Zeitschrift:	Schweizerische Bauzeitung			
Herausgeber:	Verlags-AG der akademischen technischen Vereine			
Band:	91/92 (1928)			
Heft:	4			
Artikel:	Die rückgewinnbare Wärme im Dampfturbinen-Prozess			
Autor:	Bremi, Th.			
DOI:	https://doi.org/10.5169/seals-42435			

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die rückgewinnbare Wärme im Dampfturbinen-Prozess. — Widerstände und Schwierigkeiten für die Rationalisierung im Bauwesen. — Ideen-Wettbewerb für die Ueberbauung des Stampfenbach-Areals in Zürich. — Die Festigkeit des Mörtels und des Beton. — Vom Umbau der Wasserkraftanlage Rheinfelden. — Neuer Internationaler Verband für Materialprüfungen. — † Henri Etienne. — Mitteilungen : Neubau der Chrurgischen Klinik Zürich. Erhöhung der Normenfestigkeiten für Zemente in Deutschland. Eine zentralisierte automatische Feuerungsregelung. Das Perpetuum mobile erfunden. Rettungswagen für die neuen Strassentunnel in New York. Der Verbrauch an Kalziumkarbid im Jahre 1926. — Wettbewerbe : Städtisches Altersheim in Zürich. Stadtbauplan für die Stadtgemeinde Luzern. — Vereinsnachrichten : Schweizer. Ingenieur- und Architekten-Verein. Zürcher Ingenieur- und Architekten-Verein. Basler Ingenieur- und Architekten-Verein. S.T.S.

Band 91. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Nr. 4

Die rückgewinnbare Wärme im Dampfturbinen-Prozess.

Von Dipl.-Ing. TH. BREMI, Brown, Boveri & Cie., Baden.

In letzter Zeit wurde die Frage der Wärmerückgewinnung wiederholt aufgegriffen. Die älteste Lösung, die für ideale Gase, stellt das Problem als von der Temperatur unabhängig dar. Eine amerikanische Veröffentlichung von W. E. Blowney und G. B. Warren: "The increase in thermal efficiency due to resuperheating in steam-turbines", in der in graphischer Darstellung eine wesentliche Abhängigkeit von der Temperatur für Wasserdampf beschrieben wird, worin aber über den Ursprung dieser Kurven keinerlei Angaben gemacht werden, gab Veranlassung, die Frage der Wärmerückgewinnung neuerdings zu prüfen.

I. DEFINITION DES WÄRMERÜCKGEWINNUNGS-FAKTORS.

Die Entspannung des Dampfes in der mehrstufigen Dampfturbine bringt eine Energieverschleppung im Sinne wachsender Entropie mit sich, indem die Reibungsverluste in den Schaufelkanälen einer Stufe in Wärme rückverwandelt werden und damit die Energiemenge der folgenden Stufe, gegenüber dem bei idealer, d. h. adiabatischer Expansion erreichbaren Werte, vergrössern. Die zusätzliche Energiemenge der Stufe CD (Abb. 1) als Folge der unvollständigen Umsetzung in der vorangehenden Stufe AC kommt im TS-Diagramm durch das Flächenstück CD'D''C' zum Ausdruck. Dass aber trotz der Vermehrung der an der

durch grösser als der Schaufelwirkungsgrad η_s der einzelnen Stufe. Als Wärmerückgewin-

Energiemengen der Ge-

samtwirkungsgrad η_i für

alle Stufen schlechter

als der bei adiabatischer

Expansion sein muss,

findet seinen Ausdruck

darin, dass die Summe

der Zusatzenergiemengen $\Sigma e < T_k \Delta S$ ist.

Andererseits wird η_i der

ganzen Turbine aber da-

Umsetzung

beteiligten

nungsfaktor R (Reheat-

faktor) bezeichnen wir das Verhältnis der Summe der bei der Umsetzung beteiligten Energiemengen Σh_n zur Energiemenge bei adiabatischer Umsetzung H_o . Die Berechnung dieser beiden Energiemengen lässt sich für ideale Gase allgemein durchführen und ergibt nach Martin¹) für R unter Voraussetzung unendlich vieler Stufen die Funktion

$$R_{\infty} = \frac{\mathbf{I}}{\eta_s} \frac{\mathbf{I} - q^{\eta_s}}{\mathbf{I} - q} \text{ mit } q = \left(\frac{p_2}{p_1}\right)^{\frac{x-1}{x}} . \quad . \quad (\mathbf{I})$$

Der Uebergang von dieser Formel für ideale Gase auf eine solche für Wasserdampf kann nun in der Weise erfolgen, dass eine möglichst einfache Näherungsformel als Zustandsgleichung für Wasserdampf herangezogen wird. So benützt Zinzen²) zur Einführung des Temperatureinflusses: v = 47, I T/p, während Wewerka³) lineare Zunahme der spezifischen Wärme c = a + bT ansetzt und damit eine Temperaturfunktion entwickelt, die für Heissdampf angenähert einen konstanten Wert annimmt.

"A new theory of the steam turbine". Engineering, Juli 1918, S. 54.
 "Rückgewinnbare Verlustwärme und Vergrösserung des Wärmegefälles in mehrstufigen Gleichdruckturbinen". Z. f. tech. Physik, 1925, S. 185.
 "Die rückgewinnbare Wärme bei Hochdruckdampfturbinen". Archiv

für Wärmewirtschaft, Juli 1926, Seite 189.

Andererseits können wir durch direkte Anlehnung an die Entropietafel und daher mit Würdigung der kompliziert gebauten Zustandsgleichungen für Wasserdampf, wie sie die neuesten Versuche aufdrängten 4), auf teilweise geometrischem Wege eine Näherungslösung des Problems finden. Es ist naheliegend, dass R für eine bestimmte Expansion, d. h. bei festgesetzter Stufenzahl und angenommenem Schaufelwirkungsgrad η_s , durch Zeichnen des Entropiediagrammes (in der J-S-Tafel) als Verhältnis der Summe aller gemessenen, einzelnen adiabatischen Stufengefälle zum Gesamtgefälle bestimmt werden kann. Einerseits versagt aber diese Methode bei grosser Stufenzahl aus Gründen zeichnerischer Ungenauigkeit, andererseits veranschaulicht eine allgemeine Lösung den Einfluss dieser Gefällsvergrösserung" auf den ganzen Expansionsprozess besser, als die zahlenmässige Bestimmung von Fall zu Fall.

R als relatives Mass für die rückgewinnbare Wärmemenge ist nur abhängig von den folgenden drei Faktoren, deren qualitativer Einfluss zuerst festgelegt werde: 1. Vom Dampfzustand während der Expansion; 2. vom Schaufelwirkungsgrad; 3. von der Stufenzahl.

Einfluss des Dampfzustandes.

Für ein konstantes Druckgefälle wächst das adiabatische Wärmegefälle H mit der Entropie. Hierin kommt Rzum Ausdruck. Diese Veränderlichkeit ist im J-S-Diagramm durch die Neigung der Drucklinien charakterisiert: Während im Nassdampfgebiet das Anwachsen von H_o durch die Divergenz der geradlinig verlaufenden p-Linien vollständig bestimmt ist, wird im Ueberhitzungsgebiet dem Einfluss der Divergenz noch jener der konvexen Krümmung der p-Linien überlagert. Im Heissdampfgebiet muss also eine grössere Zunahme von H stattfinden, als im Nassdampfgebiet bei gleicher Entropieverschiebung, oder für entsprechende Expansionen ist R im Heissdampfgebiet wesentlich grösser als im Nassdampfgebiet. — Die Neigung tg a der p-Linien lässt sich aus den allgemeinen Gasgleichungen leicht ermitteln:

Aus
$$dq = T ds = T \left[\left(\frac{\partial s}{\partial T} \right) dT + \left(\frac{\partial s}{\partial p} \right) dp \right]$$

entsteht für $p = \text{konstant}$

$$dq_{p} = T\left(\frac{\partial s}{\partial T}\right)_{p} dT$$

Andererseits entsteht aus dq = di - Av dp oder

$$dq = \left(\frac{\partial i}{\partial T}\right) dT + \left[\frac{\partial i}{\partial p} - Av\right] dp$$
für $p = \text{konstant}$ $da_{A} = \left(\frac{\partial i}{\partial p}\right) dT$

 $dq_{p} = \begin{pmatrix} \partial i \\ \partial T \end{pmatrix}_{p} dT$ Durch Gleichsetzen der beiden Ausdrücke für q_{p} wird: $T = \left(\frac{\partial i}{\partial s}\right)_{p} = \operatorname{tg} \alpha \quad . \quad . \quad . \quad (2)$

Tabelle I auf der folgenden Seite zeigt, dass für S = konstant tg a in dem für den Turbinenbau in Frage kommenden Heissdampfgebiet mit grösster Annäherung geradlinig mit dem Wärmeinhalt *i* wächst: tg $a = a_o + \beta i$. Diese Geraden können ausserdem zwanglos als Parallele gezeichnet werden. Damit wird $\beta =$ konstant und $a_o = f(S)$, woraus für tg a angesetzt werden kann:

$$tg a = a + bs + cs^{2} + ds^{3} + \beta i \dots (3)$$

$$a = 6020,64; b = -11339,61; c = 6114,50;$$

$$d = -1103.33; \beta = 2.1605.$$

⁴) Knoblauch, Raisch und Hansen, Tabellen und Diagramme für Wasserdampf, berechnet aus der spezifischen Wärme, 1923. 662,0

697,1

726,4

792,2

675.6

699,2

781,5

635,0

664,6

741,0 788,2

427,3

506,3

570,3

710,0

450,5

503,0

678,0 358,0

422,6

588,3

687,0

Einfluss des Schaufelwirkungsgrades.

60,0

3,0

6,0

10,0

26,0

1,60

2,50

9,00

0,25

0,50

2,00

4,00

Da thermodynamisch eine Expansion mit schlechtem Wirkungsgrad durch eine grosse Entropie-Zunahme charakterisiert ist, wie oben ausgeführt, der Wärmerückgewinnungsfaktor mit abnehmendem Schaufelwirkungsgrad wachsen. Eine Verbesserung des Schaufelwirkungsgrades bringt daher keine verhältnisgleiche Verbesserung des ganzen Turbinenwirkungsgrades mit sich, was deutlich in Erscheinung tritt bei qualitativ verschiedenen Hochdruckteilen kombinierter Turbinen¹). [Vergleiche Abschnitt IV.]

Einfluss der Stufenzahl.

Die Reibungs- und Wirbelungsenergie der letzten Stufe entgeht der Rückgewinnung; R muss daher mit der Stufenzahl wachsen und sich asymptotisch dem maximalen Wert für unendlich viele Stufen $R_{\infty} = 1 + r_{\infty}$ nähern. Bei zwei Stufen liefert nur die erste Hälfte des Gesamtgefälles H_o einen Beitrag für R, daher $r_2 \cong 1/2 \cdot r_\infty$, bei drei Stufen sind die obern $\frac{2}{3}$ des Gesamtgefälles beteiligt und bei nStufen analog $\frac{n-1}{n}$ Teile des Gefälles. Wir können daher näherungsweise schreiben

$$(R_n - 1) = \frac{n - 1}{n} \left(R_{\infty} - 1 \right) \quad . \quad . \quad (4)$$

Tabelle II gibt einen Vergleich dieser Formel mit der von Zinzen entwickelten exakten Formel für ideale Gase (bei Abnahme der Stufendrücke nach einer geometrischen Reihe):

n	2	4	8	16	32
I	0,478	0,735	0,865	0,930	0,963
II	0,500	0,750	0,875	0,938	0,967

In Zeile I sind mit $\eta_s = 70^{\circ}/_{0}$, $\frac{p_2}{p_1} = 0.2$, $x = 1.30^{\circ}$

die Werte $\frac{R_n - 1}{R_{\infty} - 1}$ nach Formel (5), in Zeile II die selben Werte nach (4) berechnet, enthalten. Die Uebereinstimmung ist sehr befriedigend.

Wir können uns also füglich mit der Aufstellung einer Berechnungs-Methode für R_{∞} begnügen und mit Benützung von (4) auf die Werte für n Stufen schliessen. -Die schon erwähnte Unstetigkeit der p = konstant-Kurven im J-S-Diagramm an der Sättigungsgrenze bedingt eine getrennte Behandlung der Frage für Nass- und Heissdampf.

1) Forner: "Der Einfluss der rückgewinnbaren Verlustwärme des Hochdruckteiles auf den Dampfverbrauch der Dampfmaschinen". 1922.

II. DER WÄRMERÜCKGEWINNUNGSFAKTOR IM NASSDAMPFGEBIET. Die Dreiecke D_0KE und GKE in Abb. 2 ergeben

 $D_0 G = ds (tga - tga_2)$ wenn KG parallel zu D'D gemacht wird. D_0G entspricht der Gefällsvergrösserung Ah durch den Entropiezuwachs ds in der Stufe CD. Nach der Definition des Wärmerückgewinnungsfaktors

$$R = \frac{\Sigma h}{H_0} = \frac{\Sigma (h_0 + \Delta h)}{H_0} = \frac{H_0 + \Sigma \Delta h}{H_0}$$

worin h_0 das Stufengefälle auf der Adiabate AB' gemessen, darstellt, ergibt sich also

Endlich soll noch die auch im Nassdampfgebiet gültige Beziehung tg $a = a'_0 + \beta' i$ herangezogen werden. Formel (6) geht damit über in D'

$$R_{\infty} = \mathbf{I} - (\mathbf{I} - \eta_s) \left[\mathbf{I} + \frac{\mathrm{tg} \ a_2}{H_0} \int \frac{di_{ad}}{a'_0 + \beta' i} \right]$$

oder integriert zwischen den Grenzen i_A und $i_{B'}$

$$R_{\infty} = \mathbf{I} + (\mathbf{I} - \eta_s) \left[\mathbf{I} + \frac{\mathrm{tg} \, \alpha_2}{\beta' \, H_0} \ln \left(\frac{\alpha'_0 + \beta' \cdot \mathbf{I}_{B'}}{\alpha'_0 + \beta' \cdot \mathbf{I}_{A'}} \right) \right]$$
(7)
Substituieren wir schliesslich noch

Substituieren wir schliesslich noch $a'_0 + \beta' i = \beta' i'$ mit $i' = i - i_0$, wobei $i_0 = -\frac{a'_0}{\beta'}$ so erhalten wir nach einigen Umformungen als endgültiges Resultat $R_{\infty} = \mathbf{I} + (\mathbf{I} - \eta_s) \left[\mathbf{I} - \frac{\ln \eta_i}{q_i - \mathbf{I}} \right] \cdot \cdot \cdot \cdot (8)$ mit $q_i = \frac{i'_A}{\iota'_{B'}} = \frac{i_A - i_0}{i_{B'} - i_0}$ Für den Wert $i_0 = \frac{a'_0}{\beta'}$ als einer Funktion der En-

tropie, seien folgende Zahl-Werte angeführt (Abb. 3):

S = 1,50 1,80 1,60 1,70 $i_0 = 98,0$ 82,7 56,8 33,5 kcal/kg

10. $\rightarrow q_i = \frac{I_A - I_0}{I_{B'} - I_0}$ Abb. 3. kca. 100 80 60

im Nassdampfgebiet.

Abb. 4 stellt die Werte von R_{∞} für Nassdampf in Funktion von q_i für verschiedene Parameter η_s graphisch zusammen. Zur Bestimmung des Wärmerückgewinnungs-Faktors R für eine im Nassdampfgebiet verlaufende Expansion genügt also das Ablesen der Wärme-Inhalte i_A und $i_{B'}$ des Anfangs- bezw. Endzustandes des Dampfes bei adiabatischer Expansion. woraus mit Hilfe von Abb. 3 die Werte $i'_{A} = i_{A} - i_{0}$ und $i'_{B'} = i_{B'} - i_{0}$

S

1,60

1,70

1,80

1,90

Quotient $\frac{i'_A}{i'_{B'}} = q_i$ dient in Abb. 4 als Abszisse, womit für jeden Schaufelwirkungsgrad η_s der zugehörige Wärmerückgewinnungsfaktor R_{∞} entnommen werden kann.

III. DER WÄRMERÜCKGEWINNUNGSFAKTOR IM HEISSDAMPFGEBIET.

Die konvexe Krümmung der p-Kurven machen eine Integration in obigem Sinne sehr schwerfällig, doch können wir mit der angeführten Bezeichnung

 $\frac{di}{ds} = -\frac{1}{K} \operatorname{tga} \operatorname{mit} K = \frac{1 - \eta_s}{\eta_s} \quad . \quad (9)$ einen allgemeineren Weg beschreiten. Durch Einsetzen von (3) in (9) erhalten wir unmittelbar als Gleichung der Expansionslinie

$$\frac{di}{ds} + \frac{\beta}{K}i = -\frac{1}{K}\left[a + bs + cs^{2} + ds^{3}\right]$$

integriert

oder

 $i_E = a_0 + a_1 s + a_2 s^2 + a_3 s^3 - Ce^{-1}$

$$a_{0} = -\frac{a}{\beta} + \frac{b}{\beta^{2}}K - \frac{2c}{\beta^{3}}K^{2} + \frac{6d}{\beta^{4}}K^{3} \qquad a_{2} = -\frac{c}{\beta} + \frac{3d}{\beta^{2}}K$$
$$a_{1} = -\frac{b}{\beta} + \frac{2c}{\beta^{2}}K - \frac{6d}{\beta^{3}}K^{2} \qquad a_{3} = -\frac{d}{\beta}$$

Ebenso können wir die Gleichung einer p-Kurve

$$\frac{di}{ds} = a + bs + cs^2 + ds^3$$

integrieren

$$i_P = a'_0 + a'_1 s + a'_2 s^2 + a'_3 s^3 + C' e^{\beta s}$$
 . (11)

$$a'_{0} = -\frac{a}{\beta} - \frac{b}{\beta^{2}} - \frac{2c}{\beta^{3}} - \frac{6d}{\beta^{4}} \qquad a'_{2} = -\frac{c}{\beta} - \frac{3d}{\beta^{2}}$$
$$a'_{1} = -\frac{b}{\beta} - \frac{2c}{\beta^{2}} - \frac{6d}{\beta^{3}} \qquad a'_{3} = -\frac{d}{\beta}$$

wobei C' aus der Randbedingung $S_{B'} = S_A$ für $i_{B'} = i_A$ - Ho zu berechnen ist. Die transzendente Form der Funktionen für i_E und i_P verhindert die analytische Bestimmung des Schnittpunktes beider Linien. Der gesuchte Endpunkt der wirklichen Expansion kann aber mit gleicher Genauigkeit durch Einzeichnen der nach (10) berechneten Expansionslinie in die J.S-Tafel gefunden werden. Andererseits dient uns die Funktion ip durch Vergleich mit der Entropietafel als Kriterium für die Genauigkeit der Annahme tg a = f(S, i) nach Formel (3). Die Nachrechnung der

Linie p = 2,5 at abs. ergibt von S = 1,70 als Ausgangspunkt weg, bei

S = 1,80, i = 700,006 kcal/kg

(nach J-S-Tafel 699,80 kcal/kg)
$$S = 1,90, i = 756,65$$
 kcal/kg

(nach J-S-Tafel 755,80 kcal/kg) Aehnliche kleine Abweichungen zeigen auch andere nach (11) berechnete Drucklinien dieses Gebietes, sodass die Annäherung als befriedigend betrachtet werden kann. Mit Kenntnis des effektiven Endpunktes iB, sB der Expansion ergibt sich mit Rücksicht auf die bekannte Beziehung 1)

$$R_{\infty} = \frac{\eta_i}{\eta_s} = \frac{H_i}{\eta_s H_0} = \frac{\int di_E}{\eta_s H_0} \quad . \quad . \quad (12)$$

durch Integration in den Grenzen A und B der Wärmerückgewinnungsfaktor R_{∞} für überhitzten Wasserdampf, wenn $q_s = \frac{s_B}{s_A}$ bezeichnet:

$$R_{\infty} = \frac{1}{\eta_{s}H_{0}} \left[a_{1} s_{A}(q_{s} - 1) + a_{2} s_{A}^{2}(q_{s}^{2} - 1) + a_{3} s_{A}^{3}(q_{s}^{3} - 1) - C e^{-\frac{\beta}{K}s_{A}} \left\{ e^{-\frac{\beta}{K}s_{A}}(q_{s} - 1) - 1 \right\} \right]$$
(13)
$$a_{1} = 5226,88 + 2598,24 K + 648,52 K^{2}$$
$$a_{2} = -2819,34 - 703,26 K$$

$$a_3 = 508,57$$
 $\beta = 2,1695$ $K = \frac{1 - \eta_s}{\eta_s}$

In Abb. 5 ist R_{∞} (mit $R_{0\infty}$ bezeichnet) in Funktion des adiabatischen Wärmegefälles Ho für verschiedene Schaufelwirkungsgrade η_s dargestellt, wobei als Ausgangspunkt für die Expansion²) $S = I_170$, $t_1 = 400$ °C ($p_1 = 20,2$ at abs.) angenommen wurde. Eine Reihe weiterer Auswertungen für andere Dampfverhältnisse ermöglichten durch Vergleich mit den Resultaten von Abb. 5 die näherungsweise Aufstellung von Korrekturkurven (Abb. 6), bezogen auf die Werte $R_{0\infty}$. σ gibt die Veränderlichkeit von R_{∞} mit der Entropie, r diejenige mit der Temperatur wieder. Damit berechnet sich R_{∞} für einen beliebigen Dampfzustand nach der Formel

$$(R_{\infty} - I) = (R_{0\infty} - I) \sigma \tau . . . (I4)$$

also z. B. für eine 6-stufige Expansion von 20 at abs. 350 ° C auf 6 at abs., d. h. für ein adiabatisches Gefälle von 70 kcal/kg ergibt sich vorerst aus Abb. 5 mit $\eta_s = 85 \, {}^0/_0$ $R_{0\infty} = 1,02$. Der Anfangspunkt der Expansion liegt bei S = 1,662, was nach Abb. 6 ein $\sigma = 0,995$ ergibt. Ferner ist dort für $t_1 = 350$ ° C, $\tau = 1,09$ zu entnehmen, sodass nach (14) entsteht: $R_{\infty} - 1 = 0.02 \cdot 0.995 \cdot 1.09 = 0.0217$ und mit (4) $R_n - 1 = \frac{5}{6} \cdot 0.0217 = 0.018$, oder $R_6 =$ 1,018. Berechnet nach Formel (1) für ideale Gase erhalten wir $R_6 = 1,0176$.

Allgemein können wir feststellen, dass R für Heissdampf mit der Temperatur stark variiert, und zwar mit steigender Temperatur in der Gegend der Sättigungsgrenze rasch, nachher langsamer abnimmt.

IV. EINFLUSS DER WÄRMERÜCKGEWINNUNG AUS DER HOCH-DRUCKSTUFE AUF DEN WIRKUNGSGRAD DER GANZEN TURBINE.

In Abb. 7 sind zwei Expansionen ABC und AB'C' verglichen, wobei für die erste eine verlustlose Hochdruckstufe angenommen sei. Dabei ist $h_H = a H$ und $h_N = b H$,

 Stodola, "Dampf- und Gasturbinen". 5. Auflage, Seite 249.
 Allen Rechnungen wurde die J-S-Tafel von Bantlin, 1925, zu Grunde gelegt.

 $\frac{h_{H}}{h_{N}} = \frac{a}{b} = c$ und die in Abschnitt I erklärte Gefällsalso vergrösserung des Niederdruckteiles sei $r=rac{h'_N}{h_N}$. Führen wir noch die innern Wirkungsgrade η_H (für AB') und $\eta_H = 1,0$ (für AB) ein, daneben für den Niederdruckteil η_N , so ergeben sich mit dem stündlichen Dampfgewicht G die innern Leistungen

$$\begin{cases} \text{für } ABC \quad L_i = \frac{GaH}{860} + \frac{GbH}{860} \eta_N \\ \text{für } AB'C' \quad L'_i = \frac{GaH}{860} \eta_H + \frac{GrbH}{860} \eta_N \end{cases}$$
 (15)

Mit der theoretischen Leistung $L_0 = \frac{GH}{860}$ entsteht

^für die innern Wirkungsgrade $\eta_i = a + b \eta_N$ bezw. $\eta'_i = a \eta_H + b r \eta_N$

Das Verhältnis $\eta'_i : \eta_i = K'$ stellt den Zusammenhang zwischen der Expansion ABC und AB'C' dar, mit Rücksicht auf die rückgewinnbare Verlustwärme des Hochdruckteiles:

$$K' = \frac{\frac{1}{\eta N}\eta_H + r}{\frac{C}{\eta N} + r} \quad (16)$$

Als ganz willkürlich gewähltes Beispiel ist in Abb. 8 K' für eine Expansion von 16 at, 350° auf 0,05 at entwickelt, wobei als Trennungsdruck pz zwischen Hoch- und Niederdruckteil 3,5 und 7 at, und $\eta_N = 85^{0/0}$ ge-

wählt wurde. Diese Kurven verlaufen praktisch geradlinig, sodass mit der Berechnung eines Punktes der Verlauf charakterisiert ist, indem für $\eta_H = 100 \, {}^0/_0$, $K'_{100} = 1,0$ sein muss. Setzt man noch $r = \tau$, so gibt

$$K = \frac{\frac{C}{\eta_N}\eta_H + \mathbf{I}}{\frac{C}{\eta_N} + \mathbf{I}} \quad . \quad . \quad . \quad . \quad (17)$$

die Wirkungsgrad-Verschlechterung von AB'C' gegenüber ABC ohne Rücksicht auf die rückgewinnbare Wärme wieder. Die Gegenüberstellung der Kurven K und K' Abb. 8 veranschaulicht daher den Einfluss der Wärmerückgewinnung einerseits bei verschiedenen Hochdruckwirkungsgraden η_{H} , andererseits bei verschiedener Gefällsverteilung C auf Hochund Niederdruckteil.

Es ist noch zu erwähnen, dass mit der Verschlechterung von η_H die Anfangstemperatur für den Niederdruck steigt. Damit reicht die Niederdruckexpansion weniger tief ins Nassdampfgebiet hinein und entzieht sich mehr und mehr dem schädlichen Einfluss der sich ausscheidenden Wassertropfen. Neben der längst bekannten unerwünschten Erosionserscheinung tritt dabei eine direkte WirkungsgradVerschlechterung ein durch den Stoss der langsamer als die Dampfmoleküle strömenden Wassertropfen auf die Rückenseite der rotierenden Schaufeln. Mit

$$\eta'_N = \left(\mathbf{I} + \frac{\varDelta t}{2000}\right)\eta_N = \gamma \eta_N$$

können wir die auch neuerdings bestätigte empirische Regel heranziehen, nach der eine Temperaturerhöhung von 20 ° C eine etwa einprozentige Wirkungsgradverbesserung des Niederdruckteiles mit sich bringt. Damit geht K' über in

$$K'' = \frac{\frac{\sigma_N}{\eta_N} \eta_H + \gamma r}{\frac{C}{\eta_N} + 1} \quad . \quad . \quad . \quad . \quad (18)$$

Diese Geraden zeigen sinngemäss die geringste Neigung und verdeutlichen die Unempfindlichkeit von η_i einer ganzen Turbine gegenüber Veränderungen von η_H im besonderen bei kleinem Gefällsanteil des Hochdruckteiles. Mit den Formeln (16), (17) und (18) kann man also vom Wirkungsgrad η_{i0} der Expansion mit verlustlosem Hochdruckteil (in Abb. 7 ABC) auf das wirkliche η_i der ganzen Turbine schliessen und zwar:

 $\eta_i = K \eta_{i0}$ ohne Rücksicht auf Wärmerückgewinnung und Einfluss des Nassdampfes,

 $\eta'_i = K' \eta_{i0}$ mit Rücksicht auf Wärmerückgewinnung, aber ohne Einfluss des Nassdampfes,

 $\eta''_i = K''\eta_{i0}$ mit Rücksicht auf Wärmerückgewinnung und Einfluss des Nassdampfes.

Zur Erläuterung kann aus Abb. 8 (betr. die oben erwähnte Expansion von 16 at abs. 350°C auf 0,05 at abs.) beispielsweise für $p_Z = 5$ at abs. ($h_H = 61.7$ kcal/kg $h_N = 162.1$ kcal/kg) also $\eta_{i0} = 89.2^{0}/_{0}$ für eine Verbesserung des η_H von 70 $^{0}/_{0}$ auf 77 $^{0}/_{0}$ folgendes entnommen werden:

TAB	ELI	LE	III
			~ • •

TABELLE III.							
		I		II		III	
<u></u>		r = I 1	1. $\gamma = 1$	r≠1 1	$\gamma = 1$	r≠I ı	ı γ≠ī
η_{iH}	⁰ / ₀	70	77	70	77	70	77
K K' K''		0,9055	0,9280	0,9330	0,9490	0,9460	0 9 5 90
η_i	º/o	80,6	82,70	83,2	84,5	84,2	85,4
ε	°/0	2,5		т,б		1,50	
\$1	º/0	0	0	3.2	2,2		-

Darin bedeutet & die Wirkungsgradverbesserung der ganzen Turbine bei der angenommenen Steigerung von η_{H} . ε1 gibt die lediglich durch die Rückgewinnung der Reibungswärme resultierende thermodynamische Verbesserung.

Im Beispiel, Tabelle III, entspricht einer 10 %-igen Verbesserung des Hochdruckteiles, der 27,5 % des ge-samten Gefälles umfasst, nur eine 1,5 % erbesserung der ganzen Turbine, also nur 60 $^{0}/_{0}$ von der rein arithmetisch bestimmten Verbesserung von 2,5 $^{0}/_{0}$ (Kolonne I und III). Dies verdeutlicht die oft unterschätzte Tatsache, dass durch eine Wirkungsgradveränderung im Hochdruckteil, das Niederdruckgefälle als Folge der Rückgewinnung der Reibungswärme ebenfalls stark variiert (und zwar mit zunehmendem η_H abnimmt), sodass die Veränderung des Gesamtwirkungsgrades sehr abgeschwächt wird. Ausserdem sind dabei die konstanten Verluste (Lagerreibung, Hilfsantriebe), noch nicht berücksichtigt, die eine weitere, wenn auch weniger einschneidende Verkleinerung des prozentualen Gewinnes bei Verbesserung von η_H verursachen.

ZUSAMMENFASSUNG.

Im Anschluss an eine Beschreibung der wichtigsten Eigenschaften des mit Wärmerückgewinnung ablaufenden Expansionsprozesses in mehrstufigen Dampfturbinen, wird für Nass- und Heissdampf je ein Verfahren zur Berechnung des Wärmerückgewinnungsfaktors R abgeleitet, das unmittelbar auf die Eigenschaften des Wasserdampfes, wie sie im J-S-Diagramm in Erscheinung treten, Bezug nimmt. Für Heissdampf ergibt sich daraus eine Abnahme von R mit steigender Temperatur. Des weitern wird eine Näherungsmethode entwickelt, die den Einfluss der Wärmerückgewinnung aus dem Hochdruckteil auf den Wirkungsgrad der ganzen Anlage veranschaulicht.