Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins							
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke							
Band:	62 (1971)							
Heft:	16							
Artikel:	Der "ideale" Dauermagnetkreis							
Autor:	Schick, C.							
DOI:	https://doi.org/10.5169/seals-915846							

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 18.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Der «ideale» Dauermagnetkreis

Von C. Schick, Zürich

und

In der vorliegenden Arbeit wird versucht, den Geltungsbereich des idealen Magnetkreises für einige wichtige Fälle zu untersuchen. 621.318.2:621.3.042 Dans le présent article, on cherche à examiner le domaine de validité du circuit magnétique idéal pour quelques cas importants.

1. Einleitung

Durch den Fortschritt in der Entwicklung von neuen magnetischen Werkstoffen [1; 2]¹) werden in den letzten Jahren Dauermagnete vermehrt in der Automatik und in der Uhrenindustrie [3; 4] eingesetzt. Auch für die HF-Technik sind sie von Interesse, weil sie als Bestandteile des Magnetrons [3] gebraucht werden.

Der Entwickler von Magnetkreisen stösst immer auf die Schwierigkeit der Berechnung des Streufeldes. Es scheint, dass es bisher nicht möglich war, eine allgemeine Formel für die Streuung von Dauermagneten aus den Maxwellschen Gleichungen abzuleiten, da ihre mathematische Komplexität nur in wenigen Fällen [5...7] eine exakte Berechnung des Potentials erlaubt. Aus diesen Gründen hat man versucht, Näherungsformeln für typische Magnetkreise [8...11] zu ermitteln oder numerische Methoden für die Berechnung mit dem Computer [12; 13] zu entwickeln. In einer früheren Arbeit [14] wurde eine einfache Formel für die Streuung von Magnetkreisen angegeben, die auf der Definition des idealen Magnetkreises beruht. In dieser Arbeit werden ergänzend einige Aspekte des Geltungsbereiches des idealen Magnetkreises erörtert.

2. Der magnetische Kreis

Beim typischen Magnetkreis mit Dauermagneten (Fig. 1) werden zwei Streufaktoren betrachtet: Der «totale» Streufaktor σ und der «praktische» Streufaktor σ_r . Diese werden durch die Verhältnisse

$$\sigma = \Phi_{\rm i} \,/\, \Phi_{\rm e} \tag{1}$$

$$\sigma_{\rm r} = \Phi_{\rm i} \,/\, \Phi_{\rm en} \tag{2}$$

definiert. In diesen Gleichungen ist Φ_e der gesamte Fluss, der den Luftspalt (Volumen AmA'C'nC mit einem magnetischen Widerstand r) erfüllt. Hingegen ist Φ_{en} der Netto-Fluss zwischen den Geraden AA' und CC' und Φ_i der Fluss in den Magneten.

¹) Siehe Literatur am Schluss des Aufsatzes.

Der Magnetkreis nach Fig. 1, dessen Kurzschlussjoch einen magnetischen Widerstand R = 0 hat, wurde in einer früheren Arbeit [14] ausführlich behandelt. Ein Zusammenhang zwischen den beiden Streufaktoren σ und σ_r ist durch den Ausdruck

$$\frac{\sigma_{\rm r}}{\sigma} = \frac{\Phi_{\rm e}}{\Phi_{\rm en}} = \frac{r_{\rm q}}{r} = T \tag{3}$$

gegeben. Hierin ist r_q der dem Netto-Fluss entsprechende magnetische Widerstand. Definitionsgemäss ist

$$r_{\rm q} = \frac{\delta}{\mu_0 A_{\rm g}} \tag{4}$$

worin δ die Luftspaltlänge, A_g den Magnetquerschnitt und μ_0 die Permeabilität des Vakuums bedeuten.

D

A

Es ist nun zweckmässig, folgende Definitionen einzuführen

$$a = 2\pi R_{\rm u} = \pi D_{\rm u} \tag{5a}$$

$$I_{\rm g} = \pi R_{\rm A}^2 = \frac{\pi D_{\rm A}^2}{4}$$
 (5b)

worin R_u und R_A die Radien zweier Kreise sind, welche den gleichen Umfang U_a bzw. die gleiche Querschnittsfläche A_g wie die Magnete aufweisen.

