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What Particles Are Described by the Weinberg
Theory?

By Valeri V. Dvoeglazov1

Escuela de Fisica, Universidad Autònoma de Zacatecas
Antonio Dovali' Jaime s/n, Zacatecas 98068, Zac, Mexico
Internet address: VALERI@CANTERA.REDUAZ.MX

(17.VII.1996)

Abstract. The main goal of the paper is to study the origins of a contradiction between the Weinberg

theorem B — A A and the iongitudity' of an antisymmetric tensor field (and of a Weinberg
field which is equivalent to it), transformed on the (1.0) © (0,1) Lorentz group representation. On
the basis of analysis of dynamical invariants in the Fock space situation has been partly clarified.

The interest in the 2(2j + i) component model [1, 2. 3. 4] and in the antisymmetric tensor
fields [5, 6] has grown in the last years. Antisymmetric tensor fields are of importance for

physical applications [7]. Moreover, they are an object of continuous and renewed interests
due to their connection with topological field theories [8].

However, many points are unclear to understand at the moment. The most intrigued
thing, in my opinion, is the following contradiction [3. 4]: the j' 1 antisymmetric tensor
field is shown to possess the longitudinal components only [6, 9, 10]. the helicity is equal to
A 0. In the meantime, they transform according to the (1,0) + (0,1) representation of
the Lorentz group (like a Weinberg bispinor2). How is the Weinberg theorem, B — A A,

ref. [11], for the (-4.J5) representation to be treated in this case? Moreover, does this fact

signify that we must abandon the Correspondence Principle (in the classical physics we have
become accustomed that antisymmetric tensor field has only transversal components)

1 On leave of absence from Dept. Theor. & Nucl. Phys., Saratov State University. Astrakhanskaya
ui, 83, Saratov RUSSIA. Internet address: dvoeglazov@mainl.jinr.dubna.su

2See for the mapping between antisymmetric tensor field equations and Weinberg equations ref. [3e,4].
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In the beginning let me reproduce the previous results. In ref. [3e] I worked with the
Lagrangian density (see also [12, 13]):

Cw -dßipyß„d„ip - m2ipip (1)

7,,„ are the Barut-Muzinich-Williams matrices which are chosen to be Hermitian. In a
massless limit, implying an interpretation of the 6-spinor as3

X E + iB (2)
4> E-iB '

0 column(x 0), E and B are the real 3-vectors, the Lagrangian (1) can be re-written in
the following way:

Cw -(dßFva)(dßFua) + 2(dltFßa)(d„Fun) + 2(dßF„n)(duFßn) (3)

This form of the Lagrangian leads to the Euler-Lagrange equation

nFnß-2(dßFaß.ß-dnFßß.ß) 0 (4)

where dvd„.

The Lagrangian (3) is found out there to be equivalent to the Lagrangian of a free massless

skew-symmetric field, given by Hayashi in ref. [9]:4

CH=l-FkFk (5)

with Fk iek]mnFj,„n. It is re-written in:

CH -\(dßF„n)(dßF„n)+l-(dßFvn)(d„Fßa)

-ACW - l-(d„F,in)(d„Fun) (6)

what proves the statement made above if take into account the generalized Lorentz condition,
ref. [9]. After applying the Fermi method mutatis mutandis as in ref. [9] we achieved the
result that the Lagrangians (1) and (5) describe massless particles possessing longitudinal
physical components only. Transversal components are removed by means of the ''gauge "

transformation
FIM -> Fßv + /1[H Fßu + duAß - dßAv (7)

(or by the transformation similar to the above but applied to the Weinberg bivector). This
fact is very surprising from a viewpoint of the Weinberg theorem about a connection between

3One can also choose

^K&)=-
—(2) —

Since t/i —1/<75 the formula (3) is not changed.
1See also for describing closed strings on the ground of this Lagrangian in ref. [10].
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the helicity A and the Lorentz group representation (A, B) which field operators transform
on: B - A A.

Here I am going to clarify this question. In ref. [4] the concept of the Weinberg field as a

system of degenerate states has been proposed. Unfortunately, the consistent description of
the Weinberg "doubles" [4] and/or of the antisymmetric tensor fields FßV and its dual Flw
as the parts of a degenerate doublet are absent in the literature (to my knowledge). Many
works deal with the dual theories, e.g. [14], but do not contain quantization topics.

Firstly, we need to choose the appropriate Lagrangian. In the case of the use of the
pseudoeuclidean metric (when "f0i is chosen to be anti-Hermitian) it is possible to write the
Lagrangian following F. D. Santos and H. Van Dam, ref. [13] (see also ref. [3b], where this
Lagrangian has been obtained independently):

£ O'Ämwd"^ - m2ijip (8)

One can use the Lagrangian which is similar to Eq. (8):5

£(1) -0,10!7,iiA0i - dßip2ißvduip2 - m2ip1ij>i + m2ip2ip2- (9)

in the Euclidean metric. The only inconvenience to be taken in mind where it is necessary
is that we need to imply that djt (V, -d/dx4). provided that dß (V,d/dx4), ref. [15].

