Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins		
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke		
Band:	51 (1960)		
Heft:	20		
Artikel:	Übertragungseigenschaften anodenmodulierter Telephoniesender mit hochselektiven Antennen		
Autor:	Dick, M.		
DOI:	https://doi.org/10.5169/seals-917059		

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 16.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Übertragungseigenschaften anodenmodulierter Telephoniesender mit hochselektiven Antennen

Von M. Dick, Baden

621.396.61 : 621.395 : 621.396.67

1. Das Problem

Die Abstrahlungseigenschaften von Antennen hängen von ihrer Grösse im Verhältnis zur Wellenlänge ab. Langwellensender benötigen deswegen sehr hohe Antennen. Bei Antennen, die in der Nähe von Flugplätzen stehen müssen, ist es aus wirtschaftlichen und aus Sicherheitsgründen meist nicht möglich, diese so hoch zu machen, wie es für die Abstrahlung günstig wäre. Solche Antennen haben dann einen sehr kleinen Strahlungswiderstand. Die Abstrahlung der Energie bedingt deswegen einen relativ hohen Antennenstrom. Anderseits wird die Einspeise-Impedanz dieser Antennen im wesentlichen bestimmt durch die relativ kleine Kapazität der Antenne, was zu einer kapazitiven Reaktanz führt, die sehr gross ist im Vergleich zum Strahlungswiderstand. Das Ersatzschema besteht aus einem kleinen Ohmschen Widerstand in Serie mit der kleinen Kapazität von hoher kapazitiver Reaktanz. An der Antenne können ganz enorme Spannungen auftreten. Die hohe Reaktanz muss in der Antennenanpassung ausgeglichen werden durch Serieschaltung mit einer entsprechenden Induktivität. Diese Elemente zusammen stellen nun einen relativ schwach gedämpften Schwingungskreis mit entsprechender scharfer Resonanzkurve dar. Bei Telephonie- oder Musik-Übertragung wird, bezogen auf die tiefliegende Trägerfrequenz bei Langwellen, durch die gegebene Kanalbreite eine prozentual höhere Bandbreite beansprucht. Die Bandgrenzen können deswegen bezüglich der Antennenresonanzkurve an Stellen liegen, wo die Impedanz gegenüber der Trägerwelle ganz wesentlich verändert ist und wo dieser Unterschied keinesfalls mehr vernachlässigt werden darf, wie das bei höheren Frequenzen normalerweise der Fall ist.

Je nach der Ausbildung des Übertragungssystems zwischen der Röhre der modulierten Endstufe und der Antenne übertragen sich diese Unterschiede in ganz verschiedener Weise auf Impedanzveränderungen an der Röhre. Nicht bloss werden dort auch die Belastungsverhältnisse für die Seitenbandfrequenzen vollkommen geändert, sondern es besteht ohne spezielle Vorsichtsmassnahmen auch keine Symmetrie mehr zwischen den Impedanz-Veränderungen zum oberen und zum unteren Band. Als Folge davon können ganz unzulässige lineare und nichtlineare Verzerrungen entstehen und gewisse Stufenelemente bei länger dauernder Modulation übermässig belastet werden. Die folgenden Darlegungen sollen zeigen, auf was geachtet werden muss und was vorgekehrt werden kann, um aus der gegebenen Situation das Maximum herauszuholen.

Die verschiedenen Schwierigkeiten können auch im Mittelwellengebiet auftreten, namentlich dann, wenn es darum geht, zwei Emissionen mit ziemlich benachbarten Trägerfrequenzen über eine gemeinsame Antenne abzustrahlen. Damit sich die beiden Sender in einem solchen Fall nicht gegenseitig stören, sind in der Antennenanpassung Filtermittel hoher Selektivität erforderlich. Diese können dann ebenfalls einen sehr scharfen Impedanzgang verursachen, der zu denselben Problemen führt.

Bull. ASE t. 51(1960), nº 20, 8 octobre

2. Theorie

Für die Betrachtungen sei, wie das normalerweise der Fall ist, ein Telephonie-Sender mit Anodenmodulation in der Endstufe vorausgesetzt. Das zu untersuchende System besteht, gemäss Fig. 1a, aus der Röhre V, die über die Speisedrosselspule L_r mit der modulierten Speisespannung

a über 3 Vierpole; *b* über 3 Vierpole, wobei die Antennenabgleichinduktivität L_a zur

Antenne gerechnet wird. Mit den Antennensatzeitenmetarten R_a und C_a entsteht ein Antennenkreis, der bei der Trägerfrequenz die rein Ohmsche Belastung R_a erzeugt;

c über einen einzigen Vierpol

VP Vierpole; V Endröhre; A Antenne; L_r Speisedrosselspule; C_r Sperr- und Koppelkondensator; u_e , i_e Speisespannung und Speisestrom der Endstufe; u_r , i_r HF-Spannung und Strom am Eingang des Anodensystems; R_r Eingangs-Lastwiderstand des Anodensystems; i_a Antennenstrom

ue versorgt wird, wobei sie den Strom ie bezieht. Die Spannung u_e besteht dabei, wie dargestellt, aus einer Gleichspannung mit überlagerter Niederfrequenz, entsprechend der gewünschten Modulation. Die durch Gittersteuerung in Klasse C-Betrieb in der Röhre erzeugte Hochfrequenz wird über den Blockkondensator Cr einem Anodensystem zugeführt, welches den Übergang und die Anpassung zum nachfolgenden Verbindungskabel zur Antenne herstellt und welches durch den Vierpol VP1 dargestellt werden kann. Das Verbindungskabel selbst kann als ein Vierpol VP2 betrachtet werden und die Antennenanpassung, welche bei der Antenne A den Übergang vom Kabel auf die Antenne vollzieht, als Vierpol VP3. An der Antenne wird die modulierte Hochfrequenz mit dem Strom i_a ausgestrahlt. Wie schon angeführt, befindet sich in VP3 die Induktivität L_a zur Kompensation der Antenenkapazität.

Als nächste Stufe kann, nach Fig. 1b, die Antenne ersetzt werden durch ihre Ersatzelemente R_a und C_a . Es ist weiter zweckmässig, die Induktivität L_a aus dem VP3 herauszunehmen und zur Antenne zu rechnen, jedenfalls mit jenem Anteil, der nötig ist, um bei der Trägerfrequenz das C_a gerade vollständig zu kompensieren. Am VP3 entsteht dadurch bei der Trägerfrequenz ein rein Ohmscher Abschlusswiderstand mit dem Wert R_a . Auf der Eingangsseite von VP1 bei der Röhre soll der an die Röhre angepasste rein Ohmsche Belastungswiderstand R_r entstehen.

Als dritte Überlegungsstufe können, gemäss Fig. 1c, die drei Vierpole zu einem einzigen Vierpol zusammengezogen werden. Das Problem ist jetzt auf den einfachen Betrachtungsfall der Impedanzübertragung an einem Vierpol, zurückgeführt, der bei Trägerbetrieb mit den rein Ohmschen Abschlüssen R_a und R_r arbeitet.