Die Berechnung des praktischen Streufaktors ist theoretisch gelöst, wenn in Gl. (3)

$$\sigma_{
m r} = \sigma T$$

sowohl der totale Streufaktor σ wie die Funktion T bekannt sind. Für den idealen Magnetkreis gilt [14]:

$$\sigma = \sigma_{i} = 1 + C \left(1 - e^{-n \delta/L} \right) \tag{6}$$

Eine andere Definition des idealen Magnetkreises ergibt sich durch eine energetische Betrachtung [15] zu

d $(\varphi - K_1) = K_2 (\varphi - K_1) d\delta$ $\varphi = \frac{E_d}{E}$ und $\varphi = \sigma - 1$

worin E_d die magnetische Streuenergie und E die magnetische Energie in r bedeuten. Diese Gleichung lässt sich sofort wie folgt in eine anschaulichere Form umschreiben:

$$\frac{\mathrm{d}^2\varphi}{\mathrm{d}\delta^2} = K \frac{\mathrm{d}\varphi}{\mathrm{d}\delta} \tag{7}$$

Die Integrationskonstanten C und n in (6) sind in [16] berechnet worden.

Zweck dieser Arbeit ist einerseits, eine Näherung der Funktion T zu ermitteln, die es erlaubt, σ_r aus σ zu berechnen, und anderseits, die so gewonnenen Werte mit denjenigen aus der Formel von *R. K. Tenzer* [11]

$$\sigma_{\rm r} = 1 + \delta \left(\frac{2,2 U_{\rm a}}{3 A_{\rm g}}\right) \left(\frac{L+\delta}{\frac{2}{3} L+\delta}\right) \tag{8}$$

zu vergleichen. Diese Formel ist nicht von *Maynard*, wie in [6] erwähnt wird, sondern von *R. K. Tenzer*, wie es deutlich aus den Literaturstellen [11] und [17] hervorgeht. Um die Anwendbarkeit der Theorie des idealen Magnetkreises $\sigma = \sigma_i$ in Gl. (6) und der Transformationsfunktion *T* zu überprüfen, wird am Schluss dieser Arbeit eine Tabelle angegeben, in welcher die Werte von σ_i und $\sigma_i T$ nach der Theorie des idealen Magnetkreises und die Werte σ_r nach der Formel von *Tenzer* verglichen werden.

3. Grenzen der Streuzone

Ein erster Schritt zur Behandlung der vorliegenden Aufgabe besteht in der Festlegung der Punkte m und n (Fig. 1), welche die Grenzen der Streuzone darstellen. Zu diesem Zweck wird zunächst der Fall betrachtet, bei dem nur die Magnete vorhanden sind, d. h. man denkt sich das Kurzschlussjoch aus dem Magnetkreis herausgenommen (Fig. 2). Unter diesen Bedingungen wird dann die magnetische Feldstärke eines Strombelages ermittelt, durch die man näherungsweise die Magnete ersetzt. Fig. 3 stellt einen solchen äquivalenten Strombelag dar, bestehend aus zwei unendlich ausgedehnten, dünnen ebenen Stromschichten A₁ B₁ und A₂ B₂, die senkrecht in die Zeichenebene eintreten, und zwei gleichen Stromschichten A₁' B₁' und A₂' B₂', die in entgegengesetzter Richtung fliessen.

Die Summe der tangentialen Komponenten der magnetischen Feldstärke, die von diesen vier unendlich langen Stromschichten im Punkt P erzeugt werden, kann durch Integration von vier Ausdrücken der Form

$$dH_{x} = \pm K \frac{(y \mp R)}{x^{2} + (y \mp R)^{2}} dx$$
(9)

ermittelt werden. Hierin ist K eine Konstante, die proportional zur Stromstärke des Belages ist. Die Vorzeichen der rund eingeklammerten Terme gehören in diesen Ausdrücken zeilenweise zueinander. Integration von x_1 bis $[x_1 + L_1]$ und von $(-x_2)$ bis $[(-x_2) + L_2]$ liefert die tangentiale Feldstärke H_x . Setzt man H_x gleich 0, so gilt:

$$\operatorname{arc} \operatorname{tg}\left(\frac{x_1+L_1}{y-R}\right) - \operatorname{arc} \operatorname{tg}\left(\frac{x_1}{y-R}\right) - \operatorname{arc} \operatorname{tg}\left(\frac{x_1+L_1}{y+R}\right) + \operatorname{arc} \operatorname{tg}\left(\frac{x_1}{y+R}\right) = -\operatorname{arc} \operatorname{tg}\left(\frac{-x_2+L_2}{y-R}\right) + \quad (10)$$
$$+ \operatorname{arc} \operatorname{tg}\left(\frac{-x_2}{y-R}\right) + \operatorname{arc} \operatorname{tg}\left(\frac{-x_2+L_2}{y+R}\right) - \operatorname{arc} \operatorname{tg}\left(\frac{-x_2}{y+R}\right)$$

Diese Gleichung stellt die Bedingung für eine Tangentialkomponente H_x gleich Null im Punkt P dar. In diesem Fall ist der Punkt P ein Grenzpunkt der Streuwege im Luftspalt.

Ersatz der Magnete durch Strombeläge A_1 , B_1 und A_2 , B_2 eintretende Ströme; A'_1 , B'_1 und A'_2 , B'_2 austretende Ströme; P Punkt, für den $H_x = 0$ ist

Bull. ASE 62(1971)16, 7 août

mit

Grenze des Streuflusses $C_{\rm m}$ Umfang eines runden Magneten; $C_{\rm b}$ Grenze der Streuzone

Setzt man beide Glieder von Gl. (10) gleich Null unter Berücksichtigung, dass

$$\operatorname{arc} \operatorname{tg} \alpha + \operatorname{arc} \operatorname{tg} \frac{1}{\alpha} = \frac{\pi}{2}$$

so erhält man

$$\frac{x_1 + L_1}{y - R} = \frac{y + R}{x_1}$$
(11)

und

$$\frac{-x_2 + L_2}{v - R} = \frac{y + R}{-x_2} \tag{12}$$

Im Spezialfall

$$x_1 = -x_2 = \frac{\delta}{2} \tag{13}$$

bleibt als einfaches Schlussergebnis

$$h = y - R = \sqrt{R^2 + \frac{\delta}{2} \left(\frac{\delta}{2} + L\right)} - R \tag{14}$$

worin h die Höhe der Streuzone ausserhalb des Magnetquerschnittes darstellt (Fig. 3).

4. Der praktische Magnetkreis

Die Magnete eines praktischen Magnetkreises sind nicht unendlich breit, wie es theoretisch im letzten Abschnitt angenommen wurde. Ausserdem besitzt ein praktischer Magnetkreis auch ein Kurzschlussjoch. Um diesen Tatsachen Rechnung zu tragen, ist es zweckmässig, drei geeignete Korrekturfaktoren λ_1 , λ_2 und λ_3 einzuführen, so dass gilt:

$$y = \lambda_1 \sqrt{R^2 + \lambda_2 \frac{\delta}{2} \left(\lambda_2 \frac{\delta}{2} + \lambda_3 L\right)}$$
(15)

Die Gültigkeit dieser Annahme kann z. B. experimentell nachgeprüft werden. Im folgenden werden zwei Fälle betrachtet:

A. Systeme mit runden Magneten;

 $A_{\rm M}$

B. Systeme mit einem viereckigen oder allgemein polygonalen Magnetquerschnitt.

Bei runden Magneten mit Radius R_A ist die Fläche der Streuzone (Fig. 4):

$$\mathbf{f} = \mathbf{\pi} \, y^2 \tag{16}$$

Der magnetische Widerstand r des Luftspaltes lässt sich daher sofort zu

$$r = \frac{\delta}{\mu_0 A_{\rm m}} = \frac{\delta}{\mu_0 \sqrt{A_{\rm M} A_{\rm g}}}$$
(17)

bestimmen, wenn man annimmt, dass der nützliche Querschnitt A_m das geometrische Mittel zwischen A_M und A_g ist. In Gl. (15) muss ausserdem $R = R_A$ eingesetzt werden.

