Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins		
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke		
Band:	57 (1966)		
Heft:	4		
Rubrik:	Mitteilungen SEV		

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 17.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Technische Mitteilungen — Communications de nature technique

Multiplikations- und Divisionsschaltung hoher Genauigkeit

681.14.001.57 : 511.124/125 [Nach I. C. Hutcheon und D. J. Puddejoot: New solid-state electronic multiplier-divider. Proc. IEE 112(1965)8, S. 1523...1531]

Bei Analogrechenproblemen kann es vorkommen, dass zwei Grössen miteinander multipliziert werden und das Produkt von beiden durch eine dritte Grösse dividiert werden muss. Das Prinzipschema eines elektronischen Aufbaus, mit dem eine solche Operation durchgeführt werden kann, zeigt Fig. 1. Das wichtigste Element dieser Schaltung ist die Brücke K, die einen variablen Widerstand zwischen den Eckpunkten D und E der Brücke enthält. Für den variablen Widerstand wurde ein Feldeffekt-Transistor verwendet. Der Widerstand zwischen den beiden äusseren Anschlüssen des Feldeffekt-Transistors (Fig. 2) hängt von der Steuerspannung U ab, die zwischen dem Gate und einer Aussenelektrode des Feldeffekt-Transistors liegt. Die Schaltung ist so aufgebaut, dass die Steuerspannung U am Gate des Feldeffekt-Transistors einige Volt beträgt, während zwischen den beiden Aussenanschlüssen des Feldeffekt-Transistors eine Spannung von nur einem Bruchteil von einem Volt steht. Bei einer Steuerspannung U = 0 V hat der Feldeffekt-Transistor einen Widerstand von ca. 3 kQ. Mit steigender Steuerspannung steigt der Widerstand an, wie aus Fig. 2b zu ersehen ist. Bei einer Steuerspannung von 8 V ist der Widerstand auf ca. 8 k Ω angestiegen.

Bei der Analogschaltung nach Fig. 1 ist die Ausgangsspannung U_0 das Produkt der Spannung U_1 und U_2 , geteilt durch die Spannung U_3 , oder durch eine Gleichung ausgedrückt:

$$U_0 = U_1 \; rac{U_2}{U_3}$$

Die drei Umschalter in Fig. 1, die abwechselnd in die Stellung gen a und c geschaltet werden, arbeiten synchron. In der Stellung a der Schalter, die in Fig. 1 gezeichnet ist, werden der Brücke Kdie Spannungen U_1 und U_3 zugeführt. Die Spannung zwischen den Eckpunkten C und D der Brücke kommt auf den Eingang eines Differentialverstärkers. In der Schalterstellung a ist am Ausgang des Differentialverstärkers ein Integrator angeschlossen, der die Steuerspannung für den Feldeffekt-Transistor liefert. Die Steuerspannung verändert den Widerstand des Feldeffekt-Transistors so, dass die von der Brücke dem Differentialverstärker zugeführte Spannung verkleinert, d. h., dass die Brücke abgeglichen wird. Nach dem Umschalten der Schalter in die Stellung c wird die Brücke mit den Spannungen U_2 und U_0 gespiesen. Aus den Ver-

Prinzipschema der Multiplikations- und Divisionsschaltung U_0 Ausgangsspannung Weitere Erklärungen siehe im Text

hältnissen der der Brücke zugeführten Spannungen $U_1...U_3$ und U_0 bzw. aus den Verhältnissen der Ströme, die diese Spannungen erzeugen, kann man sehr einfach die oben angegebene Formel für die multiplizierende und dividierende Funktion der Schaltung ableiten.

a der Widerstand R zwischen den beiden äusseren Anschlüssen des Feldeffekt-Transistors hängt von der Steuerspannung U_{st} am Gate ab b Charakteristik des Widerstandsverlaufes. R Widerstand des Feldeffekt-Transistors; U_{st} Steuerspannung Weitere Erklärungen siehe im Text

Fig. 1 stellt nur ein vereinfachtes Prinzipschema der Analogschaltung dar. Der Differentialverstärker kann auch als Wechselstromverstärker ausgebildet, und die drei Umschalter können durch Chopper ersetzt werden. Bemerkenswert ist die hohe Genauigkeit des Rechenresultates. Sie ist besser als ± 0.25 %.