R Widerstandsachse; *X* Reaktanzachse; *R_a* Ohmscher Widerstand des Kreises (Antenne inkl. Verlustwiderstände von *L_a* und *C_a*); ΔX_a Reaktanzdifferenz von *L_a* und *C_a* (= 0 bei Trägerfrequenz); *Z_a* resultierende Belastungsimpedanz; φ_a Phasenwinkel der Be-

lastungsimpedanz

Die Impedanz-Veränderungen, die innerhalb der Bandbreite auf der Ausgangsseite entstehen, werden im Prinzip durch Fig. 2 dargestellt. Bei der Trägerfrequenz ist die Belastungsimpedanz rein Ohmisch und gleich R_a . Bei höheren Frequenzen resultiert von L_a und C_a eine induktive Reaktanz ΔX_a dazu, welche zur Belastungsimpedanz Z_a führt. Bei tieferen Seitenbandfrequenzen liegen die Verhältnisse spiegelbildlich auf der linken Seite. Der geometrische Ort aller Impedanzen innerhalb der Bandbreite ist die horizontale Gerade durch den Punkt R_a , wobei die Bandgrenzen bei schwach gedämpfter Antenne so weit aussen liegen, dass der Winkel φ_a nahezu 90° erreicht. Es ist nun der entsprechende geometrische Ort auf der Eingangsseite zu finden, was durch Fig. 3 dargestellt wird.

Der Vierpol kann als verlustlos vorausgesetzt werden. Ausser dem Kabelstück besteht er aus reinen Induktivitäten und Kapazitäten. Die charakteristischen Werte des Vierpols werden damit ebenfalls frequenzabhängig. Nun ist es aber so, dass die Schwingkreisgüte Q der Antenne voraussetzungsgemäss ganz wesentlich höher ist als die Betriebsgüte Q der im Vierpol beteiligten Elemente. Es können deswegen in guter Näherung innerhalb der betrachteten Bandgrenzen die charakteristischen Vierpolwerte als konstant angenommen werden. Eine Kontrolle bei den später angeführten Messungen hat auch gezeigt, dass dies durchaus zulässig ist.

Nach einer allgemeinen Vierpol-Eigenschaft wird nun, bei konstanten Vierpolwerten, wie in Fig. 3 dargestellt, die horizontale Seriereaktanz-Gerade der Fig. 2 auf die Eingangsseite übertragen als Kreis abgebildet, der durch den reellen Anpasspunkt R_r hindurchläuft und welcher die imaginäre Achse berührt. Je nach der Dimensionierung des Vierpols können dabei, immer bei konstanter Übersetzung von R_a auf R_r , Transformationen auf verschiedenliegende Kreise wie K_1 , K_2 oder K_3 entstehen. Die Lage des Kreises kann durch eine einzige Angabe charakterisiert werden, z. B. durch den Winkel β zwischen der ursprünglichen Reaktanzänderung auf der Ausgangsseite und der auf der Eingangsseite dadurch verursachten Änderung, bei ganz kleiner Veränderung, repräsentiert durch die Tangente an den Kreis. Die in Fig. 2 eingetragene beispielsweise Änderung ΔX_a führt somit auf der Eingangsseite zur Änderung ΔX_r und zur resultierenden Eingangsimpedanz Z_r , wenn der Fall des Kreises K_1 zugrundegelegt wird. In diesem Fall wird somit eine induktive Veränderung auf der Ausgangsseite in eine kapazitive (und Ohmsche) Veränderung auf der Eingangsseite übertragen.

Impedanzdiagramm am Eingang des Vierpols

R Widerstandsachse, *X* Reaktanzachse; K_1 , K_2 , K_3 je nach Vierpolkonstanten verschiedene Abbildungen des geometrischen Ortes von ΔX_a in Fig. 2 auf den Eingang des Vierpols; β charakteristischer Winkel der Abbildung; R_r Ohmscher Anpasswiderstand bei Trägerfrequenz; ΔX_r Impedanzänderung, hervorgerufen durch ΔX_a ; Z_r die von Z_a hervorgerufene Impedanz

In weiterer Verfolgung dieses Falles sollen nun die weiterabliegenden Bandgrenzen, wie in Fig. 4a dargestellt, zu den Impedanzen Z_h und Z_t für die höhere und tiefere Grenzfrequenz führen. Es wird nun eine wesentliche Impedanz-Unsymmetrie zwischen den beiden Seitenbändern auffällig, indem die Impedanz Z_t wesentlich kleiner wird als Z_h und auch der Winkel φ_t wesentlich verschieden wird von φ_h . Es muss nun untersucht werden, wie sich diese Impedanzverhältnisse auf den Modulationsvorgang auswirken.

Im Klasse C-Betrieb der Endröhre folgt die erzeugte Hochfrequenz-Spannung proportional der Speisespannung, da der Verlust in der Röhre relativ klein gehalten werden kann. Dieser Verlust soll zur Vereinfachung zunächst als Null angenommen werden. Dadurch wird erzwungen, dass die Modulation ganz genau der Anspeisespannung folgt. Es wird nun eine rein sinusförmige, 50% ige Modulation angenommen. Diese kann vektoriell, gemäss Fig. 4b, durch den stillstehenden Trägervektor U_0 dargestellt werden, dessen Frequenz durch die mit ω_0 drehende Zeitgerade erzeugt wird. Die tiefere Seitenband-Frequenz wird durch den Vektor U_t dargestellt, der sich mit der Niederfrequenz-Geschwindigkeit ω_n in gleicher Richtung wie die Zeitgerade dreht und welcher 25% von U_0 ausmacht. Der Vektor U_h der höheren Seitenbandfrequenz dreht symmetrisch dazu in umgekehrter Richtung. Im Zeitpunkt t_0 sollen U_h und U_t die Richtung von U_0 haben, so dass die Modulation, wie in Fig. 4d dargestellt, einer Cosinus-Funktion folgt. Die Addition von U_0 , U_h und U_t führt im Zeitpunkt t_0 zur Modulationsspitzenspannung \hat{U}_r . Im Modulationstal weisen U_h und U_t in umgekehrter Richtung und führen zur Spannung \check{U}_r .