Aus Gl. (4), (15), (16) und (17) folgt:

$$\frac{1}{r} = \frac{\lambda_1}{r_q} \sqrt{1 + \frac{\lambda_2}{2} \cdot \frac{\delta}{R_A} \left(\frac{\lambda_2}{2} \cdot \frac{\delta}{R_A} + \lambda_3 \frac{L}{R_A}\right)}$$
(18)

Wenn man annimmt, dass für $\delta = 0$ $r = r_q$ ist, wird in Gl. (18) $\lambda_1 = 1$. Andererseits wird Gl. (18) für $\delta = \infty$:

$$\frac{1}{r_{\infty}} = \frac{\lambda_2}{2} \ \mu_0 \ \sqrt{\pi A_g} \tag{19}$$

Ein Vergleich mit

$$r_{\infty} = \frac{1}{\mu_0 \sqrt{\pi A_{\rm g}}} \tag{20}$$

wie es in [14] entwickelt wurde, zeigt, dass für zylindrische Magnete $\lambda_2 = 2$ sein muss. Durch Einsetzen dieses Wertes in Gl. (18) erhält man

$$T = T_{\rm c} = \frac{r_{\rm q}}{r} = \sqrt{1 + \frac{\delta}{R_{\rm A}} \left(\frac{\delta}{R_{\rm A}} + \lambda_3 \frac{L}{R_{\rm A}}\right)}$$
(21)

Den Wert von λ_3 kann man aus folgender Überlegung ableiten:

Für den magnetischen Randwiderstand hat man

$$\frac{1}{r_{\rm b}} = \frac{1}{r} - \frac{1}{r_{\rm q}}$$
(22)

hieraus folgt für $\delta \approx 0$

$$\frac{r_{\rm q}}{r_{\rm b}} \approx \frac{\delta \left(\delta + \lambda_3 L\right)}{2 R_{\rm A}^2} \tag{23}$$

Durch Einsetzen von (4) und (5) in die letzte Gleichung erhält man

$$\frac{1}{r_{\rm b}} \approx \frac{\delta (\delta + \lambda_3 L) \,\mu_0 \, U_{\rm a}}{4 \, R_{\rm A}} = 0.26 \, U_{\rm a} \,\mu_0 f_{\rm c}$$
(24)

worin der Wert $1/r_b$ mit demjenigen aus Formel

$$\frac{1}{r_{\rm b}} = 0,26 \ U_{\rm a} \ \mu_0 \tag{25}$$

identifiziert worden ist. Diese aus dem Buch von *G. Retter* ([18], S. 119) entnommene Formel ist nur für ebene Flächen gültig, weshalb in Gl. (24) ein Korrekturfaktor f_c für zylindri-

