) if we employ Young's convolution inequality and if, in order to bound the terms
of the form K2JxddxfY d"1 yd^<j>(x)d>^4>(y)d^ ffiP(x - y), we integrate by parts in x to
produce boundary integrals.

6.3 A general existence theorem

The result in this section, Lemma 6.3.2, on the existence of T will enable us to define
Xt?'+1), qv in Section 6.4, but it is very weak. Much better bounds will be obtained in
Section 6.5 by estimating the flow equation obeyed by the activities TgK 1 < £' < L,
as in [6]. Lemma 6.3.2 could also be proved using the flow equation.

Let X] be a regular polymer activity on A, analytic in p, Aô and obeying ll-KiH^i^ < oo
for p, Xâ in a neighborhood 77 of zero. Let g2 be a large field regulator and /t2,i represent
a Gaussian measure with mean 0 and covariance C2,i with

ß2,i*gi<g2 (6.3.1)

Definition 6.3.1.

where

Finally, we set

|*|| := max max||tfj| (6.3.2)

||¥J:= max |*w(x)|. (6.3.3)

dist(*) := inf II* - **||. (6.3.4)
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Lemma 6.3.2. There exists a unique polymer activity X2, regular for all \P with dist('i') <
h, such that

£a+k*(X, *) (/i2,i * £a+Rl)(X, 4-) (6.3.5)

for all X C A, and \P with dist(*) < h. Moreover:

(a) X2 is analytic in p, Aa in a neighborhood 77 of zero.

(b) Xi is local/even/real =*¦ the same holds for X2.

(c) Xi and p\2 are invariant =>• X2 is invariant.

(d) t0X] is /-type and /«ii2-invariant =*? t0X2 is /-type.

(e) TaXi are O-type =$¦ raX2 are O-type.

Sketch of proof. If we show that, for dist("î') < h, the integral I(X, \P) := (p2j *
£a+Kl)(X,^) exists, is regular, and exhibits properties analogous to (a)-(e), then, using
/(0, *) 1 and induction in |X|, the claim for X2 follows.

Fix \P with dist(*) < h; we will show that I(X, *) exists. First, since dist(*) < h
there exists <j>' such that ||* - **'|| < h. Write <P *<*' + A and perform the Taylor
series expansion of £a+Ki (X, * + **) in A around A 0. In this way, and applying the

2

inequality ||Ji o J2||ff,i,h < |A|2 ¦ ]J \\Ji\\g,i,h, we obtain
i=l

sup(g1(X,(l> + (j>'))-1\£a+k>(X,V + <2'l,)\ < |A| • elA|l|Älil^*.

Therefore, applying (6.3.1) yields

|/(X,*)| < Jdpc^i^X^ + WgdX^ + t'))-1^0^^,* + V*)\

< g2(X,4') - |A| • el AHl/ci

In a similar way one can prove regularity and analyticity in p, Xa; and now the (analogues
of the) properties (b)-(e) follow immediately.

6.4 Definition of K^+l\ 0{i+x)

Definition 6.4.1. The regular, local, even polymer activity T\K on A^+1) is defined by

TXKU) := p ¦ 5XÜ) + Y.X« ¦ S°s^ for »> Aä e c- (6-4-1)
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As a consequence of Proposition 5.5.5, Theorem 5.5.9 and Corollaries 6.2.2, 6.2.4, and
Lemmas 6.2.7 and 6.3.2, we find

Theorem 6.4.2. Let 0 < j < N - 1 and assume:

(a) Hypotheses of Theorem 5.5.9,

(b) ^>4 *<»
oM * 4' (6-4'2)

(c) is« +e<KmBX(L). (6.4.3)

Then:

(i) For all £' with 1 < £' < L, there exists a unique regular, local, even polymer activity
TeK regular for all * with dist(*) < 2H, analytic in p, A„ G C, such that

£u+t;k<» ^« + go+Äjr" j (64 4)

(ii) X^+1) is /-type and o£'+1) are O-type (pinned at /-^+1)xâ), where

X^+1) := r0T~LKU)\p=1

0(Ì+l) := ra^/:X0\=i (6.4.5)

(iii) Assume also ZA(j).jcU),cifi 7^ 0. Then Zaö+i).äü+u,Gü+i> / 0 (and vice versa) and

(opWlG^Wo),^
(0^+1); 0?+1)|Og+1)>A»«,iJrttH,iCtt«) + nS(A»). (6.4.6)

6.5 Bounds on K^+1\ 0{J+1)

Recall the definition of the function 9A : N0 —> R+ (cf. Section 1.4), which is involved in
the definition of the large set regulator T. It is easy to verify that for n G N,

0A(n) <AQ-nQ]oidA) (6.5.1)

IfC:AxA—> C is sufficiently smooth we set

Hdl, := sup Y, 7(A U A') • C(A, A'), (6.5.2)
AcAA'cA

where

C(A,A'):= sup |Ô£Ô$'G(x,x')|. (6.5.3)
1 < |M#| <P

x* G A*
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Corollary 6.5.1. Let a^+V > \, I^U < \. There is C6.2(L,A,Q) such that

il« < Ç-àhAM. (6.5.4)
p 16

Proof. Use (6.5.1). The details are left to the reader.