Impedanz-, Spannungs- und Stromverläufe bei 50 % Spannungs-Modulaiton mit beliebigem Winkel β am Eingang des Vierpols *a* Impedanzdiagramm

 Z_0 Trägerwiderstand; Z_h , Z_t Impedanz an oberer und unterer Bandgrenze; φ_h , φ_t zugehörige Phasenwinkel; β charakteristischer Abbildungswinkel

b Spannungsvektordiagramm für 50% Modulation U_0 Trägerspannung; U_h , U_t Seitenbandspannungen der oberen und unteren Bandgrenze; \hat{U}_r , U_r resultierende Spannung der Modulationsspitze und des Modulationstales; ω_0 Trägerkreisfrequenz; ω_n höchste Nieder-Kreisfrequenz (für Bandgrenze)

c Stromvektordiagramm

 I_0 Trägerstrom; I_h , I_t Seitenbandströme der oberen und unteren Bandgrenze; \hat{I}_r , I_r resultierender Strom der Strommodulationsspitze und des Strommodulationstales

d Zeitoszillogramm der modulierten Spannung

e Zeitoszillogramm des modulierten Stromes

 φ_m Phasenverschiebung der Strom- gegen Spannungs-Modulation

Ausgehend von diesen Spannungen entstehen nach Fig 4c und 4e nun die Stromverhältnisse durch Division jeder Spannung durch ihre zugehörige Impedanz. Die Trägerspannung U_0 ergibt mit Z_0 den Trägerstrom I_0 . Die Spannung U_t erzeugt über die kleine Impedanz Z_t den vergrösserten Strom I_t mit dem Phasenwinkel φ_t im Zeitpunkt Null. I_t dreht in Fig. 4c genau wie U_t mit der Frequenz ω_n . U_h erzeugt über die höhere Impedanz Z_h einen verkleinerten Strom I_h mit dem Ausgangswinkel φ_h . Die Zusammensetzung der beiden drehenden Vektoren I_t und I_h erzeugt über einen Modulationszyklus den dargestellten geometrischen Ort einer Ellipse, dessen halbe grosse Achse der Summe von $I_t + I_h$, dessen halbe kleine Achse der Differenz zwischen It und Ih entspricht und deren Richtung der grossen Achse in der Winkelhalbierenden zwischen den Ausgangslagen von I_t und I_h liegt.

Daraus ist nun sofort ersichtlich, dass:

1. Der strommässige Modulationsgrad im wesentlichen wegen der verkleinerten Impedanz Z_t erheblich grösser wird als der spannungsmässige Modulationsgrad.

2. Die strommässige Modulation mit einer Phaesnverschiebung φ_m vorverschoben erscheint,

3. Die Amplitudenmodulation nun gleichzeitig mit einer Phasenmodulation begleitet wird, indem der resultierende Vektor nicht mehr in der konstanten Phase von I_0 bleibt, sondern hin und her wackelt, und

4. Die Modulation mit Verzerrungen behaftet ist, was am einfachsten dadurch ersichtlich ist, dass die Extremwerte \hat{I}_r und \check{I}_r nicht an zwei symmetrischen Punkten der Ellipse liegen und somit nicht 180° phasenverschoben gegeneinander liegen.

Von diesen Auswirkungen sind besonders Ziff. 3 und 4 schädlich und müssen unter allen Umständen vermieden werden. Dies ist möglich, indem der Vierpol so ausgelegt wird, dass der Winkel β zu Null oder 180° wird. Fig. 5 zeigt die Verhältnisse für den Fall $\beta = 180^{\circ}$. Der Impedanzkreis von Fig. 5a kommt symmetrisch über die reelle Achse zu liegen, d. h. genau so wie der Impedanzkreis eines gewöhnlichen Parallelschwingungskreises mit Ohmscher Parallellast. Der Ohmsche Belastungswiderstand bleibt unabhängig von der Frequenz gleich Z_0 und es tritt bei den Seitenbändern lediglich die resultierende Reaktanz des parallelen Schwingungskreises hinzu, was an den Bandgrenzen durch die gleich grossen Reaktanzen X_t und X_h

Impedanz-, Spannungs- und Stromverläufe bei 50% Spannungs-Modulation mit dem Winkel $\beta = 180^{\circ}$ am Eingang des Vierpols *a* Impedanzdiagramm; *b* Spannungsvektordiagramm; *c* Stromvektordiagramm Bezeichnungen siehe Fig. 4

dargestellt wird. Dies führt nun zu den symmetrisch liegenden Belastungsimpedanzen Z_t und Z_h . Die Fig. 5b und 5c sind nach dem vorangehenden ohne weiteres verständlich. In Fig. 5c ist nun insbesondere ersichtlich, dass der resultierende Vektor immer in der Geraden von I_0 bleibt und eine sinusförmige Bewegung ausführt. Hingegen ist weiter ersichtlich, dass nach wie vor der strommässige Modulationsgrad wesentlich höher ist als der spannungsmässige, und dass die strommässige Modulationsphase gegenüber der spannungsmässigen um einen Winkel $\varphi = \varphi_h = \varphi_t$ voreilt.

Für die Emission des Senders ist natürlich die energiemässige Modulation massgebend, welche im vorliegenden Falle mit der spannungsmässigen Modulation identisch ist, da ja die Last durch einen reinen Parallelwiderstand repräsentiert wird.

Der vom Modulator bezogene Speisestrom i_e des Modulators ist proportional der strommässigen Modulation, d. h. dass vom Modulator ein vergrösserter und phasenverschobener Strom verlangt wird. Dies ist gleichbedeutend mit einer Parallelkapazität. Aus den Zusammenhängen zwischen den Fig. 5a und 5c ist sofort ersichtlich, dass sich die kapazitive Parallel-Reaktanz für den Modulator zum Lastwiderstand R_e des Modulators gleich verhält wie die Reaktanz X_h zu Z_0 . Die kapazitive Laststromverschiebung des Modulators stimmt überein mit der hochfrequenzmässigen Lastphase für die betreffende Frequenz. Wenn nun an den Bandgrenzen die Reaktanz X_h klein wird, verglichen mit Z_0 , so bedeutet dies, dass auch der Modulator dort einen kapazitiven Strom abgeben muss, der wesentlich grösser ist als der eigentliche Laststrom. Der Modulator muss für unverzerrte Wiedergabe natürlich diesen Strom hergeben können und ist dementsprechend stärker zu dimensionieren als bei einem Sender mit normal gedämpfter Antenne.

Die durch das Endstufensystem verursachte hohe Kapazität, welche als dynamische Kapazität bezeichnet wird, kann beim Modulator einen abfallenden Frequenzgang verursachen.

Um dies zu vermeiden, muss der Modulator entweder mit sehr kleinem Innenwiderstand disponiert werden, was mit starker Gegenkopplung in gewissem Sinne möglich ist, oder es kann in einfacherer Weise in den kleinen Verstärkerstufen der Abfall in der Modulator-Endstufe durch einen entsprechen den Gegenfrequenzgang kompensiert werden.