 $C_{\rm m}$ Umfang des viereckigen Magneten; $C_{\rm b}$ Grenze der Streuzone

Bull. SEV 62(1971)16, 7. August

DAL	DUL	DEL	SIGI	STRG	SIGR	TENZ	ER 0/0	DAL	DUL	DEL	SIGI	STRG	SIGR	TENZ	ER 0/0
1.0	1.ÚÚ	• 05	1.185	1.055	1.250	1.214	3.0	4.0	4.00	.05	1.039	1.013	1.053	1.053	0
1.0	1.00	•10	1.304	1.117	1.457	1.419	2.6	4.0	4.00	.10	1.075	1.027	1.104	1.105	1
1.0	1.00	.20	1.430	1.255	1.796	1.809	7	4.0	4.00	.20	1.136	1.041	1.192	1.202	3
1.0	1.30	.25	1.463	1.330	1.946	1.996	-2.5	4.0	4.00	.25	1.161	1.070	1.243	1.249	5
1.0	1.50	. 05	1.404	1.168	1.346	1.521	1.9	4.0	6.00	.05	1.108	1.020	1.152	1.080	2
1.0	1.50	.15	1.508	1.259	1.899	1.926	-1.4	4.0	6.00	.15	1.154	1.060	1.223	1.231	7
1.0	1.50	.20	1.576	1.353	2.133	2.214	-3.7	4.0	6.00	.20	1.195	1.081	1.292	1.303	9
1.0	2.00	.25	1.304	1.107	2.340	1.428	1.1	4.0	8.00	.05	1.074	1.026	1.102	1.107	-1.1
1.0	2.00	.10	1.504	1.217	1.831	1.838	- • 4	4.0	8.00	.10	1.140	1.053	1.201	1.210	7
1.0	2.00	.15	1.634	1.330	2.174	2.234	-2.7	4.0	8.00	•15	1.200	1.080	1.296	1.405	-1.0
1.0	2.00	.25	1.775	1.559	2.768	2.993	-7.5	4.0	8.00	.25	1.302	1.134	1.477	1.498	-1.4
1.0	2.50	• 05	1.364	1.132	1.543	1.535	•6	4.0	10.00	.05	1.091	1.033	1.127	1.134	6
1.0	2.50	.15	1.759	1.398	2.459	2.543	-3.3	4.0	10.00	.15	1.247	1.098	1.369	1.386	-1.2
1.0	2.50	.20	1.862	1.530	2.849	3.023	-5.7	4.0	10.00	.20	1.313	1.132	1.486	1.506	-1.3
1.0	2.50	.25	1.929	1.662	3.206	3.491	-8.2	4.0	10.00	.25	1.372	1.165	1.202	1.623	-1.5
1.0	4.00	.10	1.898	1.397	2.651	2.676	9	4.0	16.00	.10	1.271	1.103	1.402	1.419	-1.2
1.0	4.00	.15	2.132	1.583	3.375	3.468	-2.7	4.0	16.00	.15	1.386	1.153	1.598	1.617	-1.2
1.0	4.00	.20	2.285	1.937	4.621	4.986	-4.9	4.0	16.00	.20	1.490	1.203	1.981	1.996	-1.0
1.0	7.00	. 45	1.897	1.334	2.531	2.497	1.4	4.0	28.00	. 45	1.246	1.089	1.357	1.374	-1.3
1.0	7.00	.10	2.485	1.629	4.048	3.933	2.9	4.0	28.00	.10	1.467	1.174	1.721	1.733	7
1.0	7.00	.20	3.121	2.154	5.452	5.520	.9	4.0	28.00	.20	1.842	1.334	2.458	2.416	1.7
1.0	7.00	.25	3.286	2.395	7.868	7.975	-1.3	4.0	28.00	.25	2.002	1.411	2.824	2.744	2.9
2.0	2.00	.05	1.084	1.027	1.113	1.107	•6	5.0	5.00	.05	1.031	1.011	1.042	1.043	1
2.0	2.00	.10	1.152	1.055	1.216	1.210	•5	5.0	5.00	.10	1.080	1.021	1.121	1.123	1
2.0	2.00	.20	1.252	1.117	1.398	1.405	4	5.0	5.00	.20	1.110	1.044	1.159	1.162	3
2.0	2.00	•25	1.288	1.150	1.481	1.498	-1.1	5.0	5.00	•25	1.132	1.055	1.195	1.199	4
2.0	3.00	.10	1.212	1.040	1.162	1.160	3	5.0	7.50	.10	1.045	1.032	1.121	1.126	4
2.0	3.00	.15	1.289	1.124	1.449	1.463	-1.0	5.0	7.50	.15	1.124	1.048	1.178	1.185	6