The Lagrangian (9) leads to the equations:6

(liwVAPv A m2)tpi 0 (10)

(lv.vVv.Vv - m2)t/'2 0 (11)

which possess solutions with a correct physical dispersion. The second equation coincides
with the Ahluwalia el al. equation fot v spinors (Eq. (13) ief. [lb]) oi with Eq. (12) of
ref. [16c].7

If accept the concept of the Weinberg field as a set of degenerate states, one has to allow
for possible transitions 0i <-> y>2 (oi Fßu <-» Fßv). Therefore, one can propose the Lagrangian
with the following dynamical part:

£(2) -dßtl>^ßvdvif2 - d^ptf^dvipx (12)

But this form appears not to admit a mass term in a usual manner. Prof. Sachs proposed to
consider inertial mass as a varying parameter. In the present framework we are going to go
further: to consider the possibility of the complex mass parameter. This may be understood

5In refs. [3b.13] the possibility of appearance of the "doubles" has not been considered (neither in any
other paper on the 2(2j + 1) formalism, to my knowledge).

6 Problems related with the Wick propagator and the Feynman-Dyson propagator are considered in the
approaching publication in the framework of the proposed model, see also for the discussion of these topics
on the page B1324 in réf. [11a] and ref. [2].

7For the discussion of differences between ref. [1] and our model see ref. [4] and what follows.
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by means of the definition of the mass as the normalization coefficient. The field operator
may be defined in different forms (the commutation relations as well) and different global
phase factors between fields tpi and ip2 can lead to the normalization changes. If consider m2

as a pure imaginary quantity (m (1 ± i)rh), i. e. in quantum theory as an anti-Hermitian
operator, one can write the mass terms for the Lagrangian (12). However, the problem of
origin of the mass term will be analyzed more carefully elsewhere.

At this moment I have to treat the question of solutions in the momentum space. The
explicit form of Hammer-Ticker bispinors, ref. [17] (see also refs. [3, 18]), is

ux(p) vï(p)
sfl

LM JJAH
m(E-\-7ii)

IM + -LM.

for the equation (10); and

u2(p) v2(p)
vA

(Jf)

m(E+m)

JjZA

(13)

¦1 + Up)

m(E+rn)

AM.
m(E+m) &

(14)

for the equation (11). The bispinor normalization in the cited papers is chosen as ïi"(p)u"(p)
v1(p)v"(p) —u%(j))U2(zp) —v2(p)v2(p) — L what corresponds to a normalization of

the 'Pauli spinors" to £*£„' b„„i.

Using the plane-wave expansion, e.g., réf. [la,formula (8)] or Eqs. (26,27) of the present

paper, it is easy to convince ourselves that both u" and vf satisfy the equations

and

-744^2 + 2iE-y4lp, + 7.jPiPj + m2} u"(p) 0 (or v\(p))

-144E2 + 2iE-y4,p, + jijPiPj - m2] ua2(p) 0 (or v"2(f>))

(15)

(16)

respectively.

Bispinors of Ahluwalia et al., réf. [2], can be written in a more compact form

uajc(p)
m + Ap)2

E+m

(Jp)to

Ç,
ug(p)= [

l Q
uajg(p) (17)

They coincide with the Hammer-Tucker-Novozhilov bispinors within a normalization and an

unitary transformation by U matrix:

uajg(p) m -Uu-iiP)
v/2 V1

1 1

u?(p) (18)

VAJGÌP)=m -UvliZP) m_ (l
~V2U v2(p) (19)
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In the case of a choice u" and v2 as physical bispinors8 we come to the Bargmann-
Wightman-Wigner-type (BWW) quantum field model proposed by Ahluwalia et al. Of
course, following to the same logic one can choose u2 and v° bispinors and come to the
reformulation of the BWW theory. Though in this case parities of a boson and its antiboson
are opposite, we have —1 for u bispinor and +1 for t; bispinor, i.e. different in the sign from
the model of Ahluwalia et al., réf. [1].