Mathematisch ausgedrückt führen die bisherigen Überlegungen zu folgendem Rechnungsgang:

Amplitudenmodulierte Spannung

 $u_r = U_0 \left(1 + m \cos \omega_n t \right) \cos \omega_h t$

Diese Spannung lässt sich in 3 Komponenten zerlegen:

$$u_{0} = U_{0} \cos \omega_{h} t \qquad \text{Träger } U_{0}$$
$$u_{t} = \frac{m}{2} U_{0} \cos (\omega_{h} - \omega_{n}) t \qquad U_{t} = \frac{m}{2} U_{0}$$
$$u_{h} = \frac{m}{2} U_{0} \cos (\omega_{h} + \omega_{n}) t \qquad U_{h} = \frac{m}{2} U_{0}$$

Ihnen sind die Belastungen zugeordnet:

$$Z_{0} = R_{r}$$

$$Z_{t} = \frac{R_{r}}{1 - jQ \frac{2\omega_{n}}{\omega_{h}}}$$
(Q Güteziffer des Schwingkreises)
$$Z_{h} = \frac{R_{r}}{1 + jQ \frac{2\omega_{n}}{\omega_{h}}}$$

Daraus entstehen die Stromkomponenten:

$$I_{0} = \frac{U_{0}}{R_{r}}$$

$$I_{t} = \frac{m}{2} \cdot \frac{U_{0}}{R_{r}} \left(1 - j Q \frac{2 \omega_{n}}{\omega_{h}}\right)$$

$$I_{h} = \frac{m}{2} \cdot \frac{U_{0}}{R_{r}} \left(1 + j Q \frac{2 \omega_{n}}{\omega_{h}}\right)$$

wobei

$$A = \sqrt{1 + \frac{4 Q^2 \omega_n^2}{\omega_h^2}}$$
$$\operatorname{tg} \varphi = \frac{2 Q \omega_n}{\omega_h}$$

Zusammengesetzt ergibt dies den Strom:

$$i_r = \frac{U_0}{R_r} [1 + m A \cos(\omega_n t + \varphi)] \cos \omega_h t$$

Der von der modulierten HF-Stufe bezogene Speise-Strom folgt der Hüllkurve

$$i_e = I_e \left[1 + m A \cos(\omega_n t + \varphi) \right]$$

wovon der Modulator den niederfrequenten Wechselanteil $\tilde{i}_e = I_e m A \cos(\omega_n t + \varphi)$

aufzubringen hat, welcher der Spannung des Modulators

$$\tilde{u}_e = U_e m \cos \omega_n t$$

um den Winkel φ voreilt und eine Belastung

$$Z_e = \frac{U_e}{I_e} = \frac{R_e}{A}$$

verursacht, wobei R_e den Eingangswiderstand bei reinem Trägerbetrieb darstellt, der von R_r gemäss den Umsetzungsbeziehungen in der Röhre verschieden ist. Der Frequenzgang der Last Z_e mit der Betragsfunktion 1/A und der Phase φ entspricht, wie zu beweisen war, genau der Parallelschaltung vom Lastwiderstand R_e mit einem Kondensator C_e entsprechender Grösse,

$$Z_e = \frac{R_e}{1 + j \,\omega_n \, C_e \, R_e} \quad \text{mit } A = \sqrt{1 + \omega_n^2 \, C_e^2 \, R_e^2}$$

und $\operatorname{tg} \varphi = \omega_n \, C_e/R_e$

derart dass die niederfrequente Phasenverschiebung genau gleich gross wird wie die hochfrequente Phase der Seitenbandimpedanzen.

Diesen Überlegungen wurde die Vereinfachung zu Grunde gelegt, dass der Arbeitswiderstand der Röhre gleich Null sei. In Wirklichkeit tritt natürlich während der Öffnungszeiten der Röhre ein gewisser Spannungsabfall auf, welcher zusätzliche Verluste verursacht. Der als Ersatz zu denkende Innenwiderstand Ri der Röhre ist gegenüber dem momentanen Arbeitswiderstand der Röhre um so höher als der Stromfluss während jeder Hochfrequenzperiode nur sehr kurz ist und dafür mit entsprechend überhöhtem Strom gegenüber dem Speisestrom io auftritt. In der Röhre kann selbstverständlich der Strom nur in der einen Richtung durchfliessen. Daraus ergibt sich das in Fig. 6 dargestellte Belastungs-Ersatzschema für den Modulator. Die Hüllkurve der Hochfrequenz-Spannung u_r folgt proportional der Spannung ui. Der Modulationsgrad m ist somit $\tilde{u}_i/^0 u_i$. Der Strom i_e kommt auf Null wenn $\tilde{i}_e = {}^0i_e$. Mit $\hat{u}_i = \hat{i}_e R_e \frac{1}{A}$ wird *m* für $\hat{i}_e = {}^0i_e$:

$$m = \frac{\tilde{u}_i}{0_{U_i}} = \frac{\tilde{l}_e}{0_{i_e}} \frac{R_e}{R_e} = \frac{1}{A}$$

$$i_{0} = \frac{U_{0}}{R_{r}} \cos \omega_{h} t$$

$$i_{t} = \frac{m}{2} \cdot \frac{U_{0}}{R_{r}} \quad A \cos \left[(\omega_{h} - \omega_{n}) t - \varphi \right]$$

$$i_{h} = \frac{m}{2} \cdot \frac{U_{0}}{R_{r}} \quad A \cos \left[(\omega_{h} + \omega_{n}) t + \varphi \right]$$

Da der Strom durch die Röhre nur in der einen Richtung fliessen kann, wird die maximal mögliche Modulation durch die 100% ige Strom-Modulation begrenzt.

Daraus folgt, dass der max. mögliche, unverzerrte Modulationsgrad der folgenden Formel gehorcht:

$$m_{max} = \frac{1}{\sqrt{1 + \frac{4 \, Q^2 \, f_n^2}{f_h^2}}}$$

Bei Q = 200 und der Trägerfrequenz $f_h = 200$ kHz und der zu übertragenden Niederfrequenz $f_n = 5000$ Hz ist der max. mögliche Modulationsgrad nach dieser Formel nur noch 10%. Dies ist wenig, ist aber doch genügend wenn es sich darum handelt über den Sender normale Sprache zu übertragen, da die Amplitudenbeanspruchung von Sprache statistisch ausgewertet gegen oben noch stärker abfällt. Auch stellen diese 10% nur die Grenze dar, bei welcher die Verzerrungen beginnen. Versuche zeigen, dass bei Überschreiten dieser Grenze die Verzerrungen nicht plötzlich ansteigen, so dass diesbezüglich gewisse Übermodulationen zulässig sind.

 u_{e} , i_e Speisespannung und Strom in Last; u_i Ersatz-Nutzspannung an Röhre = proportional HF-Spannung; R_e Ersatzlastwiderstand der Röhre; R_i resultierender Ersatz-Röhreninnenwiderstand; C_e dynamische Kapazität, hervorgerufen durch das Endsystem; Z_e Lastimpedanz für den Modulator; G Gleichrichter, welcher die einseitige Durchlassrichtung der Röhre ersetzt

Für den anderen möglichen Fall mit $\beta = 0^{\circ}$ stimmt das Impedanzdiagramm von Fig. 7a überein mit demjenigen von Fig. 2. Der Vierpol wirkt wie ein reiner Transformator und die Endstufe erscheint belastet mit einem Serie-Schwingungskreis mit Serie-Widerstand. Wiederum sei die spannungsmässige Modulation vorgegeben, gemäss Fig.7b und 7d. Im Strom-Oszillogramm nach Fig. 7c werden aber

