Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 99 (1981)

Heft: 43

Artikel: Ulmensterben ohne Ende?

Autor: Schweiz. Bundesamt für Forstwesen DOI: https://doi.org/10.5169/seals-74577

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

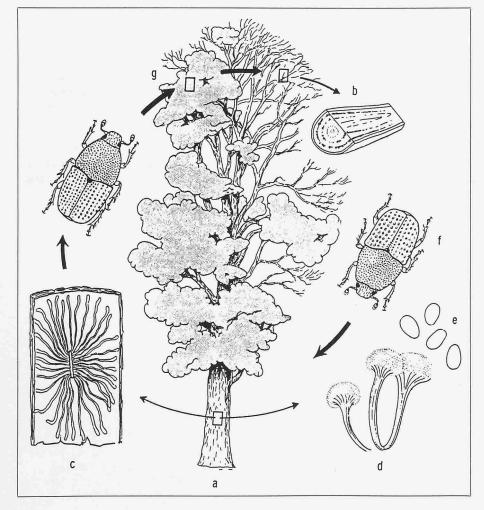
Download PDF: 30.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ulmensterben ohne Ende?

Seit einiger Zeit häufen sich die Meldungen über Erkrankung und Abgang von Ulmen. Vor allem in Parkanlagen und Alleen führt diese Krankheit zum Verlust schöner Bäume und gibt zu grosser Besorgnis Anlass. Verschiedene Seiten haben einige Anstrengungen unternommen, um Bekämpfungsmassnahmen gegen das «Ulmensterben» zu finden. Man hat jedoch bis jetzt noch keine praxisnahen Verfahren zur Hand. Im folgenden soll ein Überblick über das Wesen dieser Krankheit und den Stand der Arbeiten auf dem Gebiet der Bekämpfungsmassnahmen gegeben werden.

Neue Ulmenwelke-Epidemie


Bereits in den zwanziger und dreissiger Jahren suchte ein gefährliches epidemisches Ulmensterben Europa und Nordamerika heim. Zahllose Ulmen, insbesondere in Parks und Alleen, fielen dieser Welkekrankheit zum Opfer. Da sich vorwiegend holländische Biologen mit der Erforschung der Krankheit befassten, nennt man sie auch die «Holländische Ulmenkrankheit» (Dutch Elm Disease). Die Epidemie flachte später ab, die Krankheit verlief milder. Der Erreger dieses Ulmensterbens (Pi/7: Ceratocystis ulmi) existiert bei uns heute noch. jedoch nur in einer schwachvirulenten Form.

Seit 1972 wird in England eine neue, heftige Epidemie beobachtet. Ein neuer Ceratocystis-ulmi-Stamm breitet sich aus und hat bis heute eine weltweite Streuung erfahren. Diese neue Form ist äusserlich kaum von der bisher bekannten zu unterscheiden. Dies ist nur anhand spezieller Laboruntersuchungen möglich.

Es existieren heute somit zwei verschiedene Erregerstämme nebeneinander:

- ein schwachvirulenter Stamm aus der ersten Epidemie der 30er Jahre und
- ein hochvirulenter Ceratocystis-Stamm aus der zweiten Epidemie der 70er Jahre.

Pilz- und Krankheitsentwicklung an der Ulme. a: Gesamtansicht eines erkrankten Baumes. b: Längs- und Querschnitt durch Holz mit typischen Verfärbungen. c: Frassgänge des Ulmensplintkäfers mit Graphien (d) und Konidien (e) des Krankheitserregers. f. Kleiner Ulmensplintkäfer als Überträger des Pilzes. g. Reifefrass des Käfers an jungen, gesunden Zweigen (d. 10fach, e. 5000fach)

Wie aus der Literatur zu entnehmen ist, wurde dieser neue Erreger schon vor einigen Jahren in Frankreich, Grossbritannien, in den Niederlanden, in der Bundesrepublik Deutschland, den USA, in Kanada und im Iran nachgewiesen und hat sich seither weiter verbreitet. Gezielte, systematische Beobachtungen werden in der Schweiz nicht durchgeführt.