H. Gibas

AEG-Gasturbinen-Kraftwerke für Indonesien. Für die Spitzenstromversorgung der Hauptstadt von Indonesien, Djakarta, und für die Hafenstadt Semarang in Mittel-Java baut die AEG drei Gasturbinen-Kraftwerke von je 14 MW.

Bemerkenswert ist die angewendete «Package»-Bauweise. Die vollständige Gasturbinenanlage setzt sich dabei aus drei Hauptteilen zusammen:

Drei Gasturbinen-Kraftwerke von je 14 MW in Package-Bauweise

Alle drei Teile werden einschliesslich der Wetterverkleidung in der Fabrik fertig montiert und zum Versand gebracht. Auf der Baustelle werden sie auf einer vorbereiteten Betonsohlplatte zur kompletten Anlage zusammengesetzt. Dadurch ist eine derartige Anlage in kürzester Zeit betriebsfertig.

Die Vorteile dieser Ausführung sind:

Niedrige Investitionskosten infolge kompakter Bauweise; geringer Platzbedarf und einfache Baustellenvorbereitung; geringe Montagezeiten und -kosten infolge der vollständigen Vormontage in der Werkstatt;

Méthode générale de calcul de circuits logiques RTL et résolution par calculatrice numérique

681.325.65

[D'après D. Mange: Méthode générale de calcul de circuits logiques RCTL et résolution par calculatrice électronique. Bulletin AGEN, (1965)4, p. 30...36]

Il est possible de réaliser n'importe quelle fonction logique à l'aide d'un seul type de circuit de base, une porte du type NON-OU («NOR») par exemple. Aussi a-t-on calculé un tel circuit dans une logique à couplage par résistances (RTL) (fig. 1).

Le calcul des deux états stables - saturation et blocage - se fait dans le cas le plus défavorable, en tenant compte des variations de tous les paramètres: tensions d'alimentation V_{CC} et V_{BB}, résistances R1, R2 et RC, et caractéristiques électriques du transistor. On aboutit ainsi à deux inéquations:

1. Saturation (au moins l'un des L transistors est saturé):

$$R_{2} \ge R_{2}(R_{1}) = \frac{A_{on} R_{1}^{2} + B_{on} R_{1}}{C_{on} R_{1}^{2} + D_{on} R_{1} + E_{on}}$$
(1)

2. Blocage (les L transistors sont bloqués):

$$R_2 \leq R_2 (R_1) = \frac{A_{off} R_1}{B_{off} R_1 + C_{off}}$$
(2)

Les deux valeurs de résistance R_1 et R_2 sont les variables du problème, tandis que les termes Aon...Eon et Aoff...Coff sont des coefficients constants, dépendant des autres paramètres électriques du circuit ainsi que du nombre maximum d'entrées ou «fan-in» M et du nombre maximum des sorties ou «fan-out» N. La représentation graphique de la fig. 2 fait apparaître une zone-solution quadrillée qui satisfait les deux conditions établies ci-dessus.

Ayant choisi des valeurs normalisées pour R_1 et R_2 , il est possible de les introduire dans l'expression générale de la saturation (1) et de résoudre cette inéquation par rapport à M(fan-in) avec N comme nouvelle variable (fan-out); généralement, il est en effet possible d'obtenir — pour un couple de résistances donné R_1 , R_2 — d'autres

Autres explications voir le texte

geringe Wartungs- und Personalkosten durch Einrichtung für vollautomatischen Betrieb;

kurze Hochlaufzeiten, daher besonders geeignet zur Lieferung von Spitzenenergie:

Eignung für Notstromanlagen, da keine Fremdenergie zum Anfahren erforderlich (Dieselmotor und Batterie);

geschlossenes Kühlwassersystem mit Luftrückkühlung, daher keine ständige Zuführung von Kühlwasser erforderlich.