Impedanz-, Spannungs- und Stromverläufe bei 50% Spannungs-Modulation mit dem Winkel $\beta = 0^{\circ}$ am Eingang des Vierpols Bezeichnungen siehe Fig. 4

die Seitenband-Stromvektoren viel kleiner als die zugehörigen Spannungsvektoren, da die Impedanzen Z_t und Z_h viel grösser sind als Z_0 . Die Phasenwinkel φ_t und φ_h liegen umgekehrt wie vorher. Dies hat zur Folge, dass der Strommodulationsgrad kleiner wird als der Spannungs-Modulationsgrad und um einen Phasenwinkel φ_m nacheilt. Für den Modulationsgrad der Emission ist nach wie vor der energiemässige Modulationsgrad massgebend. Da die Last durch einen Seriewiderstand dargestellt wird, ist der Strom hiefür massgebend. Um den Frequenzgang konstant zu halten, muss die Modulationsspannung mit höher werdender Modulationsfrequenz gesteigert werden. Der Modulator erscheint belastet mit einer Ersatzlast, nach Fig. 8. Wird der Modulator nicht verstärkt, d. h. so belassen, dass er befähigt ist, die Speisegleichspannung nur 100% ig auszumodulieren, so entsteht auch hier genau wie beim Fall $\beta = 180^{\circ}$ eine Begrenzung des maximal möglichen Modulationsgrades gegen höhere Frequenzen. Indessen besteht hier die Möglichkeit die Spannungsmodulation über 100% hinaus soweit zu steigern, bis der strommässige Modulationsgrad an 100% herankommt. Erst von diesem Moment

an werden Verzerrungen eintreten. Spannungsmässig bedeutet dies, dass die Speisespannung der Endstufe zwar negativ werden kann, der Strom aber trotzdem positiv bleibt, gespeist aus dem Energievorrat der Induktivität Le in Fig. 8, bzw. in Wirklichkeit gespeist aus dem Energievorrat des Serie-Schwingungskreises. Die Hochfrequenz-Endstufe wäre während dieser negativen Speisungszyklen befähigt, richtig zu arbeiten. Praktisch bedeutet dies jedoch, dass der Modulator und auch die HF-Endstufe, für eine viel höhere Spannung dimensioniert und ausgelegt werden müssten. Dies kommt aus wirtschaftlichen Gründen kaum in Frage. Ausserdem würde dann die Gefahr bestehen, dass auch bei tiefen Frequenzen, wo die 100% ige Spannungsmodulation nahezu ausreicht, eine viel zu grosse Modulation gegeben werden kann, wodurch starke Verzerrungen unvermeidlich wären.

Aus den obigen Betrachtungen folgt, dass der Vierpol somit so ausgelegt und einreguliert werden muss, dass er den Fall $\beta = 180^{\circ}$ realisiert. Für die richtige Arbeitsweise der HF-Endstufe muss er 3 Bedingungen erfüllen:

1. Der Lastwiderstand für die Röhre muss rein Ohmisch sein, d. h. die reaktive Serie-Rohrkomponente X_r muss gleich Null sein.

2. Dieser Ohmsche Widerstand muss den für die richtige Arbeitsweise geforderten Wert annehmen.

3. Der Winkel β muss gleich 180° sein.

Es erhebt sich nun die Frage, wie diese 3 Bedingungen an einem vorhandenen Sender am zweckmässigsten einzuregulieren sind. Es soll dazu das einfachste Beispiel eines Vierpols von Fig. 9 betrachtet werden, d. h. einer Tiefpasszelle in Π -Schaltung. Mit den 3 variablen Elementen können die 3 Bedingungen stets erfüllt werden.

Die erste Bedingung $X_r = 0$ wird in üblicher Weise beim laufenden Sender durch Verstellen des Kondensators C_1 einreguliert. Es wird dabei der Anodenstrom betrachtet, welcher bei Verstellung von C_1 ein Minimum durchläuft. In diesem Minimum ist die Last rein Ohmisch.

Um den Belastungswiderstand R_r auf den richtigen Wert zu bringen, müssen L_1 und C_2 auf entsprechende Werte gebracht werden. Es gibt eine kontinuierliche Reihe von aufeinanderfolgenden Wertepaaren L_1 und C_2 , für welche dies möglich ist, wobei aber immer C_1 , entsprechend der 1. Bedingung, auf den zugehörigen Wert gebracht werden muss. Von L1 oder C2 kann die eine Grösse willkürlich eingestellt werden und mit der anderen Grösse und schliesslich mit C_1 die richtige Belastung hergestellt werden. Diese kann entweder mit einer Hochfrequenz-Messbrücke kontrolliert werden oder sie kann an Hand der Betriebs-Messinstrumente dadurch festgestellt werden, dass bei Auftreten der Nennströme oder Nennspannungen an der Antenne, welche mit der gewünschten Trägerleistung übereinstimmen, auch gleichzeitig der zugehörige Anodenstrom an der Endstufe auftritt.

Die verschiedenen Wertepaare L_1 , C_2 , welche immer richtige Anpassung ergeben, führen zu verschiedenen Winkeln β . Es ist also schlussendlich von den Wertepaaren L_1 , C_2 jenes herauszufinden, welches dem Winkel $\beta = 180^{\circ}$ entspricht. Leider ist es nun nicht möglich, diesen Winkel β auf einfache Weise aus den Betriebsinstrumenten abzuleiten. Es soll deswegen untersucht werden, ob es nicht möglich ist, diese Bedingung auf eine andere Bedingung umzuwandeln, welche auf einfachere Weise kontrolliert werden kann. Dazu wird am zweckmässigsten wieder auf die allgemeine Vierpol-Theorie zurückgegriffen.

Für den allgemeinen Vierpol nach Fig. 10 seien in üblicher Weise:

Z_1 und Z_2	Wellenimpedanzen der beiden Seiten			
W_{1l} und W_{2l}	Eingangsimpedanzen für Leerlauf auf			
	der Gegenseite			
W_{1k} und W_{2k}	Eingangsimpedanzen für Kurzschluss			
	auf der Gegenseite			
M	Kopplungsimpedanz			
W_1	Eingangsimpedanz bei beliebigem			
	Abschluss mit R_2			

Es gilt dazu allgemein für einen linearen passiven Vierpol:

$$W_1 = W_1 \imath - rac{M^2}{W_2 \imath + R_2}$$

 R_2 bedeutet in vorliegendem Fall Z_a von Fig. 2 und bewegt sich auf einer Geraden parallel der x-Achse. W_{1l} , W_{2l} und M sind für den verlustlosen Vierpol rein imaginäre Grössen. Die Inversion von R_2 erzeugt somit den in Fig. 3 schon behandelten Kreis, bei dem durch W_{2l} lediglich der Punkt von f_0 an eine bestimmte seitlich am Kreis liegende Stelle verschoben wird, nämlich so, dass voraussetzungsgemäss, entsprechend der abgestimmten und angepassten Stufe bei dieser Frequenz bei Abschluss mit $R_a = Z_2$ das $W_1 = Z_1 = R_r$ entsteht. Für $R_2 = \infty$ wird $W_1 = W_{1l}$, was den Berührungspunkt des Kreises mit der x-Achse ergibt. Diese Überlegungen gelten, wie schon früher ausgeführt, unter der Voraussetzung, dass die Vierpolkonstanten im betrachteten Frequenzgebiet konstant sind, was näherungsweise in der Umgebung der Trägerfrequenz zutrifft. In Wirklichkeit wird der Kreis beim Berührungspunkt verzerrt, und es münden die Bogen für $Z_a = \pm \infty$ nicht im Berührungspunkt ein, sondern es geht je nach der Schaltung der beteiligten Kreise der eine Bogen darüber hinweg, um in den Null-Punkt einzulaufen, während der andere Bogen darüber hinweg asymptotisch ins Unendliche an die x-Achse anläuft. Es können auch beide Bogen in $\pm \infty$ oder in den Null-Punkt einlaufen.