2.0	3.00	.20	1.351	1.168	1.578	1.607	-1.8	5.0	7.50	.20	1.191	1.065	1.288	1.243	
2.0	4.00	.05	1.150	1.053	1.210	1.214	3	5.0	10.00	.05	1.059	1.021	1.081	1.086	4
2.0	4.00	.10	1.271	1.107	1.407	1.419	9	5.0	10.00	.10	1.113	1.042	1.160	1.168	7
2.0	4.00	.15	1.369	1.162	1.591	1.617	-1.6	5.0	10.00	.15	1.163	1.063	1.237	1.247	8
2.0	4.00	.25	1.514	1.274	1.928	1.996	-3.4	5.0	10.00	.25	1.250	1.107	1.384	1.399	-1.1
2.0	5.00	. 05	1.183	1.065	1.260	1.267	6	5.0	12.50	.05	1.073	1.026	1.101	1.107	5
2.0	5.00	.15	1.450	1.198	1.737	1.771	-1.2	5.0	12.50	.15	1.201	1.079	1.296	1.309	-1.0
2.0	5.00	.20	1.547	1.265	1.957	2.011	-2.7	5.0	12.50	• 20	1.258	1.105	1.390	1.405	-1.1
2.0	5.00	.25	1.626	1.331	2.164	2.245	-3.6	5.0	12.50	•25	1.115	1.132	1.482	1.498	-1-1
2.0	8.00	.10	1.508	1.203	1.814	1.838	-1.3	5.0	20.00	.10	1.220	1.082	1.320	1.335	-1.1
2.0	8.00	.15	1.691	1.301	2.200	2.234	-1.5	5.0	20.00	.15	1.316	1.123	1.478	1.494	-1.0
2.0	8.00	.25	1.960	1.491	2.922	2.993	-2.4	5.0	20.00	.25	1.405	1.203	1.787	1.797	5
2.0	14.00	.05	1.477	1.174	1.733	1.749	9	5.0	35.00	.05	1.198	1.071	1.284	1.299	-1.2
2.0	14.00	.10	1.862	1.334	2.483	2.467	.7	5.0	35.00	•10	1.546	1.207	1.866	1.864	9
2.0	14.00	.20	2.422	1.629	3.946	3.832	3.0	5.0	35.00	.20	1.699	1.271	2.159	2.133	1.2
2.0	14.00	.25	2.624	1.767	4.638	4.487	3.3	5.0	35.00	.25	1.838	1.334	2.452	2.395	2.4
3.0	3.00	.10	1.101	1.018	1.140	1.140	•1								
3.0	3.00	.15	1.141	1.055	1.204	1.206	1								
3.0	3.00	.20	1.176	1.075	1.265	1.270	4								
3.0	4.50	.05	1.076	1.026	1.105	1.107	2								
3.0	4.50	.10	1.143	1.054	1.204	1.210	5								
3.0	4.50	•15	1.201	1.081	1.298	1.309	8								
3.0	4.50	.25	1.294	1.139	1.474	1.498	-1.6							2	
3.0	6.00	.05	1.099	1.035	1.137	1.143	4								
3.0	6.00	•10	1.185	1.1071	1.394	1.411	8								
3.0	0.00	.20	1.325	1.143	1.514	1.539	-1.6								
3.0	6.00	.25	1.381	1.180	1.630	1.664	-2.1								
3.0	7.50	.10	1.227	1.044	1.334	1.349	-1.1								
3.0	7.50	.15	1.319	1.132	1.492	1.514	-1.4								
3.0	7.50	.20	1.398	1.176	1.644	1.674	-1.8								
3.0	12.00	.05	1.189	1.069	1.271	1.285	-1.1								
3.0	12.00	.10	1.353	1.136	1.538	1.559	-1.3								
3.0	12.00	.15	1.496	1.203	1.799	1.823	-1.3				<u>L</u>				
3.0	12.00	.25	1.726	1.333	2.301	2.329	-1.2								
3.0	21.00	.05	1.325	1.117	1.480	1.499	-1.3								
3.0	21.00	•10	1.849	1.334	2.467	2.440	3					Fig. 6			
3.0	21.00	.20	2.060	1.436	2.957	2.888	2.4	Zusa	mmenste	ellung v	yon σ_{ri} , σ_r	und ihrer	relativen	Abwicklun	g ER für
3.0	21.00	.25	2.242	1.534	3.439	3.325	3.4	verschiedene Werte von D_A/L , D_u/L und S/L							