Next, we note that if p., X„ are as in (5.3.1), and if Zâ > C5.10, then (cf. (6.4.1),
(5.5.28)-(5.5.30)

ll^'lkov,)./^-^// < UB®, (6.5.5)

because £f^ < 1 (cf. (5.2.4)). Therefore we get

Lemma 6.5.2. For p,Xa as in (5.3.1), and under the conditions

(a) hypotheses (a)-(c) of Theorem 6.4.2,

(b) Z > (C5.10)2,

(c) H2>UB^-Ce.2(L,A,Q),

(d) £Gu(w«»+o < v,

we find that
ll^xü)||GKÜ)+(,r,// < 1.

Proof. Use Theorem B of [6] or equivalently Theorem 7.1 of [3] in conjunction with
Lemma 6.2.7, (6.2.7), (6.5.5), and (c) of Corollary 6.5.1, and the fact that UB& < 1. D

Lemma 6.5.3. Expand

T~LKU) p ¦ (T~LKU\ + YK- (r~LK% + 0(p2,pXa, A2).
a

If we impose:

(i) conditions (a) and (d) of Lemma 6.5.2,
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(ii) #2>Zi.C6.2(Z,A,Q),

then

\\(f~LK\\\G^r,H < \\SKM\\{GK01+M,r^,2H (6.5.6)

||(^X0))„||G^+e,r,// < \\SOP\\lG^)l/LXrlw (6.5.7)

\\(^KU))u\\GKU)+!,r,H < WSO^a^MX^H
+Z-^.nil^)ll(^ü)+<)1/i)r,-1>2//. (6.5.8)

Remark. The factor Z J in (6.5.8) is gained thanks to condition (ii). We chose this power
of Z in order to match it to the 1 appearing in Z_2d"ï in (5.5.30).

Proof, (a) Due to (6.4.1), (6.4.4) we have (T~LK{J))p (p{\ * SK&). Therefore, making
use of (6.2.8) and assumption (d), the proof of (6.5.6) runs as follows:

II (FlKU\ \\Gjj)+t,r,„ (6.5.9)

£/Jnsup Y r(X)sup(GKÜ,+e(^^))-1
n A IDA *

¦\\D(nmKU^p(X,^).lA\\

< £/rnsup E r(x)sup(GKÜ,+e(x,«»)-1
n A Ida *

¦ f d/i^(^')(GKcfl+£)i/i(X, * + <j>') ¦ sup((GK«+e)1/7j(X, 4 + <t>Tl
J 64-él4+p

|D(n)5Xü))(X, ** + **') • UH

£/Jnsup Y r(X) -»,1*1 • \\D(n)SK^(X)\\{G^+M
n A XoA

WSkWW^+M^,h.

(b) In precisely the same way one proves, for 1 < £' < L, that (Ti,K )a (pp^SO'p)
and that, for z G {0,1},

£}' \\(^KU))a\kGKUi+MUrh/L,H < (±y \\SOP\\(gm+m^h, (6.5.10)
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where

(r),77(x):=r(x)-(-)
thereby establishing, among others, inequality (6.5.7).

(c) Proof of (6.5.8): As is evident from (6.4.1) and (6.4.4) we have (T~LKU))l2 (p<i\ *
SÖ$) + (p%*(SöP°SöP))-(p%*(SöP)o(p<i\*SöP). This formula can be rewritten
as

(^X0))i2 (pï\ * SO<$) - J" d£^ {p% * ((p% * SOP) o (/4> * SOP))} (6.5.11)

The first term on the r.h.s. of (6.5.11) can be estimated as before. As regards the