Wird nun die Ausgangsimpedanz R_2 um die kleine Grösse dR_2 verändert, so ändert die Eingangsimpedanz um dW_1 und es wird:

$$\frac{\mathrm{d}W_1}{\mathrm{d}R_2} = \frac{M^2}{(W_{2l} + R_2)^2}$$

Für den Fall $R_2 = Z_2$ liegt zwischen dW_1 und dR_2 der Winkel β . dW_1/dR_2 ist für konstantes R_2 konstant, d. h. dass der Winkel β erhalten bleibt unabhängig von der Richtung der Veränderung von dR_2 . In der nahen Umgebung des Anpasspunktes entsteht somit die Abbildung der Belastungsimpedanzen auf den Eingang ganz einfach durch Drehung des Koordinatennetzes um den Winkel β .

Da die Funktion dW_1/dR_2 auf der rechten Seite quadratisch ist, ist der Winkel doppelt so gross wie jener der einfachen Funktion. Für $\beta/2$ gilt:

 $\frac{M}{(Z_2 + W_{2l})} = \frac{j a}{(b + j c)} = \frac{a (c + j b)}{b^2 + c^2}$ $\operatorname{tg}\left(\frac{\beta}{2}\right) = \frac{b}{c} = \frac{j b}{j c}$ $\operatorname{tg}\left(\frac{\beta}{2}\right) = \frac{j Z_2}{W_{2l}}$

Mit $Z_2 = \sqrt{W_{2l} W_{2k}}$ wird auch

$$\operatorname{tg}\left(\frac{\beta}{2}\right) = j \sqrt{\frac{W_{2\,k}}{W_{2\,l}}}$$

Für $\beta = 180^{\circ}$ wird tg ($\beta/2$) = ∞ woraus folgt:

$$W_{2l} = 0$$

Aus den Vierpolbeziehungen

$$Z_1 = \sqrt[]{W_{1l} \ W_{1k}}$$
 $Z_2 = \sqrt[]{W_{2l} \ W_{2k}}$ $rac{W_{1l}}{W_{2l}} = rac{W_{1k}}{W_{2k}}$

folgt weiter

und

 $W_{1l}=0 \qquad W_{1k}=\infty \qquad W_{2k}=\infty$

Auf der Eigenschaft $W_{1l} = 0$ basierend entsteht nun eine elegante Möglichkeit für die Einregulierung jener Kreise, welche den Vierpol ausmachen: Von den kontinuierlich aufeinanderfolgenden Einstellungen, welche alle richtige Anpassung und Abstimmung $W_1 = R_r$ ergeben, wird jene genommen, welche bei abgetrennter Antenne $W_1 = 0$ ergibt, d. h. ein W_1 mit minimalem Ohmschen Wert, herrührend von den Kreisverlusten. Das Einstellkriterium lässt sich damit auf eine einfache Impedanzmessung zurückführen, ohne dass Phasenwinkel im Betrieb oder von Impedanzänderungen gemessen werden müssen.

Zwischen den Spannungen U_1 und U_2 besteht weiter nach allgemeiner Vierpoltheorie die Beziehung:

$$\frac{U_1}{U_2} = \frac{W_{1l}}{M} \left(1 + \frac{W_{2k}}{R_2}\right)$$

Für $R_2 = Z_2$ kann geschrieben werden:

$$\frac{U_1}{U_2} = \frac{W_{1l}(Z_2 + W_{2k})}{MZ_2}$$

und für den Winkel γ zwischen U_1 und U_2 wenn wiederum für den verlustlosen Vierpol W_{1l} , W_{2k} und M rein imaginäre Grössen sind:

$$\operatorname{t} \mathbf{g} \gamma = \frac{W_{2k}}{\operatorname{j} Z_2} = -\frac{\operatorname{j} W_{2k}}{Z_2} = -\operatorname{j} \sqrt{\frac{W_{2k}}{W_{2l}}}$$

Der Vergleich mit der Formel für $\beta/2$ liefert die einfache Beziehung

$$\gamma = -\frac{\beta}{2}$$

Für $\beta = 180^{\circ}$ wird somit $\gamma = -90^{\circ}$ bzw. $+ 270^{\circ}$ oder für $\beta = -180^{\circ}$ wird $\gamma = +90^{\circ}$.

Noch einmal ergibt sich daraus eine einfache Kontrollmöglichkeit. Statt den Winkel β auf umständliche Weise zu messen, kann der Phasenwinkel zwischen der Spannung an der Anode und am Strahlungswiderstand bzw. dem Strom in der Antenne während des Betriebes auf seinen richtigen Wert von \pm 90° geprüft werden.

Bisher wurde zur Vereinfachung das ganze System zwischen Röhrenanode und Antenne als ein einziger Vierpol betrachtet. Der Wirklichkeit näher steht jedoch die Unterteilung, gemäss Fig. 1a, in 3 Vierpolstücke. Von diesen wird in üblicher Weise die Antennenanpassung VP3 so einreguliert, dass sie die Anpassung auf den Wellenwiderstand des Kabels von VP2 ergibt. Im Kabel VP2 tritt dann zwar keine Impedanzänderung ein, aber je nach seiner Länge entsteht verschiedenartige Beeinflussung des Winkels β . Ohne spezielle Vorkehrungen wird auch die Antennenanpassung VP3 einen willkürlichen Beitrag zum Winkel β ergeben. Wie dem aber auch sei, stets ist es möglich, mit dem Sender-Ausgangskreis VP1 den Winkel β auf den richtigen Wert zu bringen; nach der einen Methode dadurch, dass bei abgetrennter Antenne der Eingangswiderstand ein Minimum erreicht, nach der andern, dass der Phasenwinkel zwischen dem Strom am Fusspunkt der Antenne und der Spannung an der Anode plus oder minus 90° annimmt. Zufolge der willkürlichen Phasenwinkel von VP2 und VP3 wird auch der Phasenwinkel an jenen Trennstellen ganz beliebige Werte annehmen. Das heisst aber nichts anderes, als dass an jenen Zwischenpunkten die allgemeinen Modulationsverhältnisse auftreten werden, wie sie in Fig. 4 dargestellt sind. An ihnen können deswegen beliebige elliptische Modulationen auftreten. Im Gegensatz zu Fig. 4 werden jene Stellen jedoch, sowohl bezüglich Spannung als auch Strom, elliptisch moduliert sein.