Als Brennstoff wird leichtes Heizöl verwendet. Bei entsprechender Aufbereitung können derartige Anlagen auch mit schwerem Heizöl betrieben werden.

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

 $\frac{A_{off}}{B_{off}}, -\frac{C_{off}}{B_{off}}$ $-\frac{C_{off}}{R}$ valeurs asymptotiques de l'équation (2)

combinaisons de M et de N que celles choisies au départ. Le calcul donne alors:

$$M \leq M(N) = \frac{A_n N^2 + B_n N + C_n}{D_n N + E_n}$$
(3)

où les termes $A_{n...}E_n$ sont des constantes déterminées par les caractéristiques électriques du circuit, ainsi que par les valeurs du couple $R_1, R_2.$

Un même calcul dans le cas du blocage conduit à l'égalité suivante:

 $M \leq M_o = \text{constante}$

La superposition des deux conditions de fan-in et de fan-out détermine à nouveau dans le plan de M et N une zone-solution quadrillée (fig. 3).

Zone-solution finale pour les valeurs du fan-in M et du fan-out N C_n , D_n , E_n , M_o valeurs caractéristiques de l'équation (3)

A partir de 18 données numériques, désignées par des lettres de $A \ge Z$, il est possible d'entreprendre une programmation du calcul complet en langage FORTRAN. L'organigramme correspondant apparaît sur la fig. 4.

Un exemple pratique a été alors entrepris pour réaliser une porte «NOR» compatible avec des unités logiques au germanium du commerce, dont on a adopté les données suivantes:

$$-20 \ {}^{0}\text{C} \leq T_{amb} \leq 60 \ {}^{0}\text{C}$$

$$V_{CC} = -6 \text{ V} \pm 5 \ \%$$

$$V_{BB} = +6 \text{ V} \pm 5 \ \%$$

$$R_C = 1 \text{ k} \Omega \pm 5 \ \%$$
Transistor = ASY 27 (PNP au germanium)

La première partie du calcul — effectuée sur la calculatrice IBM 7040 de l'EPUL — a donné 9 couples de résistances R_1 , R_2 se trouvant dans la zone-solution. En seconde partie, la calculatrice a déterminé pour chacun de ces couples un tableau de charge donnant les valeurs du fan-in, du fan-out, ainsi que la tension minimum V_{CE} représentative de l'état logique «1» (blocage) dans le cas le plus défavorable. Les combinaisons les plus favorables des fan-in et fan-out sont obtenues pour des valeurs élevées de ces résistances, aussi a-t-on représenté ci-dessous le tableau trouvé pour le couple des valeurs maxima de R_1 et R_2 :

$R_1 = 6,8 \mathrm{k} \Omega$	N: fan-out	M: fan-in	$-V_{CE}$: état «1»
$R_2 = 22 \mathrm{k} \Omega$	1	3	4,81 V
	2	2	4,22 V
	3	1	3,76 V

En conclusion, la méthode de calcul décrite ici — associée à une programmation pour calculatrice numérique — permet de déterminer extrêmement rapidement les valeurs des résistances de base R_1 et R_2 d'une porte logique «NOR» dans la structure RTL. En faisant M = 1, on obtient alors les équations de la structure DCTL modifiée. Il est également possible de supprimer la résistance R_2 et la tension auxiliaire de blocage V_{BB} dans le cas des montages comportant des transistors au silicium, en particulier pour les circuits intégrés. Dans ce cas encore, il est possible d'utiliser les équations établies ci-dessus. On néglige la condition de blocage et en faisant $R_2 = \infty$, la condition de saturation devient:

$$C_{on} R_1^2 + D_{on} R_1 + E_{on} \ge 0$$

Disons enfin que la marge de sécurité des dispositifs ainsi calculés est très grande, car il est statistiquement extrêmement improbable d'avoir simultanément tous les paramètres à leur valeur limite. D. Mange

Neuartige Betriebsüberwachung von Dampfturbinen

[Nach: Araldit in der elektronischen Messtechnik. CIBA Aspekte (1965), September, S. 2...7]