sche Flächen eingeführt wurde. Aus Gl. (24) ergibt sich die Näherung

$$\lambda_3 \approx 1.04 \, \frac{R_{\rm A}}{L} \tag{26}$$

als der gewünschte Wert von λ_3 , wenn man annimmt, dass $f_c = 1$ für $\delta = 0$ sein muss. Durch Einsetzen von (26) in (21) ergibt sich für runde Magnete

$$T_{\rm e} = \frac{\sigma_{\rm r}}{\sigma} = \sqrt{1 + \frac{\delta \left(\delta + 1,04 R_{\rm A}\right)}{R_{\rm A}^2}} \tag{27}$$

als die gewünschte Funktion Te, die man auch wie folgt ausdrücken kann:

$$T_{\rm c} = \sqrt{1 + 4\frac{\delta}{L} \left(\frac{\delta}{L} + \frac{1}{2} \cdot 1,04\frac{D_{\rm A}}{L}\right) / \left(D_{\rm A}/L\right)^2} \qquad (28)$$

Für den Fall viereckiger Magnete ist die maximale Querschnittsfläche der Streuzone (Fig. 5)

$$A_{\rm M} = A_{\rm g} + h U_{\rm a} + \pi h^2 \tag{29}$$

worin $h = y - R_A$ bedeutet.

Aus Gln. (3), (4), (15), (17), und (28) erhält man durch Transformationen

$$T_{\rm g} = \frac{\sigma_{\rm r}}{\sigma} = \sqrt{T_{\rm c}^2 + 2\left(\frac{D_{\rm u}}{D_{\rm A}} - 1\right)\left(T_{\rm c} - 1\right)} \tag{30}$$

Als Kontrolle wird aus dieser Gleichung der Wert

$$r_{\infty} = \frac{1}{\mu_0 \sqrt{\pi A_{\rm g}}}$$

für $\delta = \infty$ in Übereinstimmung mit [14] abgeleitet.

5. Die Integrationskonstanten

Für den Fall $\delta = 0$ kann man eine äguivalente Länge L' so einführen, dass ein Magnetsystem ohne Kurzschlussjoch (Fig. 2) mit Magneten der Länge L' die gleiche Streuung wie das wirkliche Magnetsystem mit Kurzschlussjoch und mit Magneten der Länge L ergibt. Für Magnete mit 1,5 $< D_{\rm A}/L$ < 2 kann man näherungsweise $L' = 2L = \lambda_3 L$ annehmen. Durch Einsetzen dieser Bedingung in Gl. (22) ergibt sich [mit $\lambda_2 = 1$ (Fig. 3)]

$$\frac{1}{r_{\rm b}} = \frac{\mu_0 \, U_{\rm a}}{4} \cdot \frac{L}{R_{\rm A}} \tag{31}$$

Diese Formel stimmt mit Ref. [16] überein. Wenn aber die Magnete zu lang oder zu kurz sind, ist die Näherung L' = 2Lnicht mehr so genau. Für den allgemeinen Fall ist es praktischer, für $1/r_b$ die Formel (25) zu verwenden.

Um die Gleichung des idealen Magnetkreises anwenden zu können, muss man vorher noch C und n in Gl. (6) bestimmen. Diese Integrationskonstanten können mit Hilfe folgender Formeln

$$C = \frac{\pi D_{\rm u} + L + \sqrt{D_{\rm u} L}}{\pi^2 D_{\rm A}}$$
(32)

und

$$n = \frac{2L}{C\pi D_{\rm A}^2} \left[3 D_{\rm u} + \frac{5L}{\pi} + \left(\pi D_{\rm u} + 2 L \right) \right/ 2 \right]$$
(33)

errechnet werden. Der Wert C ist direkt von [16] übernommen, während der Wert *n* demjenigen von mL von [16] entspricht, wobei für $1/r_b$ Gl. (25) anstelle von Gl. (31) benützt wurde. Diese Formeln für C und n sind nur für kurze Magnete $[(D_A/L) > 1]$ brauchbar.

Bull. SEV 62(1971)16, 7. August

6. Vergleich zwischen σ_{ri} und σ_{r}

Die Werte von σr_i nach Gl. (3) und (6) vergleicht man mit $\sigma_{\rm r}$ nach Gl. (8) zweckmässigerweise mit Hilfe des Computers. Dazu werden die nachstehenden Substitutionen eingeführt:

Um den Vergleich von σ_{ri} und σ_r zu erleichtern, wird mit dem Computer der Fehler ER in % wie folgt berechnet:

$$\mathbf{ER} = \left(\frac{\sigma_{\mathrm{ri}}}{\sigma_{\mathrm{r}}} - 1\right) \cdot 100 \tag{34}$$

Die Werte von ER sind aus Fig. 6 ersichtlich.