Es kann der eigentümliche Effekt eintreten, dass an diesen zwischenliegenden Stellen ganz erhebliche Klirrfaktoren gemessen werden können, obschon die Modulation am Anfang und am Ende der Kette einwandfrei ist. Dies scheint zunächst widerspruchsvoll zu sein, indem ein Klirrfaktor an der Zwischenstelle doch zu bedeuten scheint, dass dort nichtharmonische Energien vorhanden sein müssen, die am Anfang und am Ende nicht verschwunden sein können. Der Widerspruch klärt sich auf durch die gleichzeitige elliptische Modulation von Spannung und Strom. Nimmt man sich nämlich die Mühe, aus den jeweiligen Momentanwerten die durchfliessende Energie zu berechnen, so erhält man den Beweis, dass die gegenseitige elliptische Bewegung zur Folge hat, dass die durchgehende Energie trotzdem einer rein harmonischen Modulation entspricht.

3. Messungen

Die abgeleiteten Zusammenhänge wurden an einem Langwellen-Telephonie-Sender von 10 kW Trägerleistung überprüft. Dieser war vorgesehen zum Betrieb mit 200 kHz auf eine Antenne von 49 m Höhe mit Dachkapazität. Elektrisch ist diese Antenne bloss ca. 13% von $\lambda/4$ lang und der Strahlungswiderstand sinkt auf den extrem niedrigen Wert von ca. 1,5 Ω . Die Antennen-Kapazität C_a beträgt \approx 760 pF, was zur Kompensation eine Anpass-Induktivität L_a von 840 μ H erfordert. Diese Anpass-Induktiviät verursacht einen Verlustwiderstand von \approx 3,5 Ω , so dass sich ein Serie-Lastwiderstand von \approx 5 Ω ergibt. Die Reaktanz von C_a oder L_a macht \approx 1050 Ω aus, so dass für den Antennenkreis der hohe Q-Wert von 210 resultiert. Aus diesen Werten lassen sich auf einfache Weise die folgenden Betriebswerte für den Antennenfusspunkt berechnen

$$U_{Träger eff.} = 45 \text{ A}$$

 $U_{Träger eff.} = 47 \text{ kV}$
 $\hat{U}_{100\%} = 133 \text{ kV}$
 $\hat{f}_{100\%} = 127 \text{ A}$

Beachtlich ist ausserdem die grosse Blindleistung, die an dieser Antenne umgesetzt wird und deren Spitzenwert als Multiplikation von $\hat{U}_{100\%}$ und $\hat{I}_{100\%} = 16800$ kVA erreicht. Fig. 11 zeigt die dazu ausgeführte Antennenanpassung, deren Induktivitäten unter normalen Verhältnissen einer Antennenanpassung für einen Sender mit einer um eine Grössenordnung grösseren Leistung gut anstehen.

Fig. 11

Antennenanpassung für einen 10-kW-Langwellensender, der bei 200 kHz eine Antenne von nur 49 m Höhe mit Dachkapazität speist

Zur anschaulichen Überprüfung der Theorie war es nötig, eine Messanordnung bereit zu stellen, mit welcher elliptische Modulationen im Kathodenstrahloszillographen (KO) direkt sichtbar gemacht werden können. Dies wurde mit Hilfe einer Komponenten-Diskriminator-Schaltung nach Fig. 12 erreicht. Die zu untersuchende HF-Spannung

Komponenten-Diskriminator-Schaltung für die Aufnahme der Modulations-Ortskurven

 U_b Referenzspannung; U_m zu untersuchende Spannung; R_1 , C_1 und R_2 , C_2 Phasendrehglieder mit 90° Differenz; *a* Nulltastkontakt; *KO* Kathodenstrahloszillograph

Um wird darin in Bezug auf eine Referenz-HF-Spannung U_b in zwei durch Gleichspannungen dargestellte Komponenten aufgelöst, derart, dass wenn diese auf die Ablenkplatten des KO gegeben werden, an diesem ein Ablenkungspunkt entsteht, welcher Phase und Amplitude der Spannung Um entspricht. Es werden dazu 2 Ringmodulatoren benützt, die auf der einen Seite gemeinsam von der Referenz-Spannung U_b von der anderen Seite her mit zwei um 90° phasenverschobenen Komponenten der zu untersuchenden Spannung U_m gespeist werden. Dazu sind die Elemente C_1, R_1 und C_2 , R_2 so dimensioniert, dass sich im einen Fall 45° Phasen-Vorverschiebung und im anderen Fall 45° Phasen-Nachverschiebung ergibt. An den Transformator-Mittelpunkten entstehen dann die Gleichspannungen, die den Komponenten entsprechen. Als Referenz-Spannung U_b wurde diejenige des Oszillators des Senders genommen. Diese liegt in ihrer Phase willkürlich zu den zu untersuchenden Spannungen U_m . Dies spielt jedoch keine Rolle, indem im Experiment die Differenzen zwischen nacheinander angelegten Spannungen Um gezählt werden. Um das Oszillogramm richtig auswerten zu können, ist es nötig, die genaue Lage des Koordinaten-Nullpunktes zu kennen. Dieser wird durch Nulltastung mit dem Kontakt a erzeugt, der periodisch mit Netzfrequenz die Referenz-Spannung kurzschliesst, wodurch auf dem KO der Strahl periodisch zwischen Koordinaten-Nullpunkt und Endpunkt des Vektors hin- und herspringt. Nur diese beiden Punkte sind bei richtiger Einregulierung sichtbar. Wird nun U_m moduliert, so führt der Punkt, welcher der Vektorspitze zukommt, die Bewegung aus, welche dem geometrischen Ort der Modulation entspricht.

Der Sender wurde nun im Sinne der Theorie auf richtigen Betriebszustand einreguliert, unter Benützung einer künstlichen Antenne mit dem geforderten Lastwiderstand von 1,5 Ω in Serie mit der Kapazität C_a von 760 pF. Alle Netzelemente, die sich im Gesamtsystem bei dieser Einregulierung ergaben, wurden hierauf einzeln gemessen. Daraus liessen sich für jeden einzelnen Vierpol die Werte von γ und β berechnen, wie sie in Tabelle I zusammengestellt sind.

Berechnete	Werte	von y	und β	Tabelle
------------	-------	-------	-------------	---------

5 K.	γ	β
Anode		
Sender	130°	$-260^{\circ} = +100^{\circ}$
Senderausgang		
Kabel $l = 76 \text{ m}$		
$\sqrt{\varepsilon \mu} = 1,8$	33°	$- 66^{\circ} = - 66^{\circ}$
Kabelende		
Antennenanpassung	107°	$-214^{\circ} = +146^{\circ}$
Antennenwiderstand		
	270°	$-540^{\circ} = +180^{\circ}$

Da die Winkel γ und β in umgekehrter Richtung drehen, sind zur besseren Veranschaulichung die Vektorlagen in Fig. 13 bildlich dargestellt. Insbesondere ist nun ersicht-

lich, dass für β die geforderte Lage von 180° entstanden ist. während γ bei einem Winkel von —90° stehen bleibt Interessant sind nun die Aufnahmen vom KO an den vier verschiedenen Stellen der 3 Vierpole, abgebildet in Fig. 14.