Schon seit längerer Zeit werden empfindliche elektronische Bauteile in Araldit eingebettet, um sie gegen Umgebungseinflüsse beständig zu machen. Vor kurzem sind aber zum ersten Mal Fernmesselemente in Turbogeneratoren eingebaut worden, welche über die Vibrationen der Turbinenschaufeln, ihre Dehnung und über die Temperatur Informationen geben. Die Funktionsweise dieses Fernmeldesystems kann Fig. 1 entnommen werden. Der Messwertgeber, im vorliegenden Fall ein Dehnungsmeßstreifen, welcher an einer Turbinenschaufel befestigt ist, wird über eine Widerstandsbrücke mit einem Verstärker verbunden. Mit dem verstärkten Signal wird die Frequenz eines Senders mit etwa 30 MHz moduliert. Das modulierte Signal wird über eine Antenne vom rotierenden Teil abgestrahlt und von einem Empfänger im Statorgehäuse aufgefangen und demoduliert. Verschiedene Trägerfrequenzen gestatten die einzelnen Informationen auseinanderzuhalten. Da die Anlage während etwa 2000 h, der Betriebsdauer zwischen zwei Revisionen des Turboläufers, arbeiten soll, kam für die elektrische Energieversorgung Speicherung nicht in Frage. Die Wahl fiel schliesslich auf eine drahtlose Energieübertragung mit 50 kHz, welche über einen lose gekoppelten Transformator erfolgt. Der feststehende Kern trägt die Primär-

Bull. ASE 57(1966)4, 19 février

621.165

Prinzipschema der rotierenden Baugruppe A.C. Signalspannung; D.C. Gleichstrom Bauteile in der oberen Reihe: Verstärker, Modulator, Sender; Bauteile in der unteren Reihe: Tiefpass, Stabilisator, Gleichrichter

wicklung, während eine Anzahl Sekundärwicklungen mit getrennten Kernen mit dem Läufer rotieren.

Das Gehäuse zur Aufnahme der gekapselten Bausteine besteht aus einer Leichtmetallegierung und ist an der Innenseite der Gegengewichtsnut des Rotors angenietet. Alle Einbauelemente sind vollständig in Araldit eingebettet, welches einen hohen Gehalt an mineralischen Füllstoffen aufweist, um einen ähnlichen Ausdehnungskoeffizient zu erhalten. Von allen geprüften Einbettungsmassen bewährte sich Araldit am besten bei den hohen Temperaturen und Beschleunigungen bis 5000 g. Auch für die Befestigung an den Turbinenschaufeln wurde Araldit verwendet wegen seiner hohen spezifischen Haftung, welche keinen oder nur geringen Druck bei der Härtung benötigt.

Das erste Meßsystem dieser Art wurde 1962 an einem 30-MW-Turbogenerator von Parsons montiert. Seither wurden auch 120-MW-Maschinen der General Electric und von Parsons damit ausgerüstet. Wegen der beschränkten Temperaturfestigkeit der elektronischen Bauelemente, welche etwa 150 °C beträgt, kommt die Anwendung vorläufig nur für die Niederdruckendstufe in Frage. *A. Baumgartner*

Verbesserungen bei der magnetischen Fernsehbildaufzeichnung

621.395.625.3 : 621.397.13

[Nach G. Müller, B. Krank und W. Weinlein: Verbesserungen bei der magnetischen Fernschaufzeichnung. RTM 9(1965)5, S. 254...256]

Die ersten magnetischen Bildaufzeichnungsgeräte aus den USA, die im Jahre 1958 im Deutschen Rundspruch in Betrieb genommen wurden, lieferten beim Empfang Bilder, die nicht die Qualität von Life-Sendungen erreichten; die Bildauflösung war schlechter, und die Bilder zeigten starkes Rauschen und horizontale Schwankungen. Auch die Tonqualität entsprach nicht dem Niveau, das man im europäischen Rundspruch zu fordern gewohnt ist. Durch Zusammenarbeit der Lieferfirmen mit dem Institut für Rundfunktechnik und dem deutschen Rundspruch konnte die Qualität der Wiedergabe magnetischer Bildaufzeichnungsgeräte derart verbessert werden, dass heute kaum ein Unterschied zwischen Magnetband- und Life- Sendungen festzustellen ist.

