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The Relativistic Charged Membrane and its Total Mass1

By Matej Pavsic

Jozef Stefan Institute, University of Ljubljana,
1000 Ljubljana, Slovenia
Matej.Pavsic@ijs.si

Abstract. A general classical theory of a relativistic charged p-brane is formulated. Membrane's

mass is calculated in various ways: from the radiation back reaction, from energy-momentum of
the electromagnetic field around a moving membrane, and from the canonical momentum. This
completes the initial Dirac's derivation of the charged membrane's mass.

1 Introduction

The general theory of relativistic p-branes has been thoroughly studied by many authors
[1], It is very interesting and instructive to put the electric charge distribution on a p-brane.
A model was first proposed by Dirac [2], but his action does not contain a coupling term
between the charge and the field potential Aß. Dirac introduced the coupling by a suitable
boundary conditions for Aß, valid only in a particular gauge. A general form of the action
was given in Ref. [3]:

I[X»(0,Aß] JddaKxfy\ + eadaX^Aß)6D(x-X(0)dDx + ^jFß,F^^/\g'\dDx (1.1)

Here d is the worldsheet dimension and D the space-time dimension; £°, a 0,1,2,..., d — 1,

are worldsheet coordinates (parameters) and Xß(^),p 0,1,2, ...,D — 1 the embedding
functions, fab daXßdbXß the induced metric, / det/a(„ k tension and ea the electric
charge current density on the worldsheet.
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2 Equations of motion for membrane's centre of mass

By varying (1.1) with respect to Xß we obtain the membrane's equation of motion

« da(\J\T\daX») + eadaX»F/ 0 (2.1)

Integrating the latter equation over the worldsheet, using the Gauss law and assuming, as

usual, that only the space-like hypersurfaces Ei and E2 do contribute to the first integral,
and then taking £i and E2 to be infinitesimally close to each other, we obtain

dr + fdaea daXvFv>1(x) 0 (2.2)

where dtr nadaa, na a normal vector to the hypersurface element dera, r the time like

parameter on the worldsheet, and P£ k / daaJ\f\ dP-X^ the total kinetic momentum. This
is the equation of motion for membrane's centre of mass. The electromagnetic field can be
taken to consist of a fixed external field F^A and the self-field generated by our membrane:

Fßv FffiA + F^if\ Expanding the external field around the centroid worldline Xq and

writing eadaX" eX" eX£ + e(X — Xc) where e naea is charge density, the equation
of motion (2.2) becomes

APf r
—-= + qXrjFS^ + higher multipoles + / da eX"'F/(self) 0 (2.3)
dr J

Going now to a specific case of a 2-dimensional spherical membrane, of radius r, without
oscillations, with its centre of mass speed much smaller than the speed of light, we obtain
the spatial components of the self force F7sel« — ^XT + F/radj + (higher derivatives), where

q /dcra ea is the total charge. For the kinetic momentum we obtain P£ 4irnr2 Xß/Vx2.
We now insert these last two expressions into Eq.(2.2) and identify the coefficient in front of
acceleration as the renormalized or the observed mass:

a2
M 4vTKr2 + — (2.4)

2r

3 Energy-momentum of the electromagnetic field around
a moving membrane

The second way to obtain the membrane's mass is to calculate the stress-energy tensor
belonging to the action (1.1):

T"" 2dC/dg'"J T£v + T^ (3.1)

where

IT K J ddttyf\T\daX" cfXv 6D(x - X(0) (3.2)



Pavsic 355

TZ, ^V «T - ^F""V (3.3)

The momentum is

P* jdKT"u P£ + P£M (3.4)

For a specific 2-dimensional membrane (as described above), and taking dE„ oriented along
membrane's 4-velocity Xv, we obtain (at v « c):

P° (4-KKr2 + Ç\ M (3.5)

PT (4TTKr2 + ^-)vr Mvr r l,2,3 (3.6)

where vr is membrane's centre of mass velocity. In Eqs.(3.5), (3.6) we have the same result
for the membrane's mass as calculated from Eq.(2.3), where the radiation back reaction has

been taken into account.

The old problem of 3/4 does not arise in our calculation of P£M. As already stated by
Rohlrich [4] and Barut [5] (see also [3]) one obtains consistent electromagnetic mass, provided
that the hypersurface element dE„ is chosen properly.

4 The canonical momentum and the Hamiltonian

From the action (1.1) we obtain the following expression for canonical momentum

dC
KyfÜ\daXß + eaAß (4.1)V u- ddaX»

which consists of the kinetic and the minimal coupling term. The Hamiltonian density
Hab paßdbXß—C 6ab is identically zero and represents d independent worldsheet constraints
which are a consequence of the reparametrization invariance of the action (1.1). According
to Dirac [7], the Hamiltonian [6, 3] is a superposition of constraints:

fl,/d,*.Wi/dÄ(^ -*).. (4,)

and is weakly zero. Here iraß paß — eaAß, irß iraßna, where na is the normal vector to
the hypersurface element daa. The Hamiltonian equations of motion pß — 8H/6Xß(a),
Xß 6H/6pß(a) give the correct Lorentz-force equation (2.1).

The canonical momentum of the whole membrane is given by

ff /P\ d(T- j^da + \j eA» da (43)
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where | in the electromagnetic term is neded in order to avoid double counting in the
integration over the membrane. By using the constraint [8] ivßirß — |/|«2 0 we find for the
time component 7To (|/|«2 + ir2)1!2, ft2 —7rr7rr, r 1,2,..., D — 1. This can be inserted

into the expression P0 of Eq.(4.3) and we obtain

P^ Jday/\f\L2 + ty + lJdeA0 (4.4)

For a 2-dimensional, spherically symmetric membrane Eq.(4.4) gives

P0W ((4^r2)2+p^r))1/2 + ^ (4.5)

wherep(r) — 4/Knr2f/ (1—r2)1!2. The time-like component of the total canonical momentum

Pq has the role of (non covariant) Hamiltonian and gives the equations of motion which

are equivalent to the equations (2.1). When p(r) 0 the Hamiltonian P0 coincides with
membrane's mass (2.4) and (3.5).

References

[1] See e.g. E.Bergshoeff, E. Sezgin and P. K. Townsend, Annals of Physics 185, 330

(1988)

[2] P. A. M. Dirac, Proc. R. Soc. A 268, 57 (1962)

[3] A. O. Barut and M. Pavsic, Mod. Phys. Lett. A 7, 1381 (1992); Phys. Lett. B 306,
49 (1993); 331, 45 (1994)

[4] F. Rohrlich, in : The Physicist's Conception of Nature, ed. J. M. Mehra (Reidel,
Dordrecht, 1973) p. 331, and references therein

[5] A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles
(Macmillan, New York, 1964) p. 200

[6] M. Pavsic, Class. Quant. Grav. 9, L13 (1992)

[7] P. A. M. Dirac, Lectures on quantum field theory (University Press, New York,
1964)

[8] M. Henneaux, Phys. Lett. B 120, 179 (1983)
U. Marquard and M. Scholl, Phys. Lett. B 209, 434 (1988)


	The relativistic charged membrane and its total mass

