Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 33 (1942)

Heft: 22

Artikel: Demonstartionsanlage für Fernverkehrstrassenbeleuchtung

Autor: Bänninger, W.

DOI: https://doi.org/10.5169/seals-1061683

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 03.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

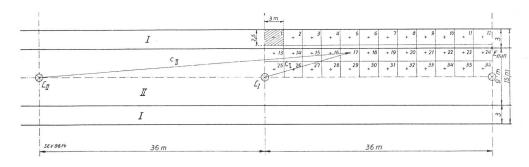


Fig. 31. Situationsplan der Strasse mit Punkteinteilung für die Berechnung der Vertikalbeleuchtungsstärken. I Trottoir. II Fahrbahn.

Abstände c_I und c_{II} der Punkte vom Fusspunkt der Leuchten L_I und L_{II} (Fig. 31)

Tabelle XVIII

Punkt	c_1	$c_{\rm II}$	Punkt	c_1	CII	Punkt	Cı	c _{II}
Nr.	m	m	Nr.	m	m	Nr.	m	m
1 2 3 4 5 6 7 8 9 10 11 12	6,43 7,70 9,76 12,22 14,88 17,64 20,48 23,35 26,25 29,18 32,11 35,06	38,02 40,98 43,95 46,92 49,89 52,87 55,85 58,83 61,82 64,80 67,79 70,78	13 14 15 16 17 18 19 20 21 22 23 24	4,04 · 5,86 8,39 11,15 14,01 16,92 19,86 22,81 25,77 28,75 31,72 34,70	37,69 40,67 43,66 46,65 49,64 52,63 55,63 58,62 61,61 64,61 67,60 70,60	25 26 27 28 29 30 31 32 33 34 35 36	1,95 4,67 7,60 10,57 13,56 16,55 19,54 22,53 25,53 28,53 31,52 34,52	37,52 40,52 43,52 46,52 49,52 52,51 55,51 61,51 64,51 70,51
Leuchten 1, 2, 3, 4 u. 5			Leuchte 2		Leuchte 4			
E_{min}	36,27	72,14	E_{max}	5.20	41,20	E_{max}	6,80	42,80
Leuchte 1		Leuchte 3		Leuchte 5				
E_{max}	5,35	41,85	E_{max}	8,60	44,60	E_{max}	8,20	44,20

Die Tabelle enthält ferner die Abstände der Punkte mit minimaler und maximaler Vertikalbeleuchtungsstärke. Die Punkte mit maximaler Beleuchtungsstärke liegen über der Strassenachse. Aus den Kurven E_{v_1} können für diese Abstände die zugehörigen Beleuchtungsstärken entnommen werden. Durch Multiplikation dieser Werte mit cos $\gamma =$ c/c erhält man die Vertikalbeleuchtungsstärke E_{ν} . In Tabelle XIX sind der Rechnungsgang und die Ergebnisse übersichtlich dargestellt. Die Werte der Tabelle XIX entsprechen einem Lampenlichtstrom von 1000 lm, sie müssen auf den effektiven Lampenlichtstrom umgerechnet werden, was die Werte nach Tabelle XX gibt.

Tabelle XX

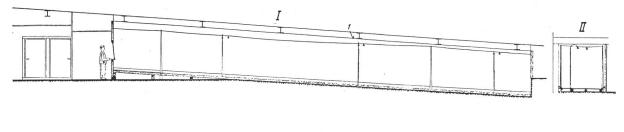
Vertikal- Beleuchtung	Leuchte 1 2 3 4				5
Lampe Emed Emax Emin Emin: Emed Emin: Emax	1,43 lx 6,07 lx 0,05 lx 1: 28,60 1:121,40	1,64 lx 4,07 lx 0,43 lx 1:3,82 1:9,47	1,74 lx 3,60 lx 0,30 lx 1: 5,80 1:12,00	5,74 lx 0,51 lx 1: 4,48 1:11,23	2,56 lx 6,08 lx 0,71 lx 1:3,61 1:8,56

Die mittlere Vertikalbeleuchtungsstärke ist für alle 5 Leuchten kleiner als die mittlere Bodenbeleuchtungsstärke. Die Anlagen entsprechen somit den Leitsätzen in dieser Beziehung. Ein Vergleich zwischen Tabelle VIII und XIX zeigt, dass die Vertikalbeleuchtungsstärke an einigen wenigen Punkten grösser ist als die Bodenbeleuchtungsstärke.

Demonstrationsanlage für Fernverkehrstrassenbeleuchtung

Vom Sekretariat des SBK (W. Bänninger), Zürich.

Die Demonstrationsanlage des Schweiz. Beleuchtungskomitees an der Schweizerischen Landesausstellung 1939 Zürich zeigte, dass nur die ortsfeste Beleuchtung das Blendungsproblem im nächtlichen Strassenverkehr lösen kann. Dabei ist ein heller Strassenbelag nötig. Die Demonstrationsanlage wird beschrieben.


L'installation de démonstration du Comité Suisse de l'Eclairage présentée à l'Exposition Nationale Suisse de 1939, à Zurich, a montré qu'un éclairage fixe est seul capable de résoudre le problème de l'éblouissement que pose le trafic routier nocturne. D'autre part, le revêtement de la chaussée doit être de couleur claire. L'auteur décrit l'installation de démonstration.

Der vorliegende Bericht ist keineswegs aktuell. Unsere Landstrassen haben infolge der radikalen Einschränkung des Brennstoffverbrauches wieder ein recht idyllisches Gesicht bekommen. Man darf aber die Frage der Fernverkehrstrassenbeleuchtung auch jetzt nicht ruhen lassen. Wir müssen uns rüsten, um in den kommenden Zeiten des wiedererstehenden Automobilverkehrs zur Verbesserung der Beleuchtung bereit zu sein.

Im Jahre 1937 setzte das Schweizerische Beleuchtungskomitee (SBK) eine Subkommission für Fernverkehrstrassenbeleuchtung ein. Anlass dazu gab die Erkenntnis, dass nur die ortsfeste

Strassenbeleuchtung dem nächtlichen Automobilverkehr jene Sicherheit und Flüssigkeit geben kann, die alle Strassenbenützer beanspruchen dürfen; keines der bekannten Systeme von Fahrzeugscheinwerfern und andern Lichtern der Fahrzeuge kann das Blendungsproblem so vollkommen und elegant lösen wie die ortsfeste Strassenbeleuchtung. Die Subkommission will deshalb die ortsfeste Fernverkehrstrassenbeleuchtung vorbereiten. Die Schweizerische Landesausstellung 1939 Zürich gab ihr auch die gern benützte Gelegenheit, diesen Gedanken zu propagieren. Unter der Mitwirkung der Zentrale für Lichtwirtschaft, des Vereins Schweiz. Strassenfachmänner, des Schweiz. Autostrassenvereins und der Firmen

beleuchten, dass auf ihnen ein auch nur schwacher Verkehr gefahrlos abgewickelt werden könnte.

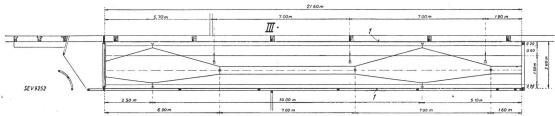


Fig. 1.

Modell einer Ueberlandstrassenbeleuchtung.

I Längsschnitt. II Querschnitt. III Grundriss. 1 Stoffbespannung.

Betonstrassen A.-G., Wildegg (Strassenbelag); Gebr. Rüttimann, Zug (Betonmasten und Vielfachaufhängung);

Alois Burri, Zürich (Stahlrohrmaste);

BAG Turgi,
Belmag, Zürich,

Gebr. Huser & Cie., Münchwilen, Lichtarmaturen A.-G., Zürich,

Astron A.-G., Kriens,
Licht A.-G., Goldau,
Glühlampenwerke Aarau,
Osram A.-G., Zürich,
Philips A.-G., Zürich,
F. Knobel, Ennenda (Vorschaltgeräte);

F. Knobel, Ennenda (Vorschaltgeräte) SAIA A.-G., Bern (Schaltapparate);

wurde in der Abteilung Strasse und Verkehr ein Strassenmodell mit verschiedenen Systemen von Strassenbeleuchtungen aufgestellt. Das Projekt wurde von E. Erb¹) unter Mitarbeit von W. Leimgruber und O. Ruegg verfasst und durchgeführt. Die ganze Anlage gab bis auf alle Einzelheiten die wirklichen Verhältnisse im Maßstab 1:5 getreu wieder. Die Modellstrasse war 21,4 m lang und 2,5 m breit. Sie repräsentierte also ein wirkliches Strassenstück von etwa 100 m Länge und 12,5 m Breite. Die Wände und die Decke waren mit schwarzem Tuch bespannt, was denselben Effekt hatte, wie die schwarze Nacht in der Wirklichkeit (Fig. 1).

Der Strassenbelag.

Als Strassenbelag wurde Beton gewählt. Beton und Kleinpflästerung sind nach dem heutigen Stand der Technik die einzig richtigen Strassenbeläge und daher die einzig anzustrebenden. Teerbeläge sind aus physikalischen und physiologischen Gründen abzulehnen. Es ist nämlich unmöglich, Teerstrassen bei Regenwetter so zu

Wenn solche Strassen nass sind, beginnen die unendlich vielen kleinen Wasseroberflächen zu spiegeln und wirken für den Automobilisten wie viele

Fig. 2.

Dunkel (bei Regen), schlechte Sicht (gefährlich!).

Man sieht die Autos rechts kaum. Häuschen rechts kaum sichtbar. Belichtungszeit 1 s.

Fig. 3. Hell (bei Schnee), ähnliche Wirkung wie Schnee hätte heller Strassenbelag. Gute Sicht. Der Fussgänger links ist sehr deutlich. Häuschen rechts gut sichtbar. Belichtungszeit 1 s.

blendende, schnell bewegliche Lichtquellen, die ihm jede Sicherheit im Erkennen der Hindernisse nehmen (Fig. 2...5). So wird auf solchen nassen Teerstrassen die mögliche Geschwindigkeit kleiner

Herr Erb stellte uns auch die materiellen Unterlagen für diesen Bericht zur Verfügung.

und die Unfallgefahr grösser. Dazu kommt die auf glatten und nassen Teerstrassen grosse Schleudergefahr. Darüber hinaus absorbiert eine schwarze

Fig. 4. Forchstrasse ob Rehalp bei Regen. Fahrbahn Kleinpflästerung, Trottoir geteert. Gute Beleuchtung.

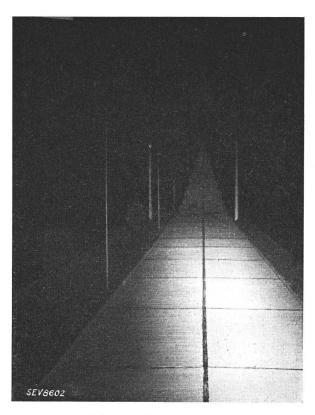


Fig. 5. Limmatquai bei Regen. Schwarze Beläge, gefährliche Spiegelungen. Verwirrung des Autofahrers.

Strasse das Licht, während eine helle, rauhe Oberfläche das Licht diffus reflektiert, so dass ein viel kleinerer Leistungsaufwand zu einer guten Beleuchtung führt. Die helle Strasse (Beton oder Kleinpflästerung) ergibt daher eine viel wirtschaftlichere Beleuchtung als der dunkle Teerbelag.

- 1:5 erstellt und mit passenden Lampen ausgerüstet, derart, dass die horizontalen und vertikalen Beleuchtungsstärken den in den Leitsätzen des SBK geforderten Werten etwa entsprechen. Es waren folgende Beleuchtungsanlagen vorhanden:
- 1. Je ein Paar abblendbarer Autoscheinwerfer an den beiden Strassenenden.
- 2. Eine Strassenbeleuchtung mit weissen Glühlampen in der Strassenaxe.
- 3. Eine Strassenbeleuchtung mit gelben Glühlampen, die Natriumlicht vortäuschten (Bogenkandelaber am Strassenrand).

Ein Schaltmechanismus schaltete in zweckmässigen Intervallen die verschiedenen Beleuchtungen ein (Fig. 6), so dass die in der Wirklichkeit auftretenden Effekte genau nachgeahmt wa-

Eigenes Fahrlicht: gut.

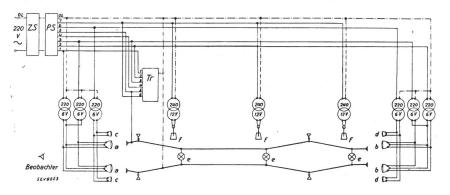


Fig. 6. Modell einer Ueberlandstrassenbeleuchtung, Schaltungsschema.

- Scheinwerfer des Beobachters Scheinwerfer des Gegenfahrers. Markierlichter des Beobachters. Markierlichter des Gegenfahrers. Breitstrahler mit Glühlampe mon-tiert an Vielfachaufhängung, mit Beton-Abspannmasten. Breitstrahler mit Natriumdampf-lampe montiert an Stehlrohr.
- lampe montiert an Stahlrohr Bogenmasten.
- Transparent. Zeitschalter. Programmschalter.

Die Beleuchtungseffekte und deren Steuerung. Sämtliche Leuchten und deren Abstände, sowie die Aufhängehöhen waren ebenfalls im Maßstab ren und anhand des erklärenden Transparentes sehr eindrucksvoll verfolgt werden konnten (Tabelle I), nämlich:



Fig. 8. Gegenfahrer blendet.

Fig. 9.
Abblenden: zu kurze Sicht.

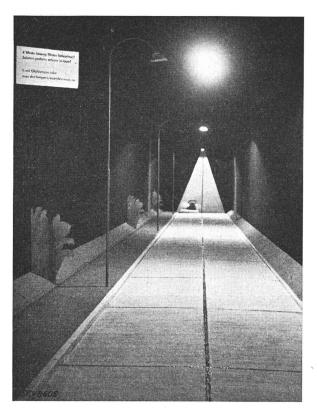


Fig. 10. Ideale Lösung: Strasse beleuchten! Beispiel: mit Glühlampen.

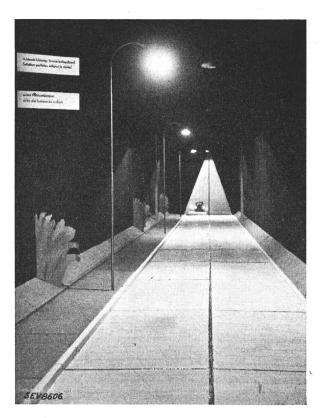


Fig. 11. Ideale Lösung: Strasse beleuchten! Beispiel: mit Natriumdampflampen.

werferwesens.

Zeitprogrami	
	n

	_
Tabelle	L

				Tabelle 1.	
	Zeit s	Dauer	Anlage (eingeschaltet)	Transparent (einge- schaltet) erklärt:	
1.	0 9	9	Scheinwerfer des Be- obachters	1. Eigenes Fahrlicht: gut	
2.	6 9	3	Scheinwerfer des Ge- genfahrers	2. Gegenfahrer: blendet 1)	
3.	9 17	8	Abgeblendeter Scheinwerfer des Beobachters u. Ge- genfahrers		
4.	15 29	14		4. Ideale Lösung: Strasse beleuch- ten!	
5.	15 23	8	Beleuchtungsanlage: Vielfachaufhängung mit Betonabspann- masten, mit Breit- strahlern und Glüh- lampen	5. mit Glühlampen oder	
¹) Diese Phase zeigte die ganze Problematik des Schein-					

Zeit Transparent (einge-schaltet) erklärt: Dauer Anlage (eingeschaltet) Markierlichter d. Be-17 ... 29 12 obachters u. Gegenfahrers Beleuchtungsanlage: Stahlrohrbogen-6. mit Natriumkandelaber mit 23 ... 29 Breitstrahlern und lampen Natriumdampflam-8. 29 ... 32 3 Pause Pause

Eigenes Fahrlicht gibt gute Beleuchtung.

Der Gegenfahrer blendet und macht Hindernisse unsichtbar.

Strassenbeleuchtung mit weissem oder gelbem Licht gibt ideale Fahrverhältnisse.

Die Photographien Fig. 7 bis 11 zeigen die mit dieser Demonstrationsanlage erzielten Effekte.

Die Anlage wird voraussichtlich im zu gründenden Schweizerischen Verkehrsmuseum wiedererstehen.

Die Beleuchtungsanlage der Fürstenlandbrücke in St. Gallen

Von H. Leuch, St. Gallen.

628.971.6

Die Beleuchtungsanlage der Fürstenlandbrücke wird beschrieben; es werden die Messergebnisse mitgeteilt und mit den Schweiz. Leitsätzen für die Beleuchtung von Fernverkehrstrassen verglichen.

Description de l'installation d'éclairage du pont routier, dit Fürstenlandbrücke, à St-Gall. Indication des résultats des mesures, comparés aux valeurs proposées dans les Recommandations suisses pour l'éclairage des routes à grand trafic.

In der Vorkriegszeit kam die Absicht auf, durch den Bau einer Hochbrücke über die im Westteil St. Gallens tief in das Gelände eingeschnittene Sitter den Weg für den Fahr- und Fussgängerverkehr zwischen der Stadt einerseits, dem Fürstenland und Herisau anderseits zu verbessern. Diese in den Jahschiedenen Radfahrerstreifen. Die flüssige Linienführung war eine Voraussetzung für den Schnellverkehr. Aus der Würdigung dieser Verkehrsbedingungen, denen die Brücke samt der westlichen Zufahrtsstrasse bei Tag und bei Nacht gerecht werden muss, ergab sich die Wünschbarkeit einer

Fig. 1. bei Tag

Fig. 2. bei Nacht

ren 1937 bis 1941 erstellte Ein- und Ausfallstrasse vermag einen Fahrzeugverkehr erheblichen Umfanges zu bewältigen. Die ganze Breite von 14 m ist unterteilt in zwei Trottoirs und eine Fahrbahn, einschliesslich die zwei fahrbahnebenen, nur durch die Farbe des Belags von der übrigen Fahrbahn unterzweckentsprechenden künstlichen Beleuchtung auf der 1,37 km langen Gesamtstrecke.

Die künstliche Beleuchtung hat die besten Sehbedingungen zu schaffen, die insbesondere beim Schnellverkehr zur Erzielung rascher Reaktionen und zur Verminderung der Ermüdung der Augen