Aufgenommene Modulations-Ortskurven an den vier Übergabepunkten bei richtiger Einregulierung

steht. Wenn am Senderausgang und am Kabelende die Vektoren zum Ellipsen-Mittelpunkt zu Hilfe genommen werden, so ist ersichtlich, dass auch die Winkel zu diesen Zwischenpunkten mit der Einzelrechnung recht gut übereinstimmen. Am Kabelende liegen die Verhältnisse so, dass dort zwar eine zusätzliche Phasenmodulation eintritt, im übrigen aber der Modulationsgrad etwa unverändert ist und auch keine zusätzlichen Verzerrungen auftreten. Bedeutend höhere Verzerrungen waren jedoch am Senderausgang festzustellen, was bei der schrägen Lage der dortigen Modulations-Ellipse nicht weiter verwunderlich ist. Nochmals sei betont, dass dies keinen Widerspruch bedeutet, da an jenen Stellen sowohl die Spannung wie auch der Strom elliptisch moduliert ist, wovon allerdings im vorliegenden Experiment nur die Spannung aufgenommen wurde. Es zeigt sich jedoch, dass bei Klirrfaktor-Messungen an Sendern, die mit hochselektiven Kreisen belastet sind, äusserste Vorsicht am Platze ist. 4. Zusammenfassung Bei Langwellensendern ist es aus wirtschaftlichen und aus Sicherheitsgründen bei Flugplatznähe nicht möglich, die Antennen so hoch zu machen, wie es für günstige Abstrahlung nötig wäre. Der Antennenkreis wird selektiv wie ein

Deutlich ist ersichtlich, wie an der Anode und am Antennen-

widerstand die Modulation rein linear und mit gleichem

Modulationsgrad erfolgt und wie zwischen diesen beiden

Punkten tatsächlich eine Phasenverschiebung von 90° ent-

lung notig ware. Der Antennenkreis wird selektiv wie ein schwach gedämpfter Schwingkreis. Die bei Langwellen relativ weit abliegenden Seitenbandfrequenzen von Telephoniemodulation müssen unter Impedanzverhältnissen übertragen werden, die vollständig von jenen der Trägerwerte abweichen. Lineare und nichtlineare Verzerrungen, Phasenmodulation, Modulationsbegrenzung und wesentlich erhöhte Verlustleistungen sind die Folge davon.

Die nichtlinearen Verzerrungen und die Phasenmodulation lassen sich vermeiden durch richtigen Abgleich des Vierpols, welcher zwischen Endstufenanode und Antenne liegt. Nach welchen Grundsätzen dabei dimensioniert und eingestellt werden muss, lässt sich in einfacher Weise mit der Vierpoltheorie ableiten. Zwei einfache Kriterien für den Betrieb können angegeben werden, wovon das eine auf minimaler Impedanz bei abgetrennter Antenne und das andere auf Phasenmessung zwischen Antennenstrom und Anodenspannung beruht.

Aus den gegebenen Daten des Endkreissystems können der Frequenzgang der linearen Verzerrungen, die Modulationsbeschränkungen und die erhöhten Verluste berechnet werden. Jene lassen sich durch einen umgekehrten Frequenzgang in den kleinen Niederfrequenzstufen kompensieren, diese müssen durch Dimensionierung für grössere Leistung namentlich des Modulators beherrscht werden. Nicht zu beheben ist die Beschränkung des maximal möglichen Modulationsgrades bei höheren Modulationsfrequenzen, über welchem grössere Verzerrungen einsetzen. Bei Telephoniesendern ist die Beschränkung nicht hinderlich, indem in der Sprache die höheren Frequenzen statistisch nur mit stark abfallender Amplitude vertreten sind.

Die abgeleiteten theoretischen Zusammenhänge wurden durch Messungen mit einem 10-kW-Sender, welcher bei 200 kHz auf eine so kurze Antenne arbeitet, dass das Qdes Antennenkreises auf 210 kommt, überprüft. Interessant ist dabei die Erkenntnis, dass bei verzerrungsfreier Modulation an der Röhrenanode und am Strahlungswiderstand der Antenne starke Verzerrungen zufolge elliptischer Modulation an den zwischenliegenden Punkten, wie Anfang und Ende des Antennenkabels, auftreten können. Bei Verzerrungsmessungen ist dementsprechend Vorsicht geboten.

Adresse des Autors:

Dr. Ing. M. Dick, Abteilungsvorstand Gross-Sender-Bau, AG Brown, Boveri & Cie., Baden (AG).

Zwischenfrequenzteil einer FM-Richtstrahlanlage mit kleiner Kanalzahl

Von A. Schellenberg, Zürich

1. Beschreibung der Anlage

Die Anlage dient zur Übertragung von 7 Telefoniekanälen über mehrere Funkfeldlängen von 60...100 km bei optischer Sicht. Die Verwendung von Sendefrequenzen am untern Ende des UHF-Bereichs ermöglicht auch Verbindungen ohne optische Sicht. Bei einer Funkfeldlänge von 40 km ist z. B. eine Überhöhung in der Mitte der Strecke von 150 m zulässig.

6 Telefoniekanäle werden in einem separaten Trägersystem (modifiziertes C-Trägersystem) in das Frequenzband 8...42 kHz umgesetzt, währenddem der Dienstkanal in Normallage übertragen wird.

Ein einziger 250-kHz-Quarz dient für die Stabilisierung der 100 Hochfrequenzkanäle von je 750 kHz Kanalabstand. Nach der Einstellung eines bestimmten Kanals mit dem Kanalwahlschalter läuft der Oszillator über den ganzen Oszillatorfrequenzbereich bis zur gewünschten Frequenz durch. Eine Zählautomatik vergleicht die Anzahl der Interferenzen zwischen Oszillatorfrequenz und Quarzoberwellen mit der eingestellten Kanalzahl, hält den Motor bei Koinzidenz an und schaltet die Frequenzstabilisierung ein. Die Verwendung der gleichen Quarzfrequenz für Sender und Empfänger sowie der ähnliche Aufbau der Stabilisierung in beiden Geräten schränkte die Zahl der möglichen Zwischenfrequenzen stark ein. Die Wahl einer Zwischenfrequenz von 42 MHz führte wegen der guten Abschirmung des Zwischenfrequenzteils auch während der Entwicklung zu keinen Störungen durch Industriegeneratoren, welche in der Nähe auf der gleichen Frequenz arbeiteten. Selektivität und Stabilität des ausgeführten ZF-Verstärkers gestatteten, auf eine zweite Umsetzung mit der dadurch bedingten erhöhten Empfindlichkeit gegenüber Interferenzen des eigenen Systems zu verzichten.

2. Geräuschanforderungen

Die Richtstrahlanlage ist für Kurzstrecken vorgesehen und hat somit nicht die CCIR-Weitverkehrsbedingungen zu

621.396.43