Infektion und Entwicklung der Krank-

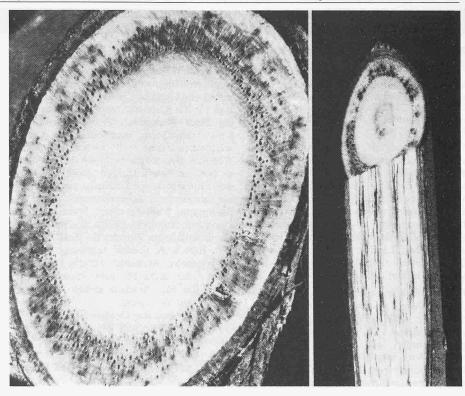
Die Verbreitung der Welkekrankheit erfolgt zur Hauptsache durch den Grossen und den Kleinen Ulmensplintkäfer. Diese verschleppen den Pilz in ihre zwischen Rinde und Holz liegenden Brutkammern und Frassgänge. Die Käfer nehmen dort Sporen in ihren Darmtrakt auf; damit beladen fliegen sie auf gesunde Bäume und beginnen dort in den Astgabelungen mit dem primären Reifefrass. Es erfolgt die Infektion. Im Nahbereich kann sich die Krankheit auch von Baum zu Baum über Wurzelanastomosen (funktionsfähig verwachsene Wurzeln von Nachbarbäumen) verbreiten, ähnlich wie dies bei der verwandten Eichenwelkekrankheit geschieht. Dabei verbreitet sich der Pilz über Wasserleitungsbahnen von Pflanze zu Pflanze.

Der Pilz vermehrt und verbreitet sich im Gefässsystem der Wirtpflanze, wo er Veränderungen der Wasserleitungsgefässe verursacht. Man nennt solche Krankheiten Tracheomykosen oder Gefässkrankheiten. Im fortgeschrittenen Krankheitszustand ist der Wasserhaushalt derart stark gestört, dass die betroffenen Bäume eingehen. Das Absterben geht meist sukzessive vor sich. Vorerst werden einzelne Zweige und Äste, dann grössere Kronenteile und schliesslich der ganze Baum abgetötet.

Ein gutes Merkmal, an dem man auf einfache Weise den Befall durch Ceratocystis ulmi erkennt, sind die dunklen Verfärbungen der Wasserleitungsbahnen, die mit blossem Auge auf Querund Längsschnitten von Zweigen und Ästen befallener Bäume sichtbar sind.

Anfälligkeit verschiedener Ulmenarten und Verbreitung der Krankheit

In Ostasien, der Heimat des Erregers, konnten sich im Laufe von Jahrmillionen Ceratocystis-resistente Ulmenarten entwicklen. Die Ulmen Europas und Nordamerikas sind dagegen alle anfällig. Unterschiede in der Krankheitsanfälligkeit zwischen den verschiedenen Arten können gelegentlich beobachtet werden; bei unseren Feld-, Berg- und Flatterulmen sind jedoch keine solchen Abweichungen feststellbar, alle sind hochanfällig.


Die Situation ist ähnlich wie bei einer Anzahl weiterer epidemisch bedeutender Pilzkrankheiten (zum Beispiel Kastanienkrebs), bei denen die Wirtpflanzen aus dem Herkunftsland weitgehend resistent sind, während die Wirte im neuen Verbreitungsgebiet heftig befallen werden. Der pilzübertragende Ulmensplintkäfer entwickelt sich ausschliesslich in geschwächten Bäumen (nur der Reifefrass wird in die Krone kräftiger, gesunder Ulmen verlegt). Wahrscheinlich kann darin die Erklärung gefunden werden, dass die oft unter schlechten Standortbedingungen wachsenden Park- und Alleebäume stärker befallen werden als in Waldbeständen stehende Ulmen.

Bekämpfungsmassnahmen

Massnahmen gegen die Ulmen-Welkekrankheit sind von sehr beschränkter Wirkung. Nach dem heutigen Stand der Forschung können sie in der Regel nur an Park- und Alleebäumen, kaum aber an Waldbäumen angewendet werden. Zu erwähnen sind:

- Ersatz der anfälligen durch resistente Ulmenarten. Neben den Phytopathologen haben sich besonders auch Pflanzenzüchter mit dieser Ulmenkrankheit beschäftigt. Erfahrungen zeigen, dass mit der Resistenzzüchtung immer noch am aussichtsreichsten der Krankheit begegnet werden kann. Untersuchungen mit dem hochvirulenten Stamm haben ergeben, dass verschiedene Ulmenarten und -rassen auch diesem Erreger gegenüber hohe Resistenz aufweisen.
- Eine weitere Möglichkeit, die Ulme vor einer Erkrankung zu schützen, besteht in der Bekämpfung der pilzübertragenden Ulmensplintkäfer, das heisst Fällen abgestorbener oder kränkelnder Ulmen mit anschliessendem Entrinden, Wegführen oder Verbrennen des Holzes, um die Brutstätten für Splint- und Bastkäfer zu beseitigen. Bei frühzeitiger Feststellung des Befalls (einzelne dürre Zweige) kann die Infektion durch radikale Entfernung des ganzen Astes gestoppt werden. Diese Arbeiten dürfen jedoch nur ausserhalb der Vegetationszeit vorgenommen werden, um eine Anlockung von Splintkäfern durch pflanzeneigene Lockstoffe zu vermeiden.

Es sind keine Fungizide auf dem Markt, mit denen die Krankheit unter forstlichen Verhältnissen bekämpft werden könnte. Die Forschung in den USA hat sich um die Entwicklung systematischer Fungizide bemüht, bisher allerdings ohne praxisreife Erfolge.

Erkrankte Bergulme. Längs- und Querschnitte durch einen Zweig aus der oberen Krone eines befallenen Baumes mit den typischen, dunklen Verfärbungen der Wasserleitungsbahnen (Vergrösserung links 5 ×, rechts 2.5)

Nur mit einer systematischen Erfassung der Verbreitung und durch eine Koordination aller Anstrengungen dürfte es gelingen, wirksame Massnahmen zu entwickeln. Dies ist in der Schweiz noch nicht der Fall.

> Bundesamt für Forstwesen Eidg. Anstalt für das Forstliche Versuchswesen, Birmensdorf

Umschau

Neue Verordnung auf dem Gebiet der wassergefährdenden Flüssigkeiten

(Mitg.) Der Bundesrat hat die Verordnung zum Schutze der Gewässer gegen Verunreinigung durch wassergefährdende Flüssigkeiten (VWF) einer Totalrevision unterzogen.

Die neue VWF bestimmt wie bereits die alte in erster Linie die bei Anlagen für das Lagern und den Umschlag flüssiger Brenn- und Treibstoffe zu treffenden Gewässerschutzmassnahmen. Die Auswertung der Schadenstatistik zeigt, dass sich die bisherigen Schutzmassnahmen bewährt haben und die eingeschlagene Marschrichtung beibehalten werden kann.

Neben den rund 840 000 Tanks, in denen in der Schweiz hauptsächlich flüssige Brennund Treibstoffe gelagert werden, gibt es vor allem in Fabrikationsbetrieben eine Vielzahl Behälter (Betriebsanlagen) für andere wassergefährdende Flüssigkeiten. Die neue VWF umfasst nunmehr auch diese Betriebsanlagen sowie Kreisläufe von Wärmepumpen, mit denen Wärme aus Gewässern und dem Boden genutzt wird. Die wassergefährdenden Flüssigkeiten werden in zwei Gefährdungsklassen unterteilt, die unterschiedliche Gewässerschutzmassnahmen erfordern. Die neue VWF nennt die vom Eigentümer für alle Anlagen zu treffenden und auf die tatsächlichen Gefahren abgestimmten Vorkehrungen.

Aufgrund der Ergebnisse der Schadenstatistik und des technischen Fortschritts beim Bau der Anlagen ist es verantwortbar, unterirdische Tanks auch in solchen Gebieten zu erstellen, in denen nutzbares Grundwasser vorhanden ist (Zone A). Auch werden die Zeitabstände für die Revision der Anlagen angemessen erstreckt, nämlich auf mindestens alle 10 Jahre für vorschriftsmässige Anlagen und auf mindestens fünf Jahre für nicht angepasste Altanlagen.

Die zugleich mit der neuen VWF vom Eidgenössischen Departement des Innern erlassene Verordnung über die Klassierung wassergefährdender Flüssigkeiten nennt die Kriterien, nach denen das Bundesamt für Umweltschutz diese Flüssigkeiten einer der beiden Gefährdungsklassen zuordnet. Das Bundesamt wird eine Liste der klassierten Flüssigkeiten veröffentlichen.