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Summary

The histories for chaotic quantum systems are such that for long times the logical links
are preserved but the causal links are forgotten.
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1 Introduction
In the many histories interpretation of quantum mechanics [1,2,3,4] one assigns
probabilities to histories Pi(ti).. -Pn(tn) where the propositions Pk can be pictured as gates
through which the system has to pass at a time tk. A consistent probability assignment
should observe two kinds of links.

(i) Logical links: Pk > Pk means that the gate Pk is contained in Pk and thus if we
know that the system has passed through the smaller gate Pk we are sure that it
has passed through the larger gate Pk. Consequently a history with Pk should have

a higher probability as the one with Pk.

(ii) Causal links: Since a dynamics works between the gates it should determine a causal
order in which they are passed. Roughly if the motion is from left to right it is more
likely that the system first passes through the gates on the left and then through
the ones to the right than the other way round.

Surprisingly for finite quantum systems the logical links are not always respected whereas

some causal links still exist. What I want to point out in this note is that for chaotic
quantum systems, namely K-systems, in the limit of long times it is just the other way
round. The logical links are respected, however, all causal relations are forgotten. In this
respect they show the same behaviour as their classical counterpart.

2 Histories
In quantum logic propositions P are represented by projections onto subspaces of a
Hilbert space H. The order relation Pi > P2 means inclusion and the lattice operations V
and A are just the (linear) unions and intersections of these subspaces. Both operations
are associative and commutative and monotonie with respect to the order relation:

(Pi V P2) V P3 Pi V (P2 V P3), (Pi A P2) A P3 Pi A (P2 A P3)

P1VP2 P2VPi, PiAP2 P2APi (1)

Pi > P2 => Pi V P3 > P2 V P3 and Pi A P3 > P2 A P3.

Pc, the negation of P projects onto the orthogonal subspace and relations as in set theory

tpcy p pc A qc (p v q)Cj Pl>p2^ Pl < pç (2)

hold. Algebraically, if P is considered as operator in H, we have Pc l — P,PAQ
urn«-«» P(QP)n and PVQ P + Q if PQ 0. A density matrix p assigns a probability
W(P) — tr pP to the truth of the proposition P. As function it is monotonie with
respect to the order and Pi > P2 means in particular W(Pi) 1 whenever W(P2) 1
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or P2 implies Pi. The lattice operations have their meaning "or", "and" in the sense that
W(P V Q) > max{W(P),W(Q)}, W(P) A W(Q) if PQ 0 and

W(P) 1, W(Q) 1^W(PAQ) 1. (3)

However, subspaces of a Hilbert space may be oblique to each other such that the one of
Pi can intersect only at zero the ones of P2 and P2. In this case the classical distributive
laws

PiA(P2VP3) (Pi A P2) V (Pi A P3)

PiV(P2AP3) (Pi V P2) A (Pi V P3) (4)

break down

Pi Pi A (P2 V P2C) Ï (Pi A P2) V (Pi A PS) 0

PI P1"V(P2AP2C)^(P1CVP2)A(P1':VP2C) 1. (5)

This situation is realized already for one spin for

_
1A<JX

_ lAo-z _ 1-o-z
Fi - —r-' F2 - ~r~' ^2 - ~~2~ ¦

In this case the first line of (5) says it never happens that az 1 and ax 1 or that
az — 1 and ax 1 though az ±1 are the only possibilities. In physics this break
down of classical logic is explained by saying that ax and <r2 cannot be measured
simultaneously. However, one can measure them successively and according to the standard
interpretation of quantum mechanics first measuring Pi reduces p to PipPi/tr PipPi. If
one then measures P2 one finds for the conditional probability tr P2PipPiP2/tv PipPi-
Since the denominator is the probability to find Pi the joint probability for finding first
Pi and then P2 is

W(Pi,P2) tr P2PipPiP2 =tr^p PiP2Pi^p. (6)

Remarks

1. In the classical (commutative) situation we have:

(i) W(Pi,P2) W(Pi A P2), hence

(ii) W(Pi,P2) W(P2,Pi)3,nd

(iii) W(Pi,P2) < min{^(Pi),W(P2)}
(iv) W(Pi, P2) + W(Pf, P2) W(P2).

All these properties are lost in the quantum case. To see this take

"l - 7, 1 P2 - T, P - —7, "lAri U,
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P1P2P1 \pl, P2P1P2 ^p2,

and thus

W(Pi,P2) j W(Pf,P2), W(P2,Pi) 0, W(P2) 0.

The orthodox quantum physicist would say the following to these failures.

ad (i) Pi A P2 is the proposition that the spin has ax 1, az — 1 which never
happens and thus has zero probability. Since p represents the state spin "up"
there is a 50% chance to find <rx 1. If this happens there is another 50%
chance to find subsequently oz — — 1 which gives W(Pi,P2) \-

ad (ii) In the state p I have zero probability to find az —1 thus W^(P2, Pi) 0 ^
W(Pi,P2). This expresses the noncommutativity of the influences of measuring
«Tj. and (7Z.

ad (iii) W(Pi,P2) j > W(P2) 0 is a little harder to swallow because it
means that now the logical order relation is also lost as W(P2) W(1,P2)
and 1 > Pi. One can argue that the proposition represented by 1: "the spin
points somewhere" is always true and does not require any measurement. Thus
the implication Pi => Pi does not necessarily imply H^(Pi,P2) > H^(Pi,P2)
since the measurements of Pi and Pi may effect P2 differently.

ad (iv) It says "something must have happened in the first place" and its failure
has the same origin as the one of (iii). Ironically the non-distributivity of
quantum logic changes a classical equality into an inequality P2 P2 A (Pi V

Pf) > (P2 A Pi) V (P2 A Pf) 0 which goes in the other direction to what we
have now

0 W(P2) < W(P{, P2) A W(Pi, P2) i.
2. One classical relation remains true, namely if P2 implies Pi, that is Pi > P2 then

WTPi,P2) W(P2,Pi) W(P2). This means that the conditional probability to
find Pi given P2 is equal to one.

3. That quantum mechanically the implication Pi => Pi does not yield W(Pi,P2) >
W(Pi,P2) is perhaps more paradoxical than the failure of Bell's inequality since no
locality assumptions but only logical implications are involved.

This preceding procedure can be generalized in two ways. One can measure an arbitrary
number of projections Pa, a 1,... ,r and one may let a time evolution P —* P(t)
intervene between the measurements. In this way one can assign to a sequence of "events"
P0l(ti),Pa2(t2),... ,Pa„(tn) (a "history" briefly written a for the index set or the
corresponding vector) a probability W(a) Tr Pa„(tn). ¦ ¦ Pai(ti)pPai(ti) Pa„(tn). For a

complete set of projections, PaPai 6aaiPa, Yf,aPa 1, this gives a probability
distribution over the set {a} of histories:

W(a)>0, YW(^)^1- (7)
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Remark: Now even classically the commutativity W(ai,a2) W(a2,af) does not
hold anymore. As trivial example take for Pi|2 the characteristic functions X(pi,p!) an<i

X(p2,p'2) on the circle and as dynamics the shift P(t) X(p+t,p'+t) and for W the Lebesgue
measure p. Then

W(l,2) p((pi,p[) A (P2 A t,p'2 + t)) A u((p2,p'2) A (pi A t,p\ A t)) W(2,1).

H (P2,p'2) (pi - *,PÌ - t) then P2(t) & Pi(0) but P2(0) # Pi(t). The absence of
symmetry reflects the causal order of events, Pi is a precondition for P2 to happen at t
but not vice versa.

To give a consistent description of the different histories some further relations hold
in the classical case which are absent in quantum mechanics. They are all guaranteed if
the system has a property called "decoherence".

Proposition I. Let Pa, £«=i Pa 1 be some orthogonal projectors. Between the
properties which hold classically but not generally,

(i) D(a',a) := Tr P„; (U)... Pa'n(tn)pPan(tn)... Pai(ti) 8^W(a) ("decoherence").

(ii) If Pai ^ 0 V i then W(a + a/) W(a) A W(of) (using the same definition for W
even if Pa + Pa> need not be a projector).

(iii) If Pa is another set of orthogonal projectors such that V a'ßai, i 1... n, with
Pa, > Pa[ then W(a) > W(a').

(iv) EL*=i W("i... a„) W(ai,... a4_i, ak+i ...an)

there are the implications
(iv) <= (i) =>> (ii) => (iii).

Proof:

(i) =^ (ii) We assumed Pa, / 0 V i such that Paj • Pa, 0 implies Pa; ^ Pai. Then (i)
implies the vanishing of the cross terms which yields the multilinearity of W(q).

(ii) => (iii) Pai > Pai implies Pai Pa> + Pa» with Pa> • Pa» 0 and thus W(a)
W(a') + W(a") > W(a').

(i) ^ (iv) W(ai,...ak-i,ak+i...an) W(au .ctjt-i, l,afc+i ...an)~
W(ai,... ak-i,J2a, Pa, ak+i,. -.,ak) J2ak W{au .an) since the terms with

i / k are zero according to (i).

One might think that if the U — i<_i are macroscopic times that the system behaves

classically and decoheres. That this is not so is shown in the appendix for one free particle
in one dimension.

In this note I want to study the effect of chaoticity of quantum dynamics on the
behaviour of W(of). As prototype of chaotic systems we shall take K-systems [5,6,7]
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whose properties can readily be generalized to quantum dynamics. For long time intervals
U — r.,_i their histories show the following simple features:

(i) They decohere.

(ii) W(ai,a2,..., a„) is a symmetric function.

Remarks

ad (i) This was to be expected since these systems, in contradistinction to finite quantum
systems, axe asymptotically abelian. Thus for a wide time mesh all the classical

properties should hold. The only point is which degree of asymptotic abelianness
insures that the properties of Prop. I hold. In general K-systems are only weakly
but not strongly asymptotic abelian and this does not immediately imply I.

ad (ii) This means for long times the system forgets all causal links. There is a nu¬

merical measure of the forgetfulness of a dynamical system, the memory loss [9].

Classically K-systems have maximal memory loss but quantum mechanically it is

only a subclass of K-systems, the entropie K-systems which share this property.

3 K-Systems
Definition (3.1) An algebraic K-system consists of an algebra A with an automorphism

a : A —+ A and a family An, n € Z, of subalgebras such that a(«4n) An+i
and

(i) An+i D An,

(Ü) UnA A,

(iii) n„A c-i.

Remarks (3.2)

1. We shall assume all An and A to be von Neumann algebras. General C* dynamical
systems will have several invariant states and they will not exhibit the necessary
cluster properties unless they are extremal invariant. Correspondingly (jn means
algebraic union together with strong closure.

2. Hn is the set theoretic intersection. Thus (iii) means that the isomorphism a :

An «~> An+i has no non-trivial invariant subalgebras. They would remain in the
"tail" f)n A and conversely such a tail would be an invariant subalgebra.

If a; is a (^-invariant faithful state over A then it was shown in [7] that one has the
following cluster properties.
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Theorem (3.3) Let (An,<r,oj) be a von Neumann K-system then V 6 € A, n € Z,
e > 0 3 M(b, n, e) such that

\u(ba~ka) - w(6)w(o)| < e||a|| V a € A, k > M.

Remarks (3.4)

1. The proof of (3.3) uses the modular automorphism of w. This is why we need von
Neumann algebras and w to be faithful.

2. (3.3) expresses a uniformity over all An of the weak convergence of crk(a) to w(a).
Though the set {A} is strongly dense in A uniformity V a £ Aïs impossible (take
<rM6 for a).

If cr-1 represents the time evolution, a~*(P) P(t) then the K-clustering (3.3) implies
the features of the histories in this system which we stated in Section 2.

Theorem (3.5) Let (,4n,<7,w) be a von Neumann K-system with a~l the time evolution.

Given a set of propositions Pi... Pr € A and e > 0, n € N, then there exists T
such that for each history W(a) uj(Pa, (<i)... Pa„(tn) ¦ ¦ ¦ Pa, (h)) we have

W(a)-J[U(Pai) < s

whenever t{+i — ti > T V i.

Proof: First we note that the strong density of {A} in A implies that given P;, 1... r
V e > 3 N with (HP -P)|n)|| < e V i 1... r where Px e An, ||P|| 1. \Q) is the cyclic
vector in the GNS-Hilbert space corresponding to w. This extends to histories because of
the

Lemma

||(Pai(ti)P„2(<2)... Pan(tn) - Pai(ti)... Pan(tn))\m < 3e(l + c'f
where d > 0 is determined as follows. Since u> is faithful \Q) it is cyclic for the commutant
A' and thus 3 P/ € A' such that ||(P, - P/)lfì)ll < e V i and d max, ||P/||.

Proof of the Lemma:

ii pa.(u)-f[ h,(u)=n pai (t,-)(pa„(<n)-p0„ (*»))- fn pM - îï p«>m) £..(*»)
i=l i=l i=l \i'=l i=l /
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and we can proceed by induction in 77. We want to show ||(n^=1 Pai — 07=1 P*i)l^)ll ^
3e C(n) and we know already C(l) < 1. Since all P and P have norm 1 the above

decomposition says upon replacing Pa„ by P'an

ZeC(n) < e A 3sc'C(n - 1) + 2e => C(n) < 1 + c'C(n - 1) => C(n) < (1 + c')n.

Since <?(P) U~lPU and t/|H) |fi) all the estimates are uniform in the <,-. Thus we
have shown ^(PJ — W(Pa)| < 6e(l + d)n and since n and the P< and therefore c'

are fixed it means that effectively we may assume all p to be in some An- To apply
(3.3) we still have to bring together the factor referring to the same time and again we
shall proceed inductively. Let at denote the modular automorphism of cj such that we
have the KMS-condition satisfied: cj(ab) — w((a_,-6)a). The elements for which at can be

continued analytically such that ||a_i(fe)|| < 00 are strongly dense in A such that V e > 0

3 Pt such that (llPt - P/b)|n)|| < e and \\a^Pk\\ < c V k 1... r. Then

\(tt\Pai(ti)...Pan(tn)...PaA(ti)\tt)

- (tt\(a.iPai)PaiPa2(t2 - ti)... Pa„(t„ - <i)... P2(t2 - ti)\tt)\ < e.

Since all Pai € An and (a-;Pai)Pai 6 A we can appeal to (3.3) to show that if t2—ti > Mi
and thus all tk — ti > Mi M(a-iPai)Pai,N,e), k 2... n we get

|(a|Pai(tl) .Pan(tn) Pai(tl)\tt) - Uj(Pai)(tt\Pa2(t2) ..Pa„(tn) ¦ ¦ ¦ PaÀh))\ < 0£

V t2 — ti > Mi. To collect the e's we used w((a_,PaiPQl) cj(Pai(Pai A Pai — P.J) and

cj(P2.) u(P2i + Pat(PCH-Pa>) + (Pai-Pat)Pa, + (Pa, -Pa,)2)
cj(Pa, + (Pai - Pa;)(l + Pai) + Pai(Pa, - Pat) + (Pa, - Pa,)2).

Thus by a finite number of induction steps we come to (3.5) with T — max,- M,- and a
suitable redefinition of s.

This proves the asymptotic symmetry of W(a) in ai... an. To see the decoherence

one notes that if we have to the right Pa< we get an expression

\(tt\(a^Pa,k)Pak\tt)\ - W\PakPa,k\tt)<eAW\PakPa.h\a)\

< 2eA\(tt\PakPalk\tt)<3e

for a'k ^ ak since the P's are orthogonal.

Remarks

1. Schrödinger put it succinctly: "All we have in quantum theory is a succession of
events but we cannot fill the gaps between them". In the language used here this
comes to the following question. If we start with a state p and refine it by
measuring P0l, P„2 can it be sharpened to the degree that we can make a safe

prediction what happens between Pak and P0fc+I? Is there a Pai, tk < ti < tk+i
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such that W(Pai,Pa„... PakPatPa+i...Pa„) W(Pai,Pa2,...Pak,Pak+1,. ¦ ¦ P«„)
and W(Pai, Pa2... PakPatPak+i ¦ ¦ ¦ Pa„) 0. Keeping the Pa> and the U fixed this
can always be achieved by taking Pai Pak(tk — U) or Pae Pak+1(tk+i — U).
This reflects only the deterministic nature of the time evolution. What Schrödinger
probably ment was that this does not hold for all Pe or P/ which certainly is true in
the noncommutative case where the decomposition of unity in minimal projections
is not unique. In our case when we let the i;+i — t,- go to infinity in fact it holds for no
Pat ^ 1 whatsoever. The reason is that the above probabilities get an extra factor
cj(Pat) or w(P^) and cj(Paf) 0 or cj(P„t) 0 are excluded by the faithfulness of
CJ.

2. In general quantum dynamical systems the consistency conditions Prop. I hold if
the Pi... Pr are taken from an abelian subalgebra of A which is invariant under
the time evolution. If A has a nontrivial center it would be a candidate for such a
subalgebra but if w is KMS the center is elementwise invariant and the dynamics
becomes trivial. If A is simple there may be no invariant abelian subalgebras and
the consistency conditions may never be satisfied. For K-systems the situation is
much better since in the long time limit (I,(i)) holds for any set of projections.

Appendix
We start with a particle at rest in an interval (—L/2,L/2) C R : <p0(x) 1/y/Z V |x| <
L/2, zero otherwise. The first proposition we measure is whether the particle is in the
subinterval A (—a, a), a < L/2. It corresponds to the projection operator

1 for \x\ < aPa=Xa(x)= 0 otherwise

The probability for this to be true is

wV0(PA) (voIxaIvo) y.
According to the reduction postulate this measurement changes the wave function to
^o -^- Xa(z). We assume a free time evolution H p2 and to calculate ^t e~,p Vo
we need the Fourier transform

°° dx eipx 1 f" j ita sm aP~ r°° dx e,fœ
x

1 ra
^0 / —T=- 0o(s) -7= \ dx

v2tt v47ra J-a \frra

7 e lp ' sin ap

Next we measure whether the momentum is in an interval A' (6,6 + e). Thus the
conditional probability given Pa to find py after the time t is

/•06+ae sin2 a
zr

~ 1 A+e dp 1 /¦¦*+« sin2
wvAPy) — / -r sin ap - / da

ira Jb p* ir Jab a*
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Now for fixed 6 and e the joint probability to find first Pa and after time t Pa' is

~ ~ 2a r&b+ae sin2 a
W(A,A') (^oIPaPa'PaIvo) =^0(Pa) -^.(Pa.) — / da -^-. (A.l)

L1T Jab a

It should be monotonically increasing in a. This follows since a > a =$¦ Pä > Pa or if
one finds the particle in (—a,a) one is sure that it is in (—ä, ä). However (A.l) is not
monotonie in a. To see this take a such that ab ir/2 and e such that as <C 1. Then

t^/a A/N fa'j cos2/7 2e

Next consider 5 7r/6 > a and again âe<l. Then

nrt Â A/\ 2 /"* j sin27 2,re3

Thus we have W(A, A') > VK(A, A) for ir2é2/3 < b2 which we are free to choose. There
is no escape to the conclusion that the reduction postulate does not lead to a classically
consistent probabilistic interpretation of quantum mechanics.

Remarks

1. H p2 is of no importance, any H f(p) which conserves the momentum leads

to the same conclusion.

2. In contradistinction to the chaotic quantum systems which we studied in Section 3

here even for macroscopic times some propositions do not decohere.

3. There are some projections of x and p which have a common eigenfunction [8] and
for those this paradox would not appear.

References
[1] R.B. Griffiths, J. Stat. Phys. 36, 219 (1984)

[2] R. Omnès, Rev. Mod. Phys. 64, 339 (1992)

[3] M. Gell-Mann, J. Hartle, Proc. of the 25th Int. Conf. on High Energy Physics, 1990

(World Scientific, Singapore)

[4] C. Isham, J. Math. Phys. 35, 2157 (1994)

[5] G. Emch, Commun. Math. Phys. 90, 251 (1983)

[6] H. Narnhofer, W. Thirring, Lett. Math. Phys. 20, 231 (1990)



716 Thirring

[7] H. Narnhofer, W. Thirring, Lett. Math. Phys. 30, 307 (1994)

[8] H. Reiter, W. Thirring, Found, of Physics, 10, 1037 (1989)

[9] H. Narnhofer, W.Thirring, Commun. Math. Phys. 125, 565 (1989)


	The histories of chaotic quantum systems