Die Frequenzkurve des Videoteils konnte bei dem seit 1961 gelieferten Gerätetyp VR 1000 C wesentlich gegenüber dem älteren Typ VR 1000 A verbessert werden (Fig. 1). Der Störabstand liess sich von 30 auf 40 dB erhöhen. Weitere Verbesserungen betrafen die Beseitigung schneller und langsamer horizontaler Bildwanderungen, Eliminierung der Verformung senkrechter Geraden sowie von störend aufblitzenden horizontalen Linien. Durch eine Verbesserung der Regelung des Synchronismus zwischen Bandantriebs- und Kopftrommelmotor mit einer Intersync-Einheit liess sich der grösste Teil der horizontalen Bildwanderungen so weit reduzieren, dass sie bei der Bildbetrachtung praktisch nicht mehr stören.

Wenn ein Bildband mit einer Maschine aufgenommen und mit einer anderen Maschine wiedergegeben wird, können Ver-

Verbesserung der Frequenzkurve des Fernschkanals U_A Ausgangsspannung; f Frequenz; VR 1000 A älteres Maschinenmodell; VR 1000 C neueres Maschinenmodell

zerrungen und Bildschwankungen auftreten, obwohl die Toleranzen für die Teile und den Aufbau des Gerätes sehr eng sind. Die Ursache dieser Verzerrungen liegt in ganz kleinen Lagedifferenzen zwischen dem Bildband und den beiden Kopfachsen. Die Eliminierung dieses Fehlers gelang mit Hilfe einer Laufzeitkette, deren Laufzeit durch eine Regelspannung variiert werden kann.

Eine interessante Lösung wurde gefunden, um die weissen horizontalen Blitze zu unterdrücken, die bei der Wiedergabe einer Bandaufnahme durch Löcher oder Verunreinigungen des Bandes entstehen können. In dem Augenblick, in dem ein Drop-Out, wie man das Aufblitzen auch nennt, einsetzt, schaltet ein elektronischer Schalter den Signalkanal um, und es wird die vorher gesendete Zeile noch einmal durchgegeben (Fig. 2). In den meisten Fällen weist der Bildinhalt von zwei benachbarten Zeilen nur geringe Unterschiede auf. Eine merkbare Störung des Bildes durch die Drop-Out-Kompensation würde erst dann eintreten, wenn in einem Bild eine grosse Zahl von Drop-Outs vorhanden wäre. Dies kann aber nur bei einem sehr schlechten Band der Fall sein; ein derart schlechter Bandteil wird aber im Rundspruch gar nicht verwendet.

Zur Verbesserung der Tonwiedergabe wurde ein neuer NF-Magnetkopfträger entwickelt, der die Kontrolle der auf dem Band aufgebrachten Tonspur während der Aufnahme ermöglicht. Die gleiche Kontrollmöglichkeit besteht für die 250-Hz-Steuerfrequenz, die ein genaues Abspielen des Bandes gewährleistet.

H. Gibas

Suite à page 173

Leistungsschalter für Nennströme von 63–4500 A

TRADING COMPANY LIMITED

fest und ausziehbar mit Trennstellung Schnellschaltvorrichtung Federkraftspeicher Motorantrieb Selektivschutzrelais

Nennstrom: 63 bis 4500 Å Nennspannung: $500 V \sim /220 V =$ Abschaltvermögen: bis 100 kA $_{\rm eff}$

Jenatschstrasse 1

Generalvertretung

Tel. (051) 27 12 91

ELMES 52/62

Moderne Messinstrumente für den fortschrittlichen Konstrukteur

stoss- und vibrationsfeste Messwerke

mit Glasscheibe — daher keine elektrostatische Aufladung

bei grösseren Stückzahlen Farbe nach Wahl

STAUB & CO. RICHTERSWIL Fabrik elektrischer Messinstrumente / Tel. (051) 95 92 22