7. Schlussfolgerungen

1. Die Transformationsfunktionen T_c (28) und T_g (30) ergeben offensichtlich eine brauchbare Näherung für $\delta < \frac{1}{4}L$. Bei Stahlmagneten sind gerade diese Fälle in der Praxis am wichtigsten, da hier die Entmagnetisierungskurve noch etwa linear verläuft.

2. Die Formeln für C(32) und n(33) gelten [16] unter der Voraussetzung, dass der Verlauf des Potentials entlang den Magneten als linear betrachtet werden kann. Diese Annahme ist nur für kurze Magnete $D_A/L > 1$ gültig.

3. Die Werte von σ_{ri} nach der Theorie des idealen Magnetkreises weisen eine bemerkenswerte Übereinstimmung mit denjenigen von σ_r auf, die man nach der Formel von Tenzer erhält. Die Abweichung liegt oft unter \pm 1 % und ist nur selten grösser als \pm 5 %. Man sieht somit, dass die Theorie des idealen Magnetkreises in vielen praktischen Fällen brauchbar ist.

Literatur

- J. J. Went u. a.: Ferroxdure, eine Gruppe neuer Werkstoffe f
 ür Dauer-magnete. Philips'Techn. Rdsch. 13(1952)12, S. 361...376.
- [2] F. Hofer: Dauermagnetwerkstoffe aus Legierungen des Kobalts mit Seltenen Erdmetallen. Z. Angew. Physik 30(1970)1, S. 26...32.
- [3] K. Schüler und K. Brinkmann: Dauermagnete. Werkstoffe und An-wendungen. Berlin/Heidelberg/New York, Springer-Verlag, 1970. [4] M. Heizel: Die elektrische Uhr. Techn. Rdsch. 56(1964)49, S. 33, 35, 37, 41 + 43.
- [5] E. Durand: Magnétostatique. Paris, Masson, 1968.
- D. Hadjield: Permanent magnets and magnetism; theory, materials, design, manufacture and applications. London, Iliffe and New York, Wiley, 1962. Wiley, 1962.
 [7] H. J. Peake and N. Davy: The magnetic fields produced by uniformly magnetized ellipsoids of revolution. British J. of applied Physics 4(1953)7, S. 207...209.
- *A.T. van Urk:* Der Gebrauch moderner Stahlsorten für permanente Magnete. Philips'Techn. Rdsch 5(1940)2, S. 29...36.
- J. C. Helmer: Magnetic circuits employing ceramic magnets. Proc. IRE 49(1961)10, p. 1528...1537. [9]
- [10] J. Koch: Berechnung von Dauermagneten unter besonderer Berück-sichtigung des Streufaktors. Valvo-Berichte 7(1961)5, p. 131...158.
- [11] R. K. Tenzer: Magnet Desing. I.: Estimating leakage factors for per-manent magnets from geometry of magnetic circuit. Electrical Manu-facturing 59(1957)2, p. 94...97.
- [12] O. V. Tozoni: Mathematical models for the evalution of electric and magnetic fields. London, Iliffe, 1968.
 [13] K. Reichert: The calculation of magnetic circuits with permanent magnets by digital computers. Trans. IEEE MAG 6(1970)2, p. 283...288.
 [14] C. Schick: Die Streufaktoren in Dauermagnetkreisen. Bull. SEV SEV 59(1968)25, S. 1147...1151.
 [15] C. Schick: Blearer energifting on elemptitics magnification functional difference in the second seco
- [15] C. Schick: Balance energético en circuitos magnéticos. Dyna 44(1969)5, p. 173...175.

- p. 1/3...15.
 [16] C. Schick: Interpretation of leake in premanent magnets. Neue Technik 11(1969)A/5, p. 307...312.
 [17] C. A. Maynard: Analysis and design of permanent magnet assemblies. Machine Design 29(1957)8, p. 122...143.
 [18] G. Retter: Magnetische Felder und Kreise. Berlin, VEB Deutscher Verlag der Wissenschaften, 1961.

Adresse des Autors:

Schick, Dipl.-Ingenieur, Institut für Hochfrequenztechnik der ETH-Zürich, Sternwartstr. 7, 8006 Zürich.