2nd term on the r.h.s. of (6.5.11): Writing Af := Jddxddx' Y ¦äfdxdiCP(x ~

X,)WTx) M^P) We haVe (cf- (6-2'3)) ^ * F)(X' *> 2A^;)(^ * F)(X, «0 and

§-t(pPr * F)(X, 9) -AP(p% * F)(X, 9), hence

(2nd term on r.h.s. of (6.5.11)) -[ d£//.£> * [((TÏK^^cP^ÏK^hU], (6.5.12)

where

[(Ji)»,C(Ja)*] := />xd<V Y dSd£,C(x,x')
\<\p*\<p

The r.h.s. of (6.5.12) can be bounded in much the same way as (TiK )M, using (6.5.2),
(6.5.3), and (6.5.10). We obtain

r.h.s. (6.5.12) \\gkW+ix,h < f*d£ d£Ce<1

¦n^\\SOPkcKU)+M,r,-uH- (6.5.13)

Next, we use (6.5.4) (which is guaranteed by condition (a)) and the fact that for any J

AllJ"^ AÌM//dft(^"J|l^4-"J"-^'
so that (6.5.13) may be continued as

C6.2(L,A,Q)< n ii^ii^^r,^//.4 • H2

Taking into account the condition (ii) we thus arrive at (6.5.8). D
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In Lemma 6.5.2 we established, for p,Xa as in (5.3.1), a nondetailed upper bound on

\TiK ||G
ffl ,r,//, and in the previous lemma we showed that there is an easy way to

obtain useful estimates on the interesting leading order parts of Ti,K We now combine
(J)

these pieces of information with the analyticity Ti,K in p, Xa (cf. Theorem 6.4.2) in
order to bound X^+1), Oa The method is exactly the same as the one applied in the
proof of Theorem 5.5.9 and hence we omit all the details here. As a result one obtains

Theorem 6.5.4. Assume that 0 < j < N — 1, that the covariances C^\ C^+1) obey
CW(p) x(p2)/(cr(<) -p2) for £ — j,j +1 and p ^ 0, and that the following conditions hold:

(a) Hypotheses of Theorem 5.5.9

(b) (jk'+1) > Ì IÄI < I

(c) is« + e < Kmax(Z)

(d) Z > (C5.10)2

(e) H2>Lh-C6.2(L,A,Q)

(f) lc"M<kW+4 < n.

Then the polymer activities Xü+1), 0^+1) obey

ll^°'+1)ll^,+e,r,// < G6.3-Z-5||XÜ)||Gj(Cj),r,// (6.5.14)

l|0^1)||Gi£Ü)+t,r,/7 < C6.3-Z-<i||OÜ)||Gitü),r,// (6.5.15)

H<^+1)||G„ü)+,,r,// < G6.3 • {UOgil^r,* + fi ll^k^r,//}
r L~2d-i, ifO<j<J-2

¦ l L~2d, ifj J-l (6.5.16)
L~d, if J < 3 < N - 1.

7 Conclusions

In this final section we will evaluate the information gathered in Theorems 6.4.2 and
6.5.4. In Section 7.1 we will show that the so-far unspecified parameters L,A,..., can
indeed be fixed in a way which is consistent with the conditions mentioned in Theorem
6.5.4, and so that the RG transformation (if«, öP, C«) -> (X^+1), o£'+1), C^+1)) can be
iterated. And in Section 7.2 we will prove our upper bound on the correlation function
/n(°)./n(°)iro(°)\ m{Ui ,U2 |Ci2/A(°);ä-(P),C«»-
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7.1 Iterating the RG transformation

Recall, first of all, that the parameters d, s, c, P, n sind the 77V cutoff \ have been fixed (cf.
Section 1.4). These being given, we now give one possible method to choose the parameters
L,A,Q,H,Kp\e. Note that, in what follows, all the choices made in item (n) depend at
most on those made in (1), (2),..., (n - 1) (and on d, s,c,..., naturally).

(1)

(b) Choose Q > 1. (7.1.2)

(a) Choose 8 with 0 < 6 < -. (7.1.1)

(2) Choose Z > Ln^n, where

Zmin := max ^2d+1, (G5.i0)2,2<P\ (C63)*} (7.1.3)

(3) (a) Choose

A>max{^,I^}. (7.1.4)

(b) Choose /c(0) with 0 < k(0) < kJ®^, where

/it := min {^min(Z), logL(n)/(2 • C6.x(L))j ; (7.1.5)

and define

«p) := kP-Y2~\ (7.1.6)
i=0

and
e := e« s k(0 • 2-'-1. (7.1.7)

(4) Choose H > //min, where

/Td+2P-2\ ï i
#min :=max (^^j-J (£è ¦ G6.2(Z,A,Q))è • (7-1.8)

Recall that, given Xi,x2 G Rd with |xi — x2| > 1 and given Z, the parameter J G No
was defined by LJ < \x\ — x2\ < LJ+l. Furthermore, given Z, the initial torus A'°) is

determined by N G N (as A<0) [-*£, Ç\d).

Definition 7.1.1. For a G R we set

p(L,H,kW,o) :=min|(C5.o(Z))4, Lin jl,^^ J /G59(/)

ff2 ¦ (<r - 1) /J2

2 ¦ C5.4 8 • C5.4
(7.1.9)
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Clearly, p(L,H,KS®,a) > 0 iff a > \.

Theorem 7.1.2. Choose the parameters L,A,Q,H,K^\e as in (l)-(4) above. Fix Xi,x2
and let N > (J + l). Let C^ be the x-regularized inverse Laplacian on A^°) with dielectric
constant oX°) > | ,17 Let K*® be an /-type polymer activity on A^0' obeying

\\K(®\\GKm,r,H<p(L,H,K(®,aW),

and let öi be O-type polymer activities on A'°) with

l|Oi0)||GK(0),r,// < oo.

Then we can iterate the RG transformation (X(0), ö{pC^) -> (X«, öjp, G1)) -» • • • (X-
l)-times. For 0 < j < N, the x-regularized inverse Laplacian on A^\C^\ has dielectric
constant

i=0 2

where Sa^ has been defined in (5.4.6), and K^\oP satisfy the bounds (recall that 8

obeys 0 < 8 < \ (cf. (7.1.1))

ll^0)l|G„ü),r,// < L-te-^WK^W^w (7.1.10)

\\OP\\GM,r,„ < /-^-6)||Oi°)||Gjt(0),r,// (7.1.11)

and

\\0P\\GkQ)X,h < L^d-^ {L-^Hofhc^H
+ A IIGi0)l|Gs(0),r,//} if 0 < j < J - 1, (7.1.12)

linker,// < L-W-«-m-i) c7A {z-(^')(-'-i)||oS02)||Git(0),r,//

+ lì IIGi0)||G(c(0),r,//} ,HJ<3<N. (7.1.13)
a=l "

Proof. The proof is carried out by induction in j, using Theorem 6.5.4 and the bound
(5.4.9). It is very easy to work out the details and hence we leave this task to the reader

(in particular, one sees that C7.1 < 4).

17We need <r'°) > | because of condition (b) in Theorem 6.5.4. Actually, any strictly positive lower bound
would have been acceptable as well (e.g., o^0' > 10~20), but for the sake of simplicity we chose | throughout
Section 6.
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7.2 Bounding the correlation function

Remember the definition (5.5.5) of the polymer activity ü^2.

Lemma 7.2.1. Hypotheses:

(a) Conditions as in Theorem 7.1.2, but we strengthen (7.1.4) by

(b) A^maxJTf^Z2"^}.

Then we find, for 0 < j < N:

\nP(A^)\ < |xi - x2|-M • C7.2(L) • {|xi - x2|-î • ||O|°2)||G([(0),r,//

+ ni|Gi0)||G,0),r,//}-{ ^.tMXM)t j|;|x ' (7-2.1)

Proof. (1) According to (5.5.5) and (5.3.2):

n<f2\A^)=rl2n,[k^](A^)\p=1= Y n2"/[xü>](x)|„=1
XcAÜ)

is pinned at Xj and x2 so the sum Y really extends only over those X which contain
XCAÜ1

both Xi and x2 Let zr := min r,,(X), and assume that z obeys 1 < z < zr- Then
x-.x^'^

1Ü)|îîiy(Au))| < Y |r,2W/[XW](X)|at/i l
.VCA«

Jb*«*2Ü>

< z-1 Y ^r-|Ti2W/[XW](X)|at/x l
XCA«

J\ z?3s-i t***2

< z-1||r12w/[Xy)]||9,r„h at // 1, for all g > 1, h > 0. (7.2.2)

(2) If j > J we put z := 1. Otherwise, if j < J, we set z := Zr; since A^ > eM+5

(and therefore (Ar,)1*1 > IX^+s), and since 0A(n) > A{logtW} for n G N (cf. Section

1.4), with A > ZM+2 (implying that 9A(n) > nM+i), one concludes (exercise!) that
zr>\xP-xP\2d+h.
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(3) For p,Xa as in (5.3.1), w7[Xü)] is analytic in p,Xa (cf. Lemma 5.3.3); choosing the
contours Ce0, Csa as in part (3) of the proof of Theorem 5.5.9 we have

Tl2W/[Xk')]|M=l Tl2UJ,[k^]p=0

+ (2«W 7^2/7^/ ^K)#|. (7-2.3)
JCi, (A,)2 /Gsj (A2)2 Jch p2 \p - 1)

Applying (5.3.4) to the first term on the r.h.s. of (7.2.3) we get

||TWxW]UIU,h < \\OP\Wv,„ + ft l|GW||Go,,r,//-
a=l

The contour integral is estimated using (cf. (5.3.5), (5.3.1)) ||w7[X^")]||9r, h < G5.1 and (cf.

(5.5.25)) ||XW||GÜ)r|// < 1.

(4) Finally, we combine the results of (l)-(3) with (7.1.11), (7.1.12, 7.1.13) and with
L~J < Z • |xi - x2|_1 to arrive at (7.2.1).

Lemma 7.2.2. Let Ca be the covariance on ?is(A(;v')/{constants} whose Fourier transform
is Ca(p) x(p2)/(<r • p2), p / 0, and a > a' > 0. Let s > 1, c > 0. Then there are
07.3(0-') > 0 and K'mex(a') > 0 such that for all k with 0 < k < Kmox(</), all t,f with
0 < t < f < 1 and all a > a':

(p(t.-t)c. * GK.<f) (A, <j>) ¦ etKC"^ < GK.é.(A, <j>) ¦ J"°uM, V <j>. (7.2.4)

Proof. Analogous to the one of Lemma 6.2.7. Q

Definition 7.2.3.

«max := «max [^ 3) ' (7-2-5)

G73 := G7.3(<r' ì). (7.2.6)

Theorem 7.2.4. Under the conditions listed in Theorem 7.1.2, but restricting A, kX°),

II-^iIg mix,// even further by replacing

(a) (7.1.4) by A > max {n^, L2d^} (7.2.7)

(b) the r.h.s. of (7.1.5) by min{r.h.s.(7.1.5), -Kmax}, (7.2.8)

(c) the r.h.s. of (7.1.9) by min{r.h.s.(7.1.9), ^e'2^0^}, (7.2.9)
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we find that Z^-kì«) cm 7^ 0 an(^ that

|<OJ0);Of lOgV)*«»,^! < ||*i - ^2||-2(d-Ä) • C7A(L,6)

|||xi - »2||-l - ||O|°2)||G)[(0),r,// + n HOfll^w} • (7-2.10)

Remark. Instead of ||asi — x2|| 5 we could achieve ||xi — x2|| r for any fixed r > 0 by
choosing A,H sufficently large and ||X'°)||G ,0),r,// sufficiently small.

Proof. (1) By Theorem 7.1.2 we have <rW > \ and, by (7.2.8) and (7.1.6), k™ < k^;
hence we may apply Lemma 7.2.2 to see that J dpcm((j>)GK(N)(A,<j>) < e"W C7-3 < e2K<0)'c".

As a consequence, using (7.2.9) and (7.1.10), we get

Zxm.tKm,cm 1+J dpcm(<f>)K^(A,^)

> 1 - / dpcm(4)GkW (A, <j>) ¦ ||XW\\G^XiH

> \- (7.2.11)

In particular, we see that ZA(w);7(<n)iG(w) ^ 0, and therefore, by induction in j starting at

j N, ZA<J).K(JKc(j) 0 for all o'< j'< N.

(2) Abbreviate (OaCJjXW.cm by (-)N. Using (5.1.8) (and the fact that A^w) is a single
block) and (7.2.11), Lemma'7.2.2, (7.1.5) (telling us that 2«(0) < Kmex(L)) and (7.1.11),
(7.1.12, 7.1.13), L-' < |xi - x2|-J • Z, we obtain

\(0\N); or PW)N\

ZJ (zN Jdpcm(4)0W(A,**) - n/^(^0<f)(A,$*)j
< 4 - e-(0)c» {||0|fH^.r./v + Ç lO^lc^w}
< C3J,.(L) • |x, - x2|"2^-*) • L-W-W-s)

l*i - «»I-* • IIG^koJV/ + Il l|Gf Hc^r,//} • (7.2.12)¦{'

(3) By our hypotheses, the conditions of Theorem 6.4.2 are fulfilled, and Zj / 0

(according to (1) above). Hence we may apply (6.4.6), (7.2.1), and (7.2.12) to get

N-Ì
l(o|°);of|o!°2))0| < Y\^(aU))\ + \(o\n);o2^\ö\^)n\

1=0
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< |xi - x2|-2(d-*) • C'UL) (7.2.13)

• {lIG^IIc^.r,// • |*i - x2|-i + n IIGi0)l|G„(0),r,//}

Y |x, - x2|-MZ2^ + Y \xi - x2\-2iL26J^d-6^-7^ + L-^X"-')
j=0 j=.l

which, upon taking into account |xi — x2|_1 < L~J and |xi - x2|_1 < ||xi - x2||_1 • y/d (cf.
Section 1.4), immediately yields (7.2.10). O
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