Now let me repeat the quantization procedure of ref. [9], however, it will be applied to
the Weinberg field. Let me trace the contributions of £''' and £'2' to dynamical invariants
separately

From the definitions [1 •'

Ti. -Ç{^^ +^^}+^ ¦ (2°)

Pß J Vß(x)d3x =-i J T4ßd3x (21)

one can find the energy-momentum tensor

1$ daTplTaßdvlpl + 9^V'l7,ir,<9o01 +

+ cJ„027„,A0-2 + ciV^W^ + £(1)<V (22)

and

Tt)2) datp-Ctay.dutpi + Ô„V'i7,!«dQV'2+

+ o\ï027iy,AV'i + d^ip2'yßadnipi +C{2)6ßv (23)

As a result the first part of the Hamiltonian is9

7/(" J [-O402744CÌ4 02 + Wtfadph-

- ô4^174404V'i + dtiptfijdjipi A m2t/^0i - m2V'202j ^3-f (24)

and the second part is

TL(2) j [-â,02744â,0i + ditptfijdjiJi-

- d4ip1i44d4ip2 + d,ipi-y,Jdjip2\d3x (25)

8I don't agree with the claim of the authors of réf. [la.footnote 4] which states vf(p) are not solutions of
the equation (10). The origin of the possibility that the u,- and v,- bispinors in Eqs. (15,16) coincide each

other (see Eqs. (13.14)) is the following: the Weinberg equations are of the second order in time derivatives.
Tile detailed analysis will be presented in future publications.

In the meantime. I agree that it is more convenient to work with bispinors normalized to the mass, e.g.,
±m2j. In the following I keep the normalization of bispinors as in ref. [1].

''The Hamiltonian can also be obtained from the second order Lagrangian presented in [lb.Eq. (18)]
by means of the procedure developed by M. V. Ostrogradsky [19] long ago (see also Weinberg's remark on
the page B1325 of the first paper [11]). However, it would be difficult me to agree with the definition of
momentum conjugate operators in the paper [la]. The Ostrogradsky s procedure seems not to have been

applied there to obtain momentum conjugate operators.
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Using the plane-wave expansion

V>i(*) E / ,ÌL lr— [<(pK(p>'pj: + vUp)bl(p)e-^] (26)
a J \zn) mJ2Ep

M*) E / (2^3
m

]^- [<(P)C°(P)JPX A vl(p)éa(p)e-^] (27)

Ep y/p2 + m2, one can come to the quantized Hamiltonian

^(1) E / tJJ^p [<4(pK(p) + K(p)h\iZP) + czKpIUp) + d„(p)d\(f>)] (28)

^(2) E / 7S33. K fr>* g*) +6" gh^ +c"(p~Kw +d"®biw] ¦ (29)

following the procedure of, e.g., refs. [21, 22].

Setting up boson commutation relations as follows:

[aAp)+cAp),al(k) + cl(k)}_ (2irf6aa,8(ß-k) (30)

[ba(p)+da(p),bUk) + dl(k)}_ (2it)36rr„A(p-k) (31)

it is easy to see that the Hamiltonian is positive-definite and the translational invariance
still keeps in the framework of this description (cf. with ref. [1]). Please pay attention here:

there is no indefinite metric involved.

Analogously, from the definitions

Jß -»TJä^*-?*;^} - I32)
Y { o(dße,) d(dßtp,) J

Q -iJMx)d3x (33)

and

Mßv,\ xßTXv - xJTyß-

\ 9(0,0,)" <-VlTVl «"0(9,0,

M„„ -t J Mßu.4(x)d3x

I found the current operator

J^] I [d„0l7a,iV'l ~ 0l7,.rA'01 +

(35)

+ dnip2-yQß4>2 - 027,iQ<9QV>2 1 (36)
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and

JJP l [da^lla^l - i>2lßadQ1pl +

+ 9QVi7a^2 - tPlTpada1p2] (37)

Using (34) the spin momentum tensor reads

S,ikA I [da*lJaxN*ill>1+4lN+!'rXadall>l+

+ dJp2laXN$ip2 + ^2N$jXadatp2} (38)

S£ÌA * [^Y^A^l +^2^t27An9QVl +

+ d3ilnxNfAJ>2AÏ>xNJl1Xadai,2] (39)

If the Lorentz group generators (a j' 1 case) are defined from

A-yßUAaßaa,vß ~i„ß (40)

ÄA 1 (41)

Ä 744Af744 ¦ (42)

then in order to keep the Lorentz covariance of the Weinberg equations and of the Lagrangian
(9) one can use the following generators:

fl£.*U=D _JV£ÄÜ=U ly^ (43)

see also ref. [16b, Eqs. (37,51,52)]. The matrix 75l(x„ i [l^x, 7ua]_ is defined to be Hermitian.

The quantized charge operator and the quantized spin operator follow immediately from
(36,37) and (38):

Q(I) E / Z0A [4(pK(p1 - ba(p)b\iP) + ct(p)c„(p) - d„(p)dl(p)} (44)
(27T)

d3p

(2jt)
Q(2) E / I0r3 [al(p)cn(p) - b„(P)4(P) A cl(p)aa(p) - da(p)bt(p)} (45)

(ty«» ¦ n) £ f WT3-^r^(P)(EP-r** - ^,P.) I ® (JÄ)uf (p)x

x [4 (p)<V (p) + 4 (£><V (P) - b„ (p)bl (p) - d„ (p)dl (p)} (46)

(provided that the frame is chosen in such a way that n \\ p is along the third axis). It
is easy to verify the eigenvalues of the charge operator10 are ±1, and of the Pauli-Lubanski
spin operator are

£(^)4V +l, 0 - 1 (47)

10In order to construct neutral particle operators one can use an analogy with a j 1/2 case (to compare
electron and neutrino field operators). At the present moment I would like again draw your attention to the
fact that uf' and vf' coincide in the model studied here.
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in a massive case and ±1 in a massless case (see the discussion on the massless limit of the
Weinberg bispinors in ref. [2]).

As for the spin operator which follows from the Lagrangian (12) the situation is more
difficult. If accept (40)-(42) we are not able to obtain the helicity operator (47) in the final
expression. However, a cure is possible. We should take into account that the transformations

A7,,„AaMQaw, +"7a/s7s (48)

ÄA ±75 (49)

remain Weinberg's set of equations to be invariant. Equations are only interchanged each

other. This is a cause of the possibility of combining the Lorentz and the dual (chiral)
transformation for the Weinberg degenerate doublet. Thus, in order to keep the Lorentz and

parity covariance of the Lagrangian of the form (12) one can impose

jV*.*Cr-U .jvjjiÄCi-U i75^75 (50)

After simple transformations I obtain

fTfj' V /

x [cl(^a^(p)Aa\(^ca.(ß)-bMd\,(ß)-da(ß)bl(p)\ (51)

I leave investigations of other possibilities for further publications.

Why "a queer reduction of degrees of freedom" did happen in the previous papers [5, 6, 9,

10]? The origin of this surprising fact follows from Hayashi's (1973) paper, ref. [9, p.498]: The

requirement of "that the physical realizable state satisfies a quantal version of the generalized
Lorentz condition", formulas (18) of réf. [9],11 permits one to eliminate upper (or down) part
of the Weinberg bispinor and to remove transversal components of the remained part by
means of the "gauge" transformation (7), what "ensures the massless skew-symmetric field is

longitudinal ". The reader can convince himself of this obvious fact by looking at the explicit
form of the Pauli-Lubanski operator, Eq. (46). Keeping all terms in field operators and
in the Lagrangian (3), cf. with [5, 6], and not applying the generalized Lorentz condition,
cf. with [9, 10], we are able to obtain transversal components, i.e., a j' 1 particle in
the massless limit of the Weinberg theory. The presented version does not contradict with
the Weinberg theorem nor with the classical limit, Eqs. (21,22) of ref. [4]. Thanks to the

mapping [3e,4] the conclusion is valid for both the Weinberg 2(2j? + l) component ¦¦bispinor"
and the antisymmetric (skew-symmetric) tensor field.

nRead: "a quantal version" of the Maxwell equations imposed on state vectors in the Fock space. See the

papers of Ahluwalia et ai, e.g.. ref. [23, Table 2], for the discussion on the acausal physical dispersion of
the equations (4.19) and (4.20) of ref. [lib], "which are just Maxwell's free-space equations for left- and
right- circularly polarized radiation. " See also the footnote # 1 in ref. [4] and ref. [3g]. Let me mention
that this fact is probably connected with the indefinite metric problem.
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Finally, for the sake of completeness let me re-write the Lagrangians presented above in
the form:

£, -d,ftyTßvduty - m2** (52)

where

VM 7Ü _ / .,.t .;.t n / 744 0* m • (* «)¦!- _;j (5.3)

are the wave function of the degenerate doublet;

rv=i7r °
('D0 -7,.

The Lagrangian C2 could be written in a similar form if imply

* (0Ï 02)-(7; (D (55)

I take the liberty to name the field operator ty as the Weinberg-conjugated dibispmor.

My conclusions are: There exist the versions of both the Weinberg 2(2j + 1) component
theory and the antisymmetric tensor field formalism that answer for particles with transversal
components. Thus, these versions do not contradict the Weinberg theorem and, in the case
of j' 1 particle, the doublet field (0lt tj)2), or (Fßl/, Fßv), could be used in describing a

photon. The origin of the contradictions met in the previous papers is the inadequate use
of the generalized Lorentz condition which may be incompatible (in such a form) with the

specific properties of antisymmetric tensor fields. The connection of the present model with
the Bargmann-Wightman-Wigner-type quantum field theories deserves further elaboration.

As a matter of fact the present model develops Weinberg's and Ahluwalia's ideas of the
Dirac-like description of bosons on an equal footing with fermions, i.e., on the basis of the
0>0) © (0, j) representation of the Lorentz group.
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