Zeitschrift:	eitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins					
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke					
Band:	37 (1946)					
Heft:	8					
Artikel:	Das Verhalten von Erdungen unter hohen Stossströmen					
Autor:	Berger, K.					
DOI:	https://doi.org/10.5169/seals-1061097					

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 03.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZERISCHER ELEKTROTECHNISCHER VEREIN

ULLE

REDAKTION: ADMINISTRATION: Sekretariat des Schweizerischen Elektrotechnischen Vereins Zürich, Stauffacherquai 36 🔹 Telephon 237744 Zürich 8, Seefeldstrasse 301 Postcheck-Konto VIII 8481

Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet

37. Jahrgang

No 8

Das Verhalten von Erdungen unter hohen Stoßströmen

Bericht aus der Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH)

von K. Berger, Zürich

621.3.014.33 : 621.216.99

Samstag, 20. April 1946

In der Literatur finden sich sehr widersprechende Angaben darüber, ob der mit den üblichen Erdungsmessinstrumenten gemessene Widerstand bei Stoss massgebend sei. Ferner fragt es sich, ob dieser Widerstand auch bei sehr grossen Stoßströmen, die beim Blitzschlag zu erwarten sind, noch wirksam ist. In der Versuchsanlage Gösgen der FKH wurden deshalb ausgedehnte Versuche unternommen, um das Verhalten verschiedener Erdungen bei Stoss grundsätzlich zu klären. Der folgende Bericht enthält eine Zusammenfassung der Resultate dieser fast ausschliesslich von E. Seilaz ausgeführten Messungen. Dabei ergeben sich auch einige physikalisch interessante Erscheinungen.

1. Messung verschiedener Erdarten und von Wasser im Halbkugelmodell in Gösgen

Nach einigen Vorversuchen wurde in Gösgen ein halbkugelförmiges Bassin aus braunen Tonziegeln hergestellt, das 2,5 m Durchmesser aufweist. Dieses Bassin wurde innen mit einem Drahtgitter als Elektrode belegt und mit einer dünnen Lehmschicht ausgekleidet, um es wasserdicht zu machen. Das zu untersuchende Erdmaterial wurde darin eingefüllt und als zweite Elektrode eine verchromte Metallkugel von 250 oder 500 mm Durchmesser bis zu ihrem Mittelpunkt eingetaucht. Diese ist mit dem

- $R_{ ext{eg}}$ $R_{ ext{eg}}$ $K_{ ext{G}}$ $R_{ ext{m}}$

Stossgenerator nach dem Schema Fig. 1 verbunden, während das Drahtgitter über den Shunt für die Strommessung mit dem geerdeten Pol des Stossgenerators in Verbindung steht. Der Widerstand des

Les opinions des spécialistes sont fort divergentes, en ce qui concerne l'exactitude de la résistance en cas de choc, lorsque celle-ci est mesurée à l'aide d'appareils ordinaires. On ignore, en outre, si cette résistance est encore efficace dans le cas des très fortes intensités de choc, qui entrent en jeu lors des coups de foudre. Des recherches ont donc été entreprises à la station d'essais de Gösgen de la FKH, en vue de se rendre compte du comportement de diverses prises de terre en cas de chocs. Le présent rapport groupe les résultats de ces mesures, qui furent effectuées presque uniquement par M. E. Seilaz. Quelques intéressants phénomènes physiques y sont également mentionnés.

Bassins gegen die äussere Erde ist genügend hoch, um die Strommessung nach dem Schema Fig. 1 mit genügender Genauigkeit zu erlauben.

Die beiden Oszillographen KOI und KOII messen den zeitlichen Verlauf der Spannung am Kugelmodell und den durchfliessenden Strom. Die Spannung des Stossgenerators beträgt maximal ca. 200 kV in einstufiger Schaltung (ca. 1 μ F Kapazität) bzw. 800 kV in vierstufiger Schaltung (1/16 μ F). Der Stromkreis enthält ca. 100 µH Induktivität; daraus bestimmt sich die grösste erreichbare Steilheit des Stoßstromes in der zu untersuchenden Erdung.

Widerstand $R_e = u_e / i = \text{konstant.}$

Die Resultate einiger Messungen sind in den Fig. 2...15 dargestellt.

Fig. 2 gibt zunächst ein Oszillogramm des Stromes und der Spannung für das mit Wasser gefüllte Bassin. Das Wasser stammt aus der Aare, von der es durch die Pumpe der Versuchsstation gefördert wird. Es ist durch den Boden gesickert und dadurch auf natürliche Weise filtriert. Der spezifische Widerstand beträgt bei 19° C im Mittel $\rho \approx 3000 \ \Omega$ cm. Strom i und Spannung u haben gleichen Verlauf, d. h., dass der Quotient (u_e/i) konstant ist. Um dies

Kurvendarstellung der Spannung u_{θ} am wassergefüllten Halbkugelmodell über der Stromdichte $\delta_1^{(4)}$ an der Innen-elektrode (Kugeldurchmesser 250 mm) und der Feldstärke \mathfrak{E}

e Spezifischer Widerstand des Wassers, e ≈ 3000 Ω cm F Oberfläche der Halbkugel¹), F = 980 cm² Strom $i = F \delta_1 = 980 \delta_1$ $R_0 = u_0 / i = 35,5 \Omega$ bei Stoss $R_0 \approx \approx 36,0 \Omega$ bei Wechselstrom 50 Hz u_{g} Generatorspannung, bis 160 kV O Messpunkte in der Front des Stosses nach Fig. 2

- + Messpunkte im Rücken des Stosses nach Fig. 2.

Kurvendarstellung der Spannung u_0 am Halbkugelmodell über Stromdichte δ_1 und Feldstärke \mathfrak{E} an der Innenelektrode (Kugeldurchmesser 500 mm)

Elektrolyt: Gemisch aus Kies, Sand und Humus (M) e $\approx 30000 \ \Omega \ cm$ $F = 3930 \ cm^2$ Halbkugeloberfläche $R_{e0} \approx 141 \ \Omega \ Grenzwert \ des Widerstandes bei schwachen Stössen$ $R_e \approx 2 \ 148 \ \Omega \ Widerstand bei Wechselstrom 50 \ Hz$ ug Generatorspannung.

An der weitesten Kurve sind einige Zeitpunkte notiert.

1) Wir verwenden hier ausnahmsweise δ_i für Stromdichte. F für Fläche und (in Figuren und Legenden) (§ für Feldstärke. zu zeigen, wurde in Fig. 3 die Spannung u_e am Bassin über der Stromdichte oder Feldstärke an der 250-mm-Kugelelektrode dargestellt. Alle ausgewerteten Punkte, seien es solche in der Front, seien es solche im Rücken des Stosses, liegen auf einer Geraden, welche unter Berücksichtigung der Halbkugeloberfläche von 980 cm² einem ohmschen

Kurvendarstellung des Erdungswiderstandes R_{\bullet} über der Zeit t für verschieden grosse Stromstösse Elektrolyt: Gemisch aus Kies, Sand und Humus (M)

	e ≈ 300	$00 \ \Omega \ \mathbf{cm}$		
	Versi	uchsanordnung	wie	in Fig. 4
1	$i_{\max} =$	250 A	4	$i_{\max} = 1800$ A
2	$i_{\max} =$	560 A	5	$i_{\max} = 2400 \text{ A}$
3	imax =	975 A	6	$i_{max} = 5300 \text{ A}$

 $R_{e} \sim \approx 148 \Omega$ Widerstand bei 50 Hz

Kurvendarstellung der Spannung ue am Halbkugelmodell über Stromdichte δ₁ und Feldstärke € an der Innenelektrode (Kugeldurchmesser 500 mm)

Elektrolyt: Feuchter Lehm, e \approx 5700 Ω cm (L)

 $F = 3930 \text{ cm}^2$ Halbkugeloberfläche

 $R_{\bullet 0} \approx 26.6 \Omega$ Grenzwert des Widerstandes bei schwachen Stössen Re~ \approx 27,8 Ω Widerstand bei Wechselstrom 50 Hz

ug Generatorspannung

Widerstand von 35,5 Ω entspricht. Mit einem Erdungsinstrument wurde bei Niederfrequenz 36,0 Ω gemessen; dies ist bis auf Messfehler derselbe Wert.

Das Wasser zeigt somit bis zu den höchstmöglichen Spannungen (bei ca. 150 kV entstehen Ueberschläge an der Wasseroberfläche) durchaus normales Verhalten: Sein Widerstand bei Stoss entspricht dem bei Niederfrequenz mit den üblichen Methoden bestimmten Wert.

In gleicher Weise zeigen Fig. 4...12 das Verhalten verschiedener Erdarten, nämlich:

Fig. 4 und 5 eines Gemisches von Humus, Sand und Kies, das in Gösgen vorherrschend ist, gemessen mit Kugel-Durchmesser 500 mm,

Fig. 6 und 7 von feuchtem Lehm, gemessen mit Kugel-Durchmesser 500 mm,

Kurvendarstellung des Erdungswiderstandes Re über der Zeit t für verschieden grosse Stromstösse

Elektrolyt: Feuchter Lehm, e \approx 5700 Ω cm (L) Versuchsanordnung wie in Fig. 6.

 $\begin{array}{cccc} 1 & i_{max} = 880 & A \\ 2 & i_{max} = 3300 & A \end{array}$ $\begin{array}{ccc} 3 & i_{\max} = 4050 \ \mathrm{A} \\ 4 & i_{\max} = 7800 \ \mathrm{A} \end{array}$ $R_{e} \sim \approx 27.8 \Omega$ Widerstand bei Wechselstrom 50 Hz

Fig. 8 von feuchtem Lehm, gemessen mit Kugel-Durchmesser 250 mm,

Kurvendarstellung der Spannung ue am Halbkugelmodell über Stromdichte ∂i und Feldstärke € an der Innenelektrode (Kugeldurchmesser 250 mm)

Elektrolyt: Feuchter Lehm, e \approx 5700 Ω cm (L)

- $F = 980 \text{ cm}^2$ Halbkugeloberfläche $R_{\bullet 0} \approx 68 \Omega$ Grenzwiderstand bei schwachen Stössen $R_{\bullet \sim} \approx 78 \Omega$ Widerstand bei Wechselstrom 50 Hz
- ug Generatorspannung

Fig. 9 und 10 von feuchtem Sand aus der Aare, gemessen mit Kugel-Durchmesser 500 mm,

Kurvendarstellung der Spannung u. am Halbkugelmodell über Stromdichte &ı und Feldstärke € an der Innenelektrode (Kugeldurchmesser 500 mm)

Elektrolyt: Feuchter Sand, $F = 3930 \text{ cm}^2(S)$ $e = 21000 \ \Omega \ cm$ Sofort nach Füllung: $R^{
m e\,01}$ pprox 108Ω Re~1 ≈ 105 Ω 12 Stunden nach der Füllung: e ≈ 32000 Ω cm 150 Ω Re 02 🏾 🍣 162 Ω Re~2 2

Fig. 10.

Kurvendarstellung des Erdungswiderstandes R. über der Zeit t für verschieden grosse Stromstösse

Elektrolyt: Feuchter Sand, e \approx 32000 Ω cm (S) Versuchsanordnung wie in Fig. 9.

 $1 i_{max} = 250 A$

- $4 i_{max} = 3250 A$
- 2 $i_{max} = 420 \text{ A}$ 5 $i_{\rm max} = 6000 ~{\rm A}$ 3 $i_{max} = 1500$ A
- $R_{e} \sim \approx 162 \Omega$ Widerstand bei Wechselstrom 50 Hz

Fig. 11 und 12 von feuchtem Humus, gemessen mit Kugel-Durchmesser 500 mm.

Elektrolyt: Feuchter Humus, e \approx 20000 Ω cm (H) F = 3930 cm² Halbkugeloberfläche

 $R_{e0} \approx 100 \ \Omega$ Grenzwert des Widerstandes bei schwachen Stössen $R_{e*} \approx 101 \ \Omega$ Widerstand bei Wechselstrom 50 Hz u_q Generatorspannung, bis 170 kV

 $F = 3930 \text{ cm}^2$ Halbkugeloberfläche $R_{e0} \approx 61 \Omega$ Grenzwert des Widerstandes bei schwachen Stössen ≈ 64 Ω Widerstand bei Wechselstrom 50 Hz ug Generatorspannung, bis 650 kV

Für jede Erdart ist die gerechnete Stromdichte an der 250-mm- oder 500-mm-Kugelelektrode als Abszisse (δ_i) und die Spannung an dieser Elektrode (u_e) als Ordinate gewählt. Da die erhaltenen Kurven nur für eine bestimmte Form des Stromes i(t) gelten, wurden die Kurven ausserdem mit dem Zeitparameter kotiert. Damit lässt sich aus den Kurven auch der Quotient (di/dt) ablesen. Als Beispiel gibt Fig. 13 nochmals einen Strom- und Spannungsverlauf in Funktion der Zeit, der der Konstruktion der Fig. 11 und 12 zugrunde liegt, und zwar für kleinen Strom (500 A) und grossen Strom (5000 A). Ferner ist für jede kotierte Kurve auch die Ladespannung des Stossgenerators und der grösste erreichte Stromwert der weitesten Kurve notiert. Die gemessenen

Oszillogrammbeispiel für das Verhalten von feuchtem Humus (e \approx 12500 Ω cm), bei schwachem Stoss (Kurve *a*) und starkem Stoss (Kurve b) gemessen Versuchsanordnung wie in Fig. 12.

Stromwerte lassen sich für jeden Kurvenpunkt durch Multiplikation mit der auf den Figuren angegebenen Oberflächen der Kugelelektrode leicht ausrechnen.

Die Fig. 4...12 zeigen mit aller Deutlichkeit, dass das Verhältnis u/i an der Erdung nicht mehr konstant ist, sondern vom Stromverlauf abhängt. Genau betrachtet, kommt es nicht nur auf den momentanen Stromwert an, sondern auf den gesamten vorangegangenen Kurvenverlauf: Die Widerstandswerte sind nicht eindeutig. Es entstehen ähnliche «Hysteresis-Kurven» wie bei spannungsabhängigem Widerstandsmaterial, wobei allerdings die grösste erreichte Spannung an der Erdung («Restspannung der Erdung») vom Strom wesentlich abhängig bleibt. Dies soll Fig. 12 zeigen: Hier ist zum Vergleich mit allen andern Kurven der Stossgenerator einmal seriegeschaltet und liefert ca. 650 kV und in der Folge schwingende Ströme von ca. 7200 und 11 400 A. Die nach ca. 2,5 µs erreichte «Restspannung» ist um ca. 45 und 60 % grösser als bei 5400 A mit weniger rasch ansteigendem Strom (Spannungsmaximum nach ca. 5 µs).

Die Hysteresis-Schleife ist um so weiter, je grösser der Stoßstrom ist und je länger er dauert. Bei genügend kleinen Stoßströmen entsteht keine Schleife (erste Kurve Fig. 13). Dann wird der Widerstandswert (u/i) eindeutig. Weiterhin ergibt sich, dass dieser Grenzwert für kleinen Stoßstrom identisch ist mit dem auf übliche Weise bei Niederfrequenz gemessenen Widerstandswert der Erdung $(R_{eo} \approx R_{e^{-}})$. Tabelle I stellt die Auswertung der Messungen am Kugelmodell dar. Die Bedeutung der einzelnen Kolonnen ist in der Legende zur Tabelle genannt.

Versuch-Nr.	1	2	3	4	5	6
Erdart	Wasser	Boden Gösgen	feuchter Lehm	feuchter Sand	feuchter Humus	feuchter Humus
Innere Elektrode	Kugel 250 Ø	Kagel 500 Ø	Kugel 500 Ø	Kugel 500 Ø	Kugel 500 Ø	Kugel 500 Ø
F cm^2	980	3930	3930	3930	3930	3930
u _{g max} kV	ca. 160	ca. 200	ca. 200	ca. 200	ca. 185	ca. 650
$u_{e \max}$ kV	125	175	123	155	145	235
i _{e max} A	3800	5250	7800	6000	5400	11 400
<i>T</i> _{hi} μs	30	40 50	22 24	30 32	30 32	5 6
$\delta_{i\text{max}}$ A/cm^2	3,8	1,35	2	1,55	1,38	2,9
$Q_{\rm m}$ k $\Omega {\rm cm}$	3	30	5,7	32	12,5	12,5
$E_{i_{max}}$. kV/cm	11,5	40	11,5	50	17,2	36
R_{\bullet} ~ Ω	36	148	27,8	ca. 150	64	64
$R_{\scriptscriptstyle eo}$ Ω	35,5	141	26,6	150	61	61
R_{e1} Ω	35,5	70	18,4	48	41	22
$R_{\bullet 2}$ Ω	35,5	14,5	14,4	20	20	20
R_{e3} Ω	35,5	12,8	12,7	16,5	16,5	17,5
$\frac{R_{\rm e\sim}}{R_{\rm e3}}$	1	11,5	2,2	9	3,9	3,7
Fig. Nr	2 und 3	4 und 5	6 und 7	9 und 10	11 und 12	12
F Erd-Ober	fläche an der 2	50-mm- bzw. 500-	mm- E_i	Aus e ó berechi	aete, theoretische	Feldstärke an

Widerstände verschiedener Erdarten und von Wasser im Halbkugelmodell von 2,5 m Durchmesser

Kugel, cm²

Spannung des Stossgenerators, kV Ug

Spannung an der Erdung, kV ue

 $i_{
m e} T_{
m hi}$ Strom in der Erdung, A

Halbwertdauer des Stoßstroms, µs δ_{i} Berechnete Stromdichte an der Kugel,

A/cm²

e spez. Erdwiderstand, kΩcm

Es bietet keine Schwierigkeiten, aus den Kurven beliebige Widerstandswerte, z. B. nach 2 oder 5 μ s, herauszulesen; es soll hier davon abgesehen werden. Dagegen ist die Frage zu beantworten, bei welchen Stromdichten der Widerstand (u/i) veränderlich wird, oder bis zu welchen Werten von einem bestimmten Widerstand gesprochen werden kann. Zu diesem Zweck sind in Tabelle II die aus den Beobachtungen gerechneten Grenzwerte der Stromdichte δ_i , ferner der zugehörigen gerechneten Feldstärken an der innern Kugel $E_i = \rho \, \delta_i$ zusammengestellt. Taballa II

			Lab	ene m
Ver- such Nr.	Erdart	Grenzw $\hat{o_i}$ (A / cm ²)	erte von $E_i = e \delta_i$ (kV / cm)	e (kΩcm)
$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	Wasser Erdoberfläche Gösgen feuchter Lehm feuchter Sand feuchter Humus feuchter Humus	4 0,08 0,5 0,08 0,15 ca. 0,18	12 2,4 2,8 2,6 3,0 ca. 2,8	$3 \\ 30 \\ 5,7 \\ 32 \\ 20 \\ 15$

Massgebend ist demnach in erster Linie die Feldstärke an der kleinen Elektrode: Solange diese unterhalb 2,5...3,0 kV/cm bleibt, besteht ein bestimmter eindeutiger Stosswiderstand, der sich mit dem auf übliche Weise gemessenen Erdungswiderstand deckt. Oberhalb dieser Werte entstehen dagegen bei allen Bodenarten, ausgenommen beim Wasser, Hysteresisschleifen. Der Widerstand nimmt dabei durchweg kleinere Werte an als bei der üblichen Messung mit Wechselstrom.

der Kugel, kV/cm

Re ~ Erdwiderstand bei Niederfrequenz (gemessen mit Terrafix) Erdwiderstand bei Stoss, Grenzwert bei kleinem

 R_{e0} Strom R_{e1} - R_{e2} - R_{e3} Erdwiderstand bei Stoss bei u_{max} , bei i_{max} und

bei minimalem Widerstand

In trockenem Sand vom Aare-Ufer lassen sich sehr deutlich Entladungskanäle sichtbar machen, wenn die Halbkugelelektrode nach dem Stossversuch mit hohem Strom vorsichtig aus dem Sand herausgezogen wird. Diese Kanäle verlaufen radial

Bildung von Blitzröhren (Fulguriten) im trockenen Sand um die Halbkugel, besonders in der schlechter leitenden Schicht

von der Kugel aus in den Sand, wie in Fig. 14 skizziert. Bei länger dauerndem Strom würden offenbar gesinterte Blitzröhren (Fulguriten) entstehen. Der Widerstand des trockenen Sandes war schwer bestimmbar, bewegte sich aber in der Grössenordnung von 500 k Ω cm. Fig. 15 zeigt ein Oszillogrammbeispiel, das zu einem Durchschlag des trockenen Sandes gehört.

Die Erklärung für das Sinken des Erdungswiderstandes bei Feldstärken von mehr als ca. 3 kV/cm ist offenbar begründet in der Entstehung von Entladungen in den Poren des Erdreichs oder in der Art der Stromleitung an den kleinen Kontaktflächen der sich berührenden Erdteilchen. Dies erscheint naheliegend, da bei etwa dreifacher Feldstärke (ca. 7...10 kV/cm) bereits der Durchschlag

Tabelle I

solcher Erdschichten erfolgt, wie im Kapitel 6 gezeigt wird.

2. Messung verschiedener Erdungselektroden im Erdboden von Gösgen

Als Versuchselektroden wurden benutzt:

- a) Platten aus Cu und Fe, 500 imes 960 imes 1,5 mm
- b) Draht aus Cu und Fe, 18 m lang, 6 mm Durchmesser
- Kugel aus Cu, 250 mm Durchmesser c)
- d) Rohre aus Cu und Fe, 35 bzw. 33,5 mm Aussendurchmesser, bis 5 m lang.

Die eisernen Elektroden waren feuerverzinkt.

Platten und Drähte wurden in horizontaler Lage eingegraben, die Röhren vertikal in den Boden getrieben. Die Erde besteht in Gösgen aus einer Auffüllung von Kies und Sand mit etwas Humus an der Oberfläche. Diese Schicht ist bei der Versuchsstation 4...5 m dick; es ist die Deponie des Aushubs des Unterwasserkanals des Kraftwerks. Darunter befindet sich die Humusschicht (Moräne) der Aare-Ebene. Aus Messungen bei Niederfrequenz ergibt sich ein mittlerer spezifischer Bodenwiderstand von ca. 100 k Ω cm.

Die Messmethode besteht nach Fig. 16 darin, den Stossgenerator auf die Versuchserdung zu entladen. Diese befindet sich etwa 9 m seitlich der grossen Erdung des Stossgenerators. Der Strom fliesst über beide Erdungen in Reihe. Gemessen wird der Strom mittels eines Shuntes in der Erdleitung des Stoss-

Anordnung der Stossversuche auf die Erdung R_{\bullet} im Boden von Gösgen mit e $\approx 100 \text{ k}\Omega$ cm

C, FKapazität und Funkenstrecke des Stossgenerators

Rapazitat und runkenstrecke des Stossgenerators Untersuchte Erdung Erdungswiderstand des Stossgenerators Messwiderstand für Spannungsmessung mit KO II Shunt für Strommessung mit KO I $\hat{R}_{\text{eg}} \approx 1 \Omega$ R_{m}

generators und die Spannung zwischen Versuchserdung und Erdung des Stossgenerators. Diese Spannung ist somit die Summe der Spannungen an der Versuchserdung und an der Stossgeneratorerdung. Die Stossgeneratorerdung hat einen Widerstand von 1...1,5 Ω und ist somit gegenüber den Versuchserdungen in der Regel zu vernachlässigen. Eine Schwierigkeit besteht in der Messung der grossen Ströme in der Erde und in den Messkabelmänteln. Die davon herrührenden Fehler mussten bei der Auswertung berücksichtigt werden.

Die Resultate der vielen durchgeführten Messungen sind z. T. in den Fig. 17 ... 22 dargestellt, nämlich:

in Fig. 17 für die Plattenerdung bei 20-40-80-120 cm Tiefe der horizontalen Platte,

Kurvendarstellung der Spannung u_0 an der Erdung im Boden von Gösgen (e $\approx 100 \text{ k}\Omega$ cm) über der mittleren Stromdichte $\delta_{1\text{m}}$ oder der mittleren Feldstärke $\boldsymbol{\varepsilon}$ an der Elektrode

$300 \times 1.3 \text{ mm}, r = 9600 \text{ cm}^2$
nnung, bis 370 kV
Verhalten bei 50 Hz:
5 analog 1
6 analog 2
7 analog 3,3'
8 analog 4

in Fig. 18 für die Drahterdung bei 20-40-80 cm Eingrabtiefe des Drahtes,

Kurvendarstellung der Spannung u_e an der Erdung im Boden von Gösgen (e z 100 kΩ cm) über der mittleren Stromdichte δ_{im} und der mittleren Feldstärke € an der Elektrode Elektrode: Draht 18 m lang, 6 mm Ø

in Fig. 19 und 20 für die Kugelerdung mit Kugelmitte in der Erdoberfläche,

in Fig. 21 und 22 für die Rohrerdung bei 20-40-80-120-220-300-400 cm Tiefe.

Wie im vorangehenden Kapitel stellen die Figuren die Spannung an der Erdung in Funktion der Stromdichte an der Elektrode dar. Im Gegensatz zur Kugelelektrode, wo die Stromdichte im homogenen Boden über der Elektrodenoberfläche konstant ist, wird in diesen Figuren unter Stromdichte der *mittlere* Wert, das heisst der Quotient Strom durch Elektrodenoberfläche, soweit diese die Erde berührt, verstanden. Die *mittlere* Feldstärke an der Elektrode kann durch Multiplikation mit dem spezifischen Bodenwiderstand von ca. $10^5 \Omega$ cm berechnet werden. Wie im vorhergehenden Kapitel wurden für die Kurven grössten Stromes jeweils die

Fig. 20.

Erdungswiderstand R_0 über der Zeit t für verschiedene Stromstösse i im Boden von Gösgen (e \approx 100 k Ω cm) Versuchsanordnung nach Fig. 19

- 1 bei 50 Hz 2 bei Stoss i = 115 A 3 bei Stoss i = 250 A

Elektrode: Cu-Rohr 35 mm Ø ug Generatorspannung, 200...220 kV Verhalten bei Stoss: Verhalten bei 50 Hz: Tiefe b = 20 cm, F = 220 cm² Tiefe b = 40 cm, F = 440 cm² 8 analog 1,1' 9 analog 2 1.1 2 Tiefe b =80 cm, F =3 880 cm² 10 analog $F = 1340 \text{ cm}^2$ $F = 2420 \text{ cm}^2$ 4 Tiefe $b = 120 \, \, {\rm cm}$, 11 analog $b = 220 \, {\rm cm},$ Tiefe 5 5 12 analog $F = 2420 \text{ cm}^2$ $F = 3300 \text{ cm}^2$ $F = 4400 \text{ cm}^2$ b = 300 cm, 67 67 Tiefe 13 analog Tiefe $b = 400 \, \mathrm{cm}$, 14 analog

Spannungen des Stossgenerators und einige Zeitpunkte des Kurvendurchlaufs angeschrieben. Daraus lässt sich für jeden Kurventeil auch di/dt ablesen. Aus der Stromdichte ergibt sich der gesamte Strom in der Erdung durch Multiplikation mit der angegebenen Elektrodenoberfläche. Der grösste erreichte Stromwert ist ebenfalls angeschrieben. Schliesslich sind in den Figuren auch die der jeweiligen Elektrodenanordnung entsprechenden, bei

37. Jahrgang

Niederfrequenz auf übliche Weise gemessenen Widerstandswerte als geneigte gerade Linien eingetragen. Die Auswertung der Messungen ist in Tabelle III dargestellt.

Kurvendarstellung der Spannung u. an der Erdung im Boden von Gösgen (e ≈ 100 kΩ cm) über der mittleren Stromdichte δim und der mittleren Feldstärke € an der Elektrode

Elektrode: Cu-Rohr 35 mm Ø Gerato

rspannung,	bis	400	k١
------------	-----	-----	----

	Ve	rhalten bei S	Verha	lten bei	50 Hz:	
1,1'	Tiefe	$b = 20 {\rm cm}$,	$F = 220 \text{ cm}^2$	8	analog	1,1'
2	Tiefe	b = 40 cm,	$F = 440 \text{ cm}^2$	9	analog	2
3	Tiefe	$b = 80 {\rm cm}$,	$F = 880 \text{ cm}^2$	16	analog	3
4	Tiefe	$b = 120 \mathrm{cm},$	$F \equiv 1340 \mathrm{cm^2}$	11	analog	4
5	Tiefe	$b = 220 \mathrm{cm},$	$F=2420~{ m cm^2}$	12	analog	5
6	$\operatorname{Tief} e$	$b = 300 \mathrm{cm},$	$F=3300~{ m cm^2}$	13	analog	6
7	Tiefe	b = 400 cm.	$F = 4400 \text{ cm}^2$	14	analog	7

Es zeigen sich folgende Resultate:

ug

Elektroden aus Cu oder Fe lassen in keiner Weise einen Unterschied in ihrem elektrischen Verhalten erkennen. Dieselben Kurven gelten für beide Metalle. Wenn in den Vorschriften für Starkstromanlagen somit dem Cu der Vorzug gegeben wird, so ist dies lediglich auf dessen grössere Beständigkeit im Boden zurückzuführen, nicht auf Unterschiede in elektrischer Beziehung. Dasselbe gilt wohl auch für Blitzableiter-Erdungen.

Sodann lassen die Kurven wiederum das Absinken des Widerstandes (u/i) bei grössern Stromdichten erkennen. Der Unterschied gegenüber den geneigten Widerstandsgeraden des Niederfrequenzwiderstandes ist um so deutlicher, je grösser die Stromdichte und je weniger homogen die Stromverteilung über die Elektrodenoberfläche ist. Daher erscheint die grösste Absenkung bei den Rohrerdungen (Fig. 21 und 22), die kleinste bei der Platte (Fig. 17). Die Spannung an der Erdung erreicht anfänglich annähernd die Spannung des Stossgenerators. Der kritische Feldstärkewert, unterhalb welchem der Widerstand einen bestimmten Betrag aufweist, liegt nach Fig. 17 sicher unter 8 kV/cm mittlerer Feldstärke an der Elektrode; nach den Messungen des vorangehenden Kapitels beginnt die Abweichung dann, wenn die Feldstärke irgendwo an der Elektrode den Wert von ca. 3 kV/cm übersteigt. Nach Fig. 20 sinkt der Erdungswiderstand für die Halbkugel, für die sich Feld und Strömung stets am besten überblicken lassen, nach wenigen μs auf

Widerstände verschiedener Elektroden im Erdboden von Gösgen Taballa TTI

				10 111			
Versu	ich Nr.	1	2	3	4	5	6
Elektrode		Rohr 40 cm tief	Rohr 400 cm tief	Rohr 400 cm tief	Platte 40 cm tief	Draht 40 cm tief	Kugel 250 mm Ø
Erdar	::	Kies und Sand mit etwas Humus an Oberfläche. $\rho \approx 100 \text{ k}\Omega \text{ cm}$:					
		Obers	te Bode hat	enschich $\varrho \approx 30$.	t (bis ca 50 kΩ	. 80 cm cm	Tiefe)
F	\mathbf{cm}^2	440	4400	4400	9600	3600	980
$u_{g \max}$	kV	ca. 220	ca. 220	ca. 400	ca. 400	ca. 370	ca. 380
u e max	kV	210	200	345	365	340	360
i _{e max}	\mathbf{A}	660	1800	3050	1690	4000	1350
$oldsymbol{T}_{hi}$	μs	210	90	25	41	16	51
$\delta_{i\text{max}}$	A/cm^2	1,5	0,41	0,7	0,175	1,1	1,35
ϱ_{m}	$k\Omega \ cm$	100	100	100	100	100	100
$oldsymbol{E}_{ ext{i}}$	kV/cm	150	40	70	17,5	110	135
R e ~	Ω	600	255	255	325	147	1300
R_{e1}	Ω	-		-	-		300
$R_{ m e2}$	Ω	310	-		-	85	255
R_{e3}	Ω	260	105	110	220	75	240
$\frac{R_{\rm e}}{R_{\rm e3}}$		2,3	2,4	2,3	1,5	1,95	5,4
Figuren		21	21	22	17	18	19 u. 20
F	F Kontakt-Oberfläche an der 250-mm- bzw. 500-mm Kugel, cm ²					00-mm-	
u_{g}	Span	Spannung des Stossgenerators, kV					

Spannung an der Erdung, kV ue

in Strom in der Erdung, A

 $T_{
m hi}$ Halbwertdauer des Stoßstroms, µs

Berechnete, mittlere Stromdichte an der Erdung, δi A/cm²

mittlerer spezif. Erdwiderstand, k Ω cm 6

aus e $\delta_{\rm I}$ berechnete, theoretische Feldstärke an der Kugel, kV/em E_{i}

Rea Erdwiderstand bei Niederfrequenz (Terrafix, ..) $R_{\rm e1}\text{-}R_{\rm e2}\text{-}R_{\rm e3}\text{Erdwiderstand}$ bei Stoss bei $u_{\rm max}$ bei $i_{\rm max}$ und bei minimalem Widerstand

Bruchteile des Niederfrequenzwerts von ca. 1300 Ω . Er sinkt um so mehr, je grösser der aufgedrückte Strom ist. Im Gegensatz zu einem ventilartigen Ableiter nimmt aber die «Restspannung» an der Erdung mit grössern Stromstössen stetig zu, wie Fig. 19 beweist.

Der Erdungswiderstand nimmt rechnungsgemäss mit der Tiefe der Verlegung etwas ab. Ausser diesem zu erwartenden Einfluss der Tiefe hat sich in Gösgen weiterhin gezeigt, dass die Oberflächenschichten relativ besser leiten als die tieferen Schichten, da sie mehr Humus und Pflanzensäuren enthalten.

Ferner zeigt der Versuch mit dem gestreckten Draht (Banderdung, Fig. 18) eine für die dortigen Stromdichten eher kleine Widerstandsabnahme, ja sogar anfänglich eine Widerstandserhöhung über den Niederfrequenzwert. Diese zunächst nicht verständliche Erscheinung erklärt sich durch die beträchtliche Länge der Elektrode, wie im nächsten Kapitel gezeigt wird.

3. Messung langgestreckter Erdungselektroden (Banderdungen) im Erdboden von Gösgen

Die Anordnung dieser Messungen ist in Fig. 23 skizziert. Als Banderdung wurde verwendet:

a) ein Eisendraht (Fe)

von 110 m Länge und 6 mm Durchmesser, Oberfläche ca. 20 500 cm² b) ein Kupferdraht (Cu) von 110 m Länge und 5 mm Durchmesser, Oberfläche ca. 17 000 cm².

Der Draht war in Form eines offenen Kreisbogens im stark kiesigen Boden von Gösgen verlegt, so dass der Abstand von der Stossgeneratorerdung und von den nächsten Metallmassen im Boden 9 bzw. 12 m betrug. Die Eingrabtiefe betrug ca. 20...30 cm. Vom Stossgenerator aus konnten beide

ordnung für die Untersuchung langgestreckter Erdungs-elektroden aus Fe 6 mm Ø oder Cu 5 mm Ø, 110 m lang, 20...30 cm tief im Kiesboden von Gösgen verlegt 1, 2 Anfang und Ende der Drahtelektrode 3 Areal der Versuchsstation 4 Stossgenerator

Enden des Drahtes wahlweise einzeln oder zugleich gestossen werden. Die Messung der Spannung erfolgte an verschiedenen Stellen des Drahtes.

Anschliessend wurde der Draht in zwei und vier Stücke zu 55 und 28 m Länge geschnitten und diese Einzelstücke gestossen und gemessen. Schliesslich wurde nochmals in 8×11 m unterteilt und die Abschnitte als Strahlenerdung («crow-foot») nach Fig. 24 verlegt.

Von diesem Stern wurden bei Stoss untersucht:

- a) alle Strahlen 1...8
- b) die Strahlen 1+3+5+7c) die Strahlen 1+7
- d) der Strahl 7 allein.

Im Zusammenhang mit diesen Erdungsmessungen, bei denen sich die Induktivität der Elektrode als sehr wesentlich erwies, wurden anschliessend für einen gestreckten horizontalen und vertikalen Draht mit Erdrückleitung sowie für einen 14m hohen Eisenmast die Induktivitätswerte bei Stoss gemessen.

Die Resultate der Messungen sind in Kurvenform in den Fig. 25...29 für die 110 m lange Erdung

Tabelle IV

Versuch Nr.	ach Nr. 1 2 3 4		4	5	
Elektroden- Drahtlänge	110 m einseitig gestossen	110 m beidseitig gestossen	55 m einseitig gestossen	28 m einseitig gestossen	ll m einseitig gestossen
Oberfläche cm ²	20 500	20 500	10 200	5100	2100
$R_{\rm e}$ Ω	25,5	25,5	45	92	133
$u_{a \max}$ kV	290	222	295	3 95	450
$u_{\mathrm{b,a}}$ kV	70	150	170	360	450
$u_{ m bmax}$ kV	117	172	2 10	366	450
$u_{a,b} \cdot \cdot \cdot kV$	117	192	240	380	450
i_{tmax} A	8100	9250	7850	6400	4300
\mathbf{i}_{ta} A	7300	8400	7800	6350	4270
$\left(rac{\mathrm{d}i}{\mathrm{d}t} ight)_{0}$ A/ μ s	4000 5000	4000 5000	4000 5000	4000 5000	2000 3 000
$rac{oldsymbol{u}_{a\mathrm{max}}}{oldsymbol{i}_{ta}}$ Ω	40	26,5	38	62	105
$rac{u_{a \max}}{u_{ba}} \cdot \cdot \cdot \cdot$	4,2	1,5	1,75	1,1	1,0
$\frac{u_{\text{a max}}}{u_{\text{b max}}}$	5 2,4	1,26	1,35	1,1	1,0

Widerstände langer Erdungsdrähte (Eisen 6 mm Durchmesser)

Re~

Stossgeneratorspannung ca. 650 kV $R_{e_{\star}}$ Erdungswiderstand bei 50 Hz $u_{a \max}$ Spannungsmaximum am gestossenen Drahtende, ua max kV Spannungsmaximum am freien Drahtende, kV

ub max Spannung am gestossenen Drahtende, im Zeitpunkt von ub max, kV Ua, b

ub. a Spannung am freien Drahtende, im Zeitpunkt von u_{a max}, kV
it max Strommaximum, A
ita Strom im Zeitpunkt von u_{a max}, A
(di/dt)₀ Grösste, anfängliche Stromsteilheit, A/μs

37. Jahrgang

in der bereits in den vorigen Kapiteln beschriebenen Weise dargestellt. Fig. 29 zeigt den «Widerstand» als Quotient (u/i) für einen aperiodischen Stoßstrom. Für einen schwingenden Strom würde dieser Quotient alle Werte zwischen $+\infty$ und $-\infty$ durchlaufen.

Ferner finden sich die Resultate sowohl für den 110 m langen Draht, als auch für dessen Teile von 55, 28 und 11 m in Tabelle IV ausgewertet.

diesen Messungen kein Unterschied im Verhalten der Erdungsdrähte aus Cu oder Fe festzustellen war. Jedenfalls wäre ein solcher Unterschied, falls er bestünde, zu klein, um bei der unvermeidlichen Streuung der Erdwiderstände beim Verlegen mehrerer Erdungen in Erscheinung zu treten.

Aus den Kuven Fig. 25...28 sind zunächst wieder Hysteresisschleifen ersichtlich, die z.T. wieder im Rechtssinn durchlaufen werden. Doch hat deren

Oben: Räumliche Spannungsverteilung in bestimmten Zeit-

- punkten $t_1...t_5$ für die 110-m-Drahterdung aus Fe 6 mm Ø $F = 20\ 500\ {
 m cm^2},\ R_{\rm e}$ ~ $\approx\ 25,5\ \Omega$
 - Strom im gespiesenen Drahtanfang (A)
 - Spannung im gespiesenen Drahtanfang (A) Spannung in ¹/₄ Drahtlänge (B) Spannung in ¹/₄ Drahtlänge (C) Spannung in ³/₄ Drahtlänge (D) Spannung in ³/₄ Drahtlänge (D) Spannung am offenen Drahtende (E)
- Zeitpunkte, für welche die obere Figur die räumliche Spannungsverteilung längs der Drahterdung zeigt. t1....t5

Unten: Spannungs- und Stromverlauf über der Zeit t, Oben: Räumliche Spannungsverteilung in bestimmten Zeitpunkten t1...t3

- $F = 20\ 500\ {
 m cm}^2$, $R_{e} \sim \approx 25,5\ \Omega$,
- Strom in der Zuleitung zu A und ESpannung an den gespiesenen Punkten A und ESpannung nach $\frac{1}{4}$ der Drahtlänge (B oder D) Spannung in Drahtmitte (C)
- 4
- Zeitpunkte, für welche die obere Figur die räumliche Spannungsverteilung längs der Drahterdung zeigt. t1...t3

Form merklich geändert, und ferner liegen im Gegensatz zu den vorhergehenden Messungen an lokalen Erdungen die Anfänge der Schleife deutlich oberhalb der Widerstandsgeraden für Niederfrequenz (Fig. 25 und 26). Zur deutlicheren Darstellung werden deshalb in Fig. 27 und 28 zwei Oszillogramme nachgezeichnet. Im Gegensatz zu den lokalen Erdungen passieren Strom und Spannung darin nicht mehr gleichzeitig den Nullwert, sondern weisen eine merkliche Phasenverschiebung auf. Diese ist besonders beim einseitig gespiesenen 110-m-Draht sehr ausgeprägt (Fig. 27), merklich weniger beim zweiseitig gespiesenen (Fig. 28). Aus der Spannungsmessung an verschiedenen Punkten des Drahtes lässt sich die räumliche Verteilung der Spannung längs des Drahtes konstruieren. Bei der einseitigen Speisung (Fig. 27) ist der starke Spannungsunterschied über dem Erdungsdraht besonders im ersten Zeitpunkt t1 sehr ausgeprägt. Solange der Strom variiert, besteht ein Spannungsunterschied längs des Erdungsdrahtes. Die Ursache ist somit im induktiven Spannungsabfall des Stoßstromes über dem Erdungsleiter zu suchen. Diese Wirkung ist so ausgeprägt, dass z. B. im Zeitpunkt t_4 , wo dem Erdungsdraht kein Strom aufgedrückt wird, am Eingang negative, am Ende des Drahtes positive Spannung besteht. Das heisst, dass in diesem Zeitpunkt

am Drahtende Strom in die Erde tritt, der durch die Erde wieder in den Drahtanfang einströmt. Das ist ein Kreisstrom, der nur von der Induktivität oder der magnetischen Energie des Drahtes aufrechterhalten wird.

Diese Induktivität des Drahtes oder der darin entstehende Spannungsabfall beim Aufdrücken eines Stromes bewirkt auch die anfängliche Widerstandserhöhung über den Niederfrequenzwert R_e ~ (Fig. 25, 26, 29). Tabelle IV zeigt, dass bei den verfügbaren Stromsteilheiten von 4...5 kA/µs Drahtlängen von etwa 30 m sich noch wie eine lokale Er-

dung verhalten, dass dagegen 55 m lange Erdungsdrähte bereits deutlich induktiv sind, das heisst eine scheinbare Widerstandserhöhung zeigen, die im induktiven Spannungsabfall der Erdelektrode begründet ist.

Wenn schon die Induktivität der langgestreckten Erdelektrode selber bereits in Erscheinung tritt, so ist dies in erhöhtem Mass von der Induktivität der Zuleitungen zu erwarten, die sich in der Luft befinden.

Fig. 30 zeigt ein nachgezeichnetes Oszillogramm der in der Figur skizzierten Anordnung nach Ka-

- A, BZuleitung Cu 6 mm Ø, 16 m lang
- 1
- Strom im Erdungsmodell Spannung an der Erdung, Punkt ASpannung an (Erdung + Zuleitung), Punkt B

pitel 1 (Halbkugel im Bassin) samt einer 16 m langen Zuleitung aus 6 mm dickem Cu-Draht. Die Spannung vor der Zuleitung ist ganz wesentlich grösser als die Spannung an der Erdung selber! Ein typischer Unterschied zwischen beiden Spannungen besteht ferner beim Stromnulldurchgang: Die Spannung an der Erdung geht mit dem Strom durch Null, die Spannung vor der Zuleitung ist dagegen deutlich phasenverschoben und erreicht den Nullwert vor dem Strom. Am 16m langen Zuleitungsdraht liegen im vorliegenden Fall Spannungsabfälle bis über 100 kV, bei ca. 5 kA/ μ s Stromanstieg! Es ist offensichtlich, dass bei Nichtbeachtung dieser Abfälle bei Erdungsmessungen grosse Fehler entstehen können. Sie sind wahrscheinlich der Grund der stets wiederkehrenden Behauptung einer Widerstandserhöhung bei Stoss.

Schliesslich mögen einige Induktivitätswerte in diesem Zusammenhang von Interesse sein:

Ein Cu-Draht von 13,9 m Länge und 6 mm Durchmesser ergibt 23 µH bzw. 25 µH Induktivität, je nachdem er vertikal vom Erdboden aus nach oben oder horizontal 0,3...1,5 m über dem Boden ausgespannt ist. Pro Meter Draht macht dies in der gewählten Anordnung 1,66 bzw. 1,80 $\mu\mathrm{H/m}$ Induktivität.

Ein in freundlicher Weise von der Aare-Tessin A.G. zur Verfügung gestellter Eisenmast nach Fig. 31 von der gleichen Höhe (13,9 m) wie die

> erwähnten Drähte ergibt total 11,1 μ H oder 0,80 μ H/m. Das ist knapp die Hälfte des Wertes eines Drahtes. Das Verlegen eines besondern 6-mm-Cu-Erdungsdrahtes im Mastinnern hat keinen merklichen Einfluss auf obige Zahl.

Der Erdungswiderstand einer Strahlenerdung nimmt bekanntlich nicht in dem Mass ab, wie die Anzahl Strahlen zunimmt, weil die Ausbreitung der Ströme nicht ungehindert erfolgt. Fig. 32 zeigt das Resultat von Niederfrequenzmessungen an der Anordnung nach Fig. 24. Mehr als vier Strahlen sind

Fig. 31. Skizze des untersuchten Eisenmastes

demnach im Hinblick auf die nur noch schwache Absenkung des Widerstandes nicht zu rechtfertigen. Auch im Hinblick auf die Reduktion der Induktivität wirkt die Erhöhung der Strahlenzahl günstig. Im Grenzfall einer vollen metallischen Platte oder eines engmaschigen Drahtgitters mit Zuleitung in der Mitte wäre die Induktivität auf einen verschwindenden Bruchteil reduziert.

- a in Funktion der Länge l eines Bandes Drahtdurchmesser 2r=6mm, in einer Tiefe $b=25~{\rm cm}$ 1 Messwerte
 - 2 Gerechnete Werte $R_e = \frac{e}{2 \pi l} \ln \left(\frac{l^2}{2 r b}\right)$
- b in Funktion der Strahlenzahl n zu je 11 m Länge.

4. Vergleich der Erdungswiderstände bei Stoss und Niederfrequenz

Die meisten im Bericht genannten Messungen von Erdungswiderständen bei Niederfrequenz wurden bei 50 Hz ausgeführt, indem Strom und Spannung an der Erdung gemessen wurden (Erdungsmessung mit Volt- und Amperemeter). Dabei wurde stets die Summe der Widerstände der zu untersuchenden Erdung plus der Erdung des Stossgenerators gemessen. Dessen Wert $(1...1, 5 \ \Omega)$ spielt in der Regel keine wesentliche Rolle; wo nötig, kann er leicht berücksichtigt werden. Der Vergleich der Erdungsmessung mit dem Terrafix-Instrument ergab stets gute Uebereinstimmung, z. B. für die Erdung mit 110 m Eisendraht von 6 mm Durchmesser:

Methode a): Volt- und Amperemeter $R_e + R_{eg} = 24.8 \Omega$ b): Terrafix $R_e + R_{eg} \approx 24.9 \Omega$ c): Terrafix (mit Hilfs- R_{e} ≈ 24...24,5 Ω erdung)

Sofern darauf geachtet wird, dass die Hilfserdung nicht viel schlechter ist als die zu messende Erdung, war die Uebereinstimmung der benutzten Niederfrequenzmethoden stets befriedigend, wie das auch schon bei andern Gelegenheiten festgestellt wurde, wobei auch andere Erdungsbrücken einbezogen waren.

5. Abhängigkeit des Erdwiderstandes von der Bodenfeuchtigkeit

Die Versuche im Halbkugelmodell liessen deutlich den grossen Einfluss der Bodenfeuchtigkeit auf den spezifischen Erdwiderstand erkennen. Zur besseren Klärung dieses Einflusses wurden Messungen an Lehm, Humus und Sand mit verschiedenem Feuchtigkeitsgehalt bei Niederfrequenz durchge-

Spezifischer Widerstand e verschiedener Erdarten in Funktion der Feuchtigkeit *p* (*p* als Wasservolumen zum Volumen fester Erdteile), **gemessen im Halbkugelmodell** gerechnete Werte nach Münger und Hummel¹)

$$p = p_{\rm H} \frac{3-p}{2}$$

Sand mit Porosität
$$P = 32$$

Humus mit Porosität P = 45%Lehm mit Porosität P = 42%34

5 Wasser mit $e_w = 2700~\Omega~{\rm cm}$ bei 20° C (Aare)

führt, und mit einer bereits bekannt gewordenen Untersuchung von Münger und Hummel¹) verglichen. Diese Autoren geben für den spezifischen Widerstand folgende empirische Formel an:

$$\varrho = \varrho_w \frac{3-p}{2p}$$
. Darin bedeuten

1) Bull. SEV 1940, Nr. 23, S. 529.

2,20

0.83

8,60

13,901

A

oder

- den spezifischen Widerstand des feuchten Bodens, p
- den spezifischen Widerstand des Wassers, das dem Qw trockenen Boden zugesetzt wird,
- den Feuchtigkeitsgehalt = Volumen H₂O / Volumen р der festen und trockenen Erdmasse $= V_{\text{Wasser}} / V_{\text{fest}}$.

Für den Versuch wird vom gut getrockneten Erdreich ausgegangen. Das zugefügte Wasser wird gemessen, wobei aus der gesamten, zur Füllung aller Poren benötigten Wassermenge die Porosität P bestimmt wird. Diese ist definiert als:

 $P = V_{\text{tott}} / V_{\text{total}}$, Volumen der Poren des getrockneten Erdreichs zum Total-Volumen des porösen oder gesättigten Erdreichs.

Fig. 33 zeigt das Resultat einiger Messungen bei 50 Hz. Das zu den Messungen benutzte Aare-Wasser wies ca. $\rho_w \approx 2700 \ \Omega \,\mathrm{cm}$ auf. Der Verlauf der drei Kurven für Lehm, Humus und Sand ist grundsätzlich sehr nah jenem der Kurve von Münger und Hummel, wenn auch in den Zahlenwerten die Widerstände von Humus und Lehm tiefer liegen. Nach der Formel würde bei p = 1, das heisst bei gleichviel Wasser und festen Teilen, der spezifische Widerstand des Wassers erreicht, und bei noch mehr Wasser sogar unterschritten. Die Abweichung der Messungen ist nicht verwunderlich, da ϱ sicher auch von der Menge wasserlöslicher Salze in den festen Bodenbestandteilen abhängt, was in der Formel nicht zum Ausdruck kommt.

6. Durchschlagspannung von Erdarten und Wasser bei Stoss

Die Beobachtungen der Stromabhängigkeit des Erdungswiderstandes, die in Kapitel 1 geschildert wurde, legte die Untersuchung der Durchschlagfestigkeit der Erdarten nahe. Versuche ergaben, dass hierbei die Feuchtigkeit wieder von hervorragendem Einfluss ist. Wird z. B. feuchter und trockener Humus nach Fig. 34 in ein Glasrohr gefüllt und

Durchschlag in der Grenzschicht zwischen trockenem und feuchtem Humus

einer Stoßspannung unterworfen, so entsteht der Durchschlag in der Trennfläche beider Stoffe. Somit scheinen sehr kleine und sehr grosse Feuchtigkeit die dielektrische Festigkeit zu erhöhen. Zur systematischen Untersuchung wurden verschiedene Bodenarten, insbesondere auch mit verschiedenem Wassergehalt, nach Fig. 35 in einem Porzellanrohr zwischen Kugeln von 62,5 mm Durchmesser Stossspannungen unterworfen. Damit deren Halbwertdauer nicht wesentlich vom Widerstand des Prüfobjektes abhängt, wurde diesem ein genügend tiefer ohmscher Widerstand R_a parallel geschaltet (Fig. 36). Durch die Wahl dieser Entladewiderstände lassen sich Stösse kurzer und langer Dauer herstellen. Auf diese Weise sind zunächst gut ge-

trocknete, und sodann mit einer zunehmenden Menge Wasser ($\varrho_w = 2700 \ \Omega \ {\rm cm}$ bei 19° C) gemischte Erdarten untersucht worden.

Als Mass für die Feuchtigkeit gelten

p =Volumen Wasser/Volumen fester Bestandteile

$$0 \le p < \infty$$

 $p_t =$ Volumen Wasser / Volumen des Erdreichs (feste Teile + Wasser + Luft)

Stossgenerator

- C, F Rd Rm E S Dämpfungswiderstand Messwiderstand Untersuchtes Erdreich
- Shunt zur Strommessung
- 95 Ω konstanter Entladewiderstand vom Oszillograph gemessene Werte $R_a =$
- u,

Sodann sei etwas allgemeiner bezeichnet mit:

P =Luftvolumen des beliebig feuchten Erdbodens/ Totalvolumen des porösen oder gesättigten Erdreichs

Die Resultate sind in Fig. 37...39 dargestellt.

Fig. 37 zeigt zunächst die Durchschlagspannung über dem jeweils am Prüfmuster gemessenen spezifischen Widerstand ρ . Der kleinste Abszissenwert entspricht dem Wasser ($\varrho_w = 2,7 \text{ k}\Omega \text{ cm}$), der grösste Wert dem ausgetrockneten Erdreich. Es liegen Messungen mit 10, 70 und 1000 μ s Halbwertdauer vor. Aus den Kurven ergibt sich zunächst ein Minimum der Durchschlagfestigkeit bei mittlern Feuchtigkeiten, wie das nach der beschriebenen Erfahrung nach Fig. 34 zu erwarten war. Ferner ist ein sehr typischer Einfluss der Halbwertdauer bei kleinen Werten ρ , das heisst bei sehr feuchtem Material zu erkennen, dagegen ein nur verschwindend kleiner Einfluss bei hohen Werten.

In Fig. 38 sind die Abszissenwerte nach der Formel von Münger und Hummel umgerechnet. Dem Wert p = 0 entspricht absolut trockenes Material, dem Wert p = 50 % halbsoviel Wasser wie feste

 $T_{\rm h} = 10 \ \mu {
m s}$, Gemin $T_{\rm h} = 70 \ \mu {
m s}$, Sand $T_{\rm h} = 1000 \ \mu {
m s}$, Sand $T_{\rm h} = 1000 \ \mu {
m s}$, Sand 10 µs, Gemisch von Sand, Lehm und Humus 2

Benütztes Aarewasser mit $e_w \approx 2700 \ \Omega$ cm bei 20° C

Mittlere Durchschlagfeldstärke $\mathfrak{E}_{c} = \frac{u^{c}}{a}$ von Erdreich in Funktion der Feuchtigkeit p (p als Wasservolumen zum Volumen fester Teile), bei 3 Werten der Stoss-Halbwertdauer T_{h}

 $T_{\rm h} = 10 \ \mu$ s, Gemisch von Sand, Lehm und Humus $T_{\rm h} = 70 \ \mu$ s, Sand $T_{\rm h} = 1000 \ \mu$ s, Sand Porosität *P* als Luftvolumen zu Gesamtvolumen

- 3
- Feuchtigkeit pt als Wasservolumen zu Gesamtvolumen.

Stoffe. Es sind auch das Luftvolumen P und das Wasservolumen p_t als gerade Linien eingetragen. Das Minimum der Durchschlagfestigkeit scheint sich ungefähr mit dem Schnittpunkt $P = p_t z$ 17,5 % oder dem Wert p = 27 % zu decken.

Ausserordentlich deutlich ist wieder die Abhängigkeit der Durchschlagspannung von der Spannungsdauer zu sehen: Unterhalb p z 27 % ist dieser Einfluss kaum vorhanden, oberhalb $p \approx 27 \%$ wird er sehr stark. Fig. 39 zeigt dies noch deutlicher, da hier p_t als Abszisse gewählt ist. $p_t = 0$ entspricht dem absolut trockenen Erdreich, $p_t = 1$ dem Wasser allein.

Bemerkenswert ist schliesslich das Verhalten des Wassers $(p_t = 1)$: Seine Durchschlagfestigkeit be-

Mittlere Durchschlagfeldstärke $\mathfrak{E}_{c} = \frac{u_{c}}{a}$ von Erdreich in Funktion seiner Feuchtigkeit p_{t} (p_{t} als Wasservolumen zum Gesamtvolumen), bei 3 Werten der Stosshalbwertdauer T_{h}

 $T_{\rm h} = 10 \ \mu {\rm s},$ Gemisch aus Sand, Lehm und Humus $T_{\rm h} = 70 \ \mu {\rm s},$ Sand $T_h =$

$$T_{\rm h} = 1000 \ \mu {\rm s}, \ {\rm Sand}$$

a = 30 mm für $p_t = 0...40 \%$

a = 10 mm für $p_t = 100 \%$

trägt bei Stoss mit $T_h \approx 1000 \ \mu s$ ca. $30 \ kV/cm$, bei Stoss mit $T_h \approx 10 \ \mu s$ ca. $200 \ kV/cm$. Dieser Wert ist bei 10 mm Schlagweite gemessen, alle übrigen bei 30 mm.

Der Durchschlagvorgang scheint sich demnach bei trockenem Erdreich in den Poren, das heisst in

Oszillogrammbeispiele für die Spannung u zwischen Spitze und Kugel im Modell nach Fig. 35, kurz vor und beim Durchschlag von Aare-Wasser

- Leuchterscheinung an der Spitze, ohne Durchschlag feiner Entladungskanal am Ende des Stosses kräftiger Entladungskanal vor Ablauf des Stosses Beispiele für Teil- oder Stufendurchschläge.
- 2
- 3

Luft abzuspielen. Bei sehr nassem Material (Grenzfall Wasser) dagegen scheint er ganz vorwiegend thermischer Natur zu sein. Diese Vermutung wird dadurch bestätigt, dass die zur Erreichung des Durchschlags nötige Energie zwischen den beiden Kugelelektroden nach Fig. 35 nur wenig von der Dauer des Stosses abzuhängen scheint (400...500 cal), ferner dadurch, dass sich die Bildung von Dampfblasen als Wegbereitern des Durchschlags bei Stoss recht schön verfolgen lässt, wie zum Schluss noch zu beschreiben ist (Fig. 40). In dieser Figur ist die obere Kugel nach Fig. 35 durch eine Spitze ersetzt.

Bei kleiner Stoßspannung zeigt sich an der Spitze lediglich eine schwache Leuchterscheinung. Das Oszillogramm zeigt einen glatten Strom- und Spannungsverlauf. Bei grösserer Stoßspannung entsteht zuerst ganz am Ende des Spannungsrückens der Durchschlag als feiner, schwach leuchtender Kanal mit begrenzter Ausdehnung. Je höher die Stoßspannung gewählt wird, um so früher erscheint der Durchschlag, und um so stärker leuchtet und knallt er. Dieser Durchschlag erfolgt nicht immer in einer

Stufe, sondern z. T. über eine Vorentladung, die sich im Oszillogramm äussert, und die offenbar der Bildung einer starken Dampfblase entspricht. Es geht über den Rahmen dieses Berichts hinaus, die verwickelten dynamischen Vorgänge bei der Durchschlagentstehung in einer Dampfblase zu untersuchen, doch dürften sie in physikalischer Hinsicht von Interesse sein, da somit der Durchschlag von üblichem Brunnenwasser als eine Art «Wärmedurchschlag» zu bezeichnen ist. In welchen Grenzen der spezifische Widerstand bei diesem thermischen Vorgang variieren kann und was an dessen Stelle in schlechter leitenden Flüssigkeiten (z. B. in Oel statt in Wasser) tritt, bleibt eine offene Frage.

7. Literatur

- H. M. Towne, Gen. El. Rev. Vol. 31 (1928), S. 605. L. Binder, Gewittertagung der Sächs. Werke, Dresden 1932. H. Norinder und R. Nordell, CIGRE 1939, Nr. 302. O. Münger, Bull. SEV 1940, Nr. 23, S. 529.

- F. Ollendorff, Erdströme, Springer 1923.

Adresse des Autors:

Dr. K. Berger, Ingenieur, Versuchsleiter der FKH, Seefeld-strasse 301, Zürich 8.

Ein neues Zentralsteuerungssystem ohne Steuerdraht für Verteilnetze

Von O. Grob, Uster

Es wird ein sehr einfaches und wirtschaftliches System zur zentralen Fernsteuerung von Mehrfachtarifzählern, Heisswasserspeichern, Strassenbeleuchtungen usw. in Verteilnetzen beschrieben. Das System, welches ohne Steuerdraht mit Tonfrequenzüberlagerung arbeitet, gestattet pro Steuerfrequenz die Uebertragung von 20 Doppelbefehlen. Durch Ausnützung des Faktors Zeit ist es gelungen, die nötige Steuerenergie auf 0,15 $^{0}/_{00}$ der maximalen Netzleistung zu reduzieren. Die Steuerenergie wird hierzu pro Befehl verhältnismässig lange gesendet, in jedem Empfänger während der Steuerzeit vorerst als elektrostatische Energie gespeichert und dann innert kurzer Zeit an das zu betätigende Relais abgegeben. Die Einspeisung der Steuerenergie erfolgt ins Mitteloder Niederspannungsnetz über Kopplungskondensatoren. Ausser dieser Ankopplung sind keine Aenderungen am Netz nötig. Kommandogerät, Steuerfrequenzmaschinen, Ankopp-lungsschaltung und ein Empfängertyp werden im Detail beschrieben. Zum Schluss wird auf ausgeführte Probeanlagen verwiesen.

Die Vorteile der zentralen Fernsteuerung von Mehrfachtarifzählern, Heisswasserspeichern, Strassenbeleuchtungen, Pumpen usw. in Netzen zur Verteilung elektrischer Energie werden heute von allen Fachleuten anerkannt¹).

Wenn trotzdem von einer allgemeinen Verbreitung der bisher bekannten Fernsteuerungssysteme heute noch nicht die Rede sein kann, so liegt der tiefere Grund hierzu wohl darin, dass die Einführung dieser Fernsteuerungssysteme einerseits verhältnismässig grosse Kosten verursacht und anderseits in den Kraft- und Unterwerken viel Platz beansprucht.

L'auteur décrit un système économique et très simple de commande à distance centralisée de compteurs à tarifs multiples, de chauffe-eau, d'éclairages publics, etc. dans les réseaux d'électricité. Ce système, qui travaille par superposition de fréquence musicale sans fils pilotes, permet la transmission de 20 doubles commandes par fréquence d'émission. L'énergie de commande nécessaire a pu être réduite au 0,15 % de la charge maximum du réseau en faisant travailler le facteur temps. L'énergie est donc émise relativement longtemps par commande; dans chaque récepteur elle est premièrement accumulée, pendant la durée de la commande, à l'état d'énergie statique, puis appliquée en un très court instant au relais à actionner. L'émission de l'énergie de commande a lieu dans le réseau de tension intermédiaire ou dans celui à basse tension à travers des condensateurs de couplage. Aucun changement autre que ce couplage n'est nécessaire dans le réseau. L'appareil de commande, le groupe convertisseur de fréquence, le schéma de couplage et un type de récepteur sont décrits en détail. Pour terminer, quelques installations d'essais sont citées.

Es wird im folgenden ein neues Fernsteuerungssystem beschrieben, das vergleichsweise grosse Einfachheit und Wirtschaftlichkeit mit fast unbeschränkten Ausbaumöglichkeiten verbindet.

Das neue System arbeitet im Prinzip folgendermassen: Von einer zentralen Stelle, z. B. von einem Unterwerk aus, werden dem Zwischenspannungsnetz (z. B. 16 kV) tonfrequente Steuerimpulse überlagert. Diese Impulse breiten sich über das ganze Netz aus und gelangen über die angeschlossenen Transformatoren in sämtliche Niederspannungsnetze. Da die Steuerimpulse dreiphasig ins Netz gespiesen werden, können Empfänger an jedem beliebigen Ort des Netzes zwischen irgendeinem Polleiter und Nulleiter, oder zwischen zwei beliebigen Polleitern angeschlossen werden. Die an den Empfangsapparaten eintreffenden Steuerimpulse betäti-

621.398.2

¹⁾ D. Burger, «L'action à distance», Bull. SEV 1945, Nr. 25, S. 829.

[«]Fernmessen, Fernsteuern und Fernregulieren»; Bericht über die Diskussionsversammlung des SEV vom 14. 12. 1940, Bull. SEV 1941, Nr. 26, S. 